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A b s tr a c t .  Various concepts for low-level motion estim ation based on 
differential, tensor, and phase m ethods are revisited. They are reform u
lated in a unified way as filter m ethods in the continuous space-time 
domain. This approach allows inherent conceptual deficits to  be distin
guished from those related to the implem entation in discrete space. A 
detailed analytical error analysis is performed. All techniques yield un
biased m otion estim ates for areas of constant velocity with any type of 
gray value structure in continuous space. Errors are only introduced by 
an inadequate discrete implem entation. Further investigated are the in
fluence of zero-mean normal distributed  noise, spatially and tem porally 
(accelerated) varying motion, m otion discontinuities, and illumination 
changes.

1 In trod u ction

Recently, Barron et al. [4] pointed out the lack of quantitative evaluation for 
motion determination. In their paper they perform direct experimental compar
isons of different techniques with the same set of scenes. Here a general analytical 
analysis of the different primitive motion estimators which does not depend on 
specific assumptions about the spatial gray value structures is performed. The 
common approach so far was to expand spatial gray value structures in a Taylor 
series to the first or second order.

The paper consists of three major parts. An introduction into image sequence 
processing in the continuous space-time domain is given in section 2. In section 3, 
differential, tensor-based, and phase-based techniques are reformulated and ex
tended into a unified filter concept, while a detailed analytical study of these 
techniques is the topic of section 4.

2 M otion  in Space-T im e Im ages

Motion appears as orientation in space-time images [1, 2, 3]. The relation between 
orientation and the velocity is given by

(1)
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The angles <pi and <p2 are defined as the angle between the plane normal to the 
lines of constant gray values and the xi and x2 axes.

F ig . 1. Complex traffic image sequence (taken at the city limits of Hanau, Germany) 
with multiple occlusions to illustrate how motion shows up in space time images: a) last 
image of the sequence; b) x t cross section at the marked line in a); the time axis spans 
20.5 s, running downwards.

The space-time slices of the traffic scene shown in figure 1 illustrate spatio- 
temporal gray value structures. All orientation changes due to not constant mo
tion which can be seen in this sequence, take place only gradually because of the 
inertia of the objects. In contrast, occlusions are directly associated with sharp 
discontinuities of local orientation in the xt space.

The basic conceptional difference to approaches using two consecutive images 
is that the velocity is estimated directly as orientation in continuous space-time 
images and not as a discrete displacement between two images. These two con
cepts differ more than it appears at first glance. Algorithms for motion estimation 
can now be formulated in continuous xt space. This opens the way for a com
parative analytical study of the different motion estimators. The following three 
general classes of gray value structures are employed:

constant 1-D motion g(x -  ut)
planar wave, moving “edge” g(kT x — ωt) (2)
constant 2-D motion, moving “corner” g(x — ut)

These elementary classes will also be modified systematically to include not 
constant motion in time, inhomogeneous motion including first-order spatial 
derivatives of the motion field, motion discontinuity (neighboring regions with 
different but constant motion), illumination changes, and zero-mean, normal- 
distributed noise.

There are significant advantages of this approach. First, no specific assump
tions are made about the spatial structure of the gray values, except that they 
fall in one of the classes discussed above. Therefore the results are generally valid



in contrast to those based on the common approach that use Taylor expansions 
of the spatial gray value structure. Second, the performance of the different algo
rithms is determined in a unified and systematic way. The results with different 
schemes can be compared directly. Third, the different techniques are evaluated 
analytically before they are implemented in the discrete space. In this way, the 
errors inherent to the method can be separated from errors introduced by the 
discretization.

3 Form ulation as F ilter  M ethods in Sp ace-T im e Im ages

In this section several major approaches for image sequence processing are refor
mulated under the unified concept of filter operations in space-time images that 
can be combined as a sequence of the simple linear convolution and nonlinear 
point operations. This approach has also the advantage that the interrelations 
between the different concepts become more transparent.

3.1 Differential Methods

The classical differential methods based on first-order derivatives try to solve 
the aperture problem expressed in the brightness continuity constraint equation 
(BCCE)

provided that the 2 x 2-matrix GTG is invertible. (The expression gp denotes a 
partial derivative of g in the direction p.) The resulting optical flow is denoted 
by the vector f  = (e, f ) and strictly distinguished from the projected motion 
field u = (u,v), since both may be different.

The least squares approach for the differential method can easily be reformu
lated to incorporate a more general smoothing. We can rewrite (4) and obtain

by assuming a constant velocity in a neighborhood and using a least squares 
approach for N  points in this neighborhood results in the equation

(4)
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3.2 Tensor Methods

Knutsson [19] showed that local structure in an n-dimensional space can be 
represented by a symmetric n  × n tensor

( 8 )

These equations give a tensor representation of the local structure centered at 
the point x  in the image. The components of the tensor are the same as for the 
filter formulation of the differential method. Local orientation, and thus optical 
flow, is now, however, solved by an eigenvalue analysis of the tensor.

In 2-D space, the result of the eigenvalue analysis can readily be given [13]. 
The 1-D optical flow f  and the coherency are given by

(9)

The coherency c is one for ideal local orientation (constant motion) and zero for 
distributed orientation. An equivalent approach [5] uses the inertia tensor:

This tensor has the same eigenvectors as the structure tensor and thus the same 
solutions. There are techniques which start from completely different ideas but 
end up with the same results. Kass and Witkin’s [15] approach of directional 
filtering, for example, is identical to the general inertia tensor method [13]. They 
used a DoG filter as a special type of derivative filters. Without being aware of 
either Bigün and Grandlund’s [5] earlier and Knutsson’s [19] simultaneous work, 
Rao and Schunck [22] and Rao [21] proposed a moment-based technique that is 
equivalent to the structure tensor method.

In a similar way, the differential geometric methods using second-order deriva
tives [11] can be extended to a filter method in the xt space:

This equation exactly corresponds to the result obtained by Girosi et al. [9]. He 
has derived it by applying the continuity of the optical flow (3) to two feature 
images, namely the horizontal and vertical spatial derivative:

(7)

In this way we come to an important generalization of the differential method. 
We can apply any preprocessing of the images, or can extract arbitrary feature 
images. The original, horizontal and vertical derivative images may be just re
garded as a special case how more features to determine optical flow can be 
obtained from one image.



3 .3  P h a s e  M e th o d s

Fleet [6] and Fleet and Jepson [8] proposed the use of the phase for the com
putation of optical flow. The phase method is not appropriate to handle two- 
dimensional shifts, it is essentially a 1-D concept which measures the motion of 
a linearly oriented structure, a planar wave, in the direction of the gray value 
gradients. From this fact, Fleet and Jepson [7] derived a new paradigm for mo
tion analysis. The image is decomposed with directional filters and in each of 
the components normal velocities are determined. The 2-D motion field is then 
composed from these normal velocities.

Computing the temporal and spatial derivatives of the phase, i.e., the gra
dient in the xt space, yields both the wave number and the frequency of the 
moving periodic structure

( 11)

and the velocity is given as the ratio of the frequency to the wave number

( 12)

Fleet and Jepson [7] use a set of Gabor filters for the directional composi
tion. Gabor filters are quadrature filters with a shifted Gaussian-shaped transfer 
function. Fleet and Jepson used six directional filters with an angle resolution 
of 30° and a bandwidth of 0.8 octaves.

The phase can directly be computed from quadrature filter pairs. If the result 
from the filtering with the quadrature filter pair is denoted by q+ and q - , the 
phase is given by

(14)

Jähne [13, 14] proposed an alternative approach using a directio-pyramidal 
decomposition [10, 11] and Hilbert filtering to generate a second signal with a 
phase shift of π/2. Using a Hilbert filter and applying additional spatio-temporal 
smoothing, we can rewrite (14) and obtain

(15)

where the original and Hilbert filtered signal are denoted with eg(x,t) and 
°g(x,t).

(13)

Using (12), the optical flow is



4 A n aly tica l Studies

Because of limited space, only the results and their interpretation can be pre
sented. Most of the proofs are omitted. Also not every type of patterns is studied 
for every technique. The missing proofs and a more detailed study can be found 
in [13].

4.1 Constant Motion in Noise-Free Image Sequences

In order to study this condition, an arbitrary spatial gray value structure moving 
with a constant velocity, g'(x , t ) = g(x — u t) is used. All techniques gave exact, 
unbiased results in this case, i. e., f  = =  u . This result is significant since they 
do not depend at all on the specific form of the gray value structure. Further 
remarks illustrate some finer points of the different techniques.

Differential M ethod . A solution exists only if the inverse of      exists. 
This is the well known aperture problem. The widespread misconception that 
the gradient or differential methods deliver no accurate results when the spatial 
gray value structure cannot adequately be approximated by a first-order Taylor 
series (see, e.g., Kearney et al. [17]) is clearly contradicted by the above result.

Fig. 2. a) Synthetic image to test 1-D motion algorithms: concentric rings, the 
wave number is proportional to the distance from the center, minimal wavelength: 
f  pixel at the outer edge, b) Test of the tensor algorithm using a B-spline-based 
derivative operator. Shown is a contour plot of the difference between the true 
and computed angle; the distance of the contour lines is 0.02, the range is -0.1 
to 0.1.



Errors are only introduced by the discrete implementation. Especially the 
choice of suitable spatial derivative operators is critical. This fact is illustrated by 
computing the orientation of a test image with concentric ring pattern as shown 
in figure 2a with the tensor-based method using a B-spline-based derivative filter.

The deviation of the computed from the true orientation is given in radian. 
This measure is also useful with respect to motion analysis since, for small values, 
it is equal to the tangent and thus directly expresses the velocity or velocity 
deviation of the displacement in pixels between two consecutive images. For 
all except the highest wave numbers at the very edge of the ring pattern, the 
deviation in orientation is less than 0.02 (1.2°). This constitutes a performance 
improvement of more than a factor of 10 over the symmetrical derivative operator 
(1)D (1/2 (1 0 - 1)), which shows deviations up to 0.3 (17°).

Phase M ethod . The puzzling fact for the phase method is that exact results 
do not depend on the fact that °g and °g are a Hilbert pair. It is sufficient 
that e = (eg °gx — °g egx) ≠  0. Consequently, the phase method gives accurate 
results with any pair of eg and °g provided that e is sufficiently large. A Hilbert 
pair, however, will still be optimal, since it maximizes e and minimizes the 
spatial variations in e. This result is also important considering the fact that it 
is difficult to design an effective wide-band Hilbert filter, since already a rough 
approximation will give good results.

4.2 Constant Motion in Noisy Image Sequences

Now zero-mean noise is added: g'(x , t) = g(x —ut)+n(x, t) with (n) = 0, (ntnx) = 
0 ,  (dpnq) = 0, i.e., and it is assumed that the partial derivatives of the noise 
function are not correlated with themselves or the partial derivatives of the 
image patterns.

Differential M ethod . In the 2-D case, we obtain

The matrix containing the mean squared gradients of the noise is a positive 
definite diagonal matrix. Thus the estimate of optical flow is biased by noise 
towards lower values both in the 1-D and 2-D case.

Tensor M ethod . The tensor method gives exact results even with noisy image 
sequences in the 1-D and 2-D case. In the 1-D case the coherency is

Thus the tensor method has two significant advantages over the differential 
method. First, the velocity estimate is not biased in noisy images provided that 
the noise is isotropic in the xt  space, (nx2) = (n t2). Second, the coherency is a 
direct measure for the signal to noise ratio in the image for constant motion.



4 .3  A c c e le ra te d  M o tio n

Differential M ethod . The differential method gives the following result:

Tensor M ethod . For the tensor method, only the coherency measure is ana
lyzed for accelerated motion that is spatially homogeneous. The result is:

(16)

There are two types of bias terms. The first three terms are unequal to zero only 
when the square gradient is not evenly distributed in the neighborhood. Only the 
last term results in a bias even if the gradients are evenly distributed, but only 
if the velocity changes both in space and time. Thus it is a small second-order 
term.

The coherency decrease is proportional to the acceleration squared (u t2) and 
only a small term. Thus the coherency is not sensitive to gradual changes in the 
velocity.

4.4 Motion Discontinuity

Next, we turn to the analysis of motion discontinuities. We take two subareas 
within the neighborhood with different velocities. Without loss of generality, we 
choose g'(x , t ) = g(x + ut)Π (—x ) and g"(x , t) = g(x — ut)Π(x ), where Π (x) 
is the step function (we can gain all other cases by rotation of the coordinate 
system). Then the estimate for the optical flow is

If the mean square gradient is equal in both regions, the estimated optical flow 
is zero as expected. The coherency is



where a is the angle between the spatio-temporal orientation in the two regions 
(which is related by tan(α/ 2) = u to the velocity in the two regions) and γ  is a 
measure that compares the mean square gradient in the two regions

4.5 Illumination change

F ig . 3. Static scene with illumination changes only: a) first, image o f the sequence; 
b) xt cross section at the lower white line in a); the time axis spans 3.4 h, running 
downwards.

Finally, we discuss the influence of illumination changes using g'(x , t ) = g(x - 
ut, t). Then g'x = gx and g' = - ugx + gt , where gt means the explicit temporal

It is one if both regions have the same mean square gradient and zero if the 
mean square gradient in one region is significantly larger than in the other. 
If the mean square gradients in both regions are equal, the expression for the 
coherency becomes even simpler: c = cosα . This tells us that the coherency is 
zero if the orientations in the two regions are orthogonal.



This result is not surprising, since illumination changes occur as additional ori
ented patterns with an orientation corresponding to infinite velocity (figure 3). 
Since we know, however, that these patterns cannot be caused by motion, they 
can be removed by an appropriate directional filter.

5 C onclusions and O utlook

A unified concept for methods based on differential, tensor, and phase method 
that compute optical flow directly in space time images has been presented. All 
the estimators are composed of simple convolution kernels (binomial smoothing, 
first-order derivatives, and — only for the phase method — a Hilbert filter) 
and nonlinear point operators (pointwise image multiplication). All methods 
yield unbiased results in regions of constant motion. However, they differ in 
the response to less perfect regions. The differential method has the significant 
disadvantage that the motion estimation is biased by noise. An important piece of 
future work would be the comparison of the direct methods reported here with 
the quadrature filter set techniques established by Granlund’s research group 
[18].
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