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Fig. 1. Snapshots of a network at discrete, non-uniformly–spaced
observation times.

ABSTRACT

In this work, we appropriate the popular tool of Gaussian processes
to solve the problem of reconstructing networks from time-series
perturbation data. To this end, we propose a construction for mul-
tivariate Gaussian processes to describe the continuous-time trajec-
tories of the states of the network entities. We then show that this
construction admits a state-space representation for the network dy-
namics. By exploiting Kalman filtering techniques, we are able to
infer the underlying network in a computationally efficient manner.

Index Terms— Network reconstruction, multivariate Gaussian
processes, state-space representation, time-course data.

1. INTRODUCTION

Time-course data observed under the perturbation of, for exam-
ple, biological systems contain rich information about the salient
structure of interconnectivity among the entities of the network
underlying the system. Consider, for example, the undirected net-
work depicted in Fig. 1. Temporal snapshots at a number of time
points are shown. These correspond to observation times of the
high-dimensional measurements at non-uniformly–spaced intervals.
The edges linking the nodes of the network are seen to vary over
time in intensity, as captured by their widths. The network connec-
tivity pattern, however, remains unchanged. It is this connectivity
pattern that a network reconstruction algorithm, like the one devel-
oped in this work, attempts to reconstruct given noisy time-course
observations of the states of the nodes. After all, network recon-
struction approaches that exploit the temporal dependency of the
high-dimensional observational data tend to outperform those hing-
ing on the assumption of temporal independence [1, 2, 3, 4, 5, 6, 7].
The challenges encountered include the availability of only few
noisy high-dimensional measurements at non-uniformly–spaced
intervals; missing data; and the computational complexity of infer-
ence, parameter estimation, and structure search.

This work was funded by the European Union’s Horizon 2020 research
and innovation programme under grant agreement 668858.

For the algorithm developed in this work, the discrete, noisy
time-course observational data are modeled as temporal snapshots of
realizations of a multivariate Gaussian process (GP). This amounts
to specifying a multivariate GP prior over the temporal trajectories
describing the evolution of the nodes in the network. GPs are a pop-
ular tool for regression analysis and prediction using time-series data
[8]. Multivariate GPs have sparked interest recently, as they enable
capturing the dependencies in high-dimensional data. The specifica-
tion of the multivariate process, however, has largely been dictated
by the target application. Though the framework of GP regression
has been exploited for the prediction of regulator states from target
observations in regulatory networks [9], to our knowledge it has not
been used so far for network reconstruction. Moreover, devising
efficient computational procedures for multivariate GP regression
remains a challenge [10, 11].

Special choices of the covariance kernel of the multivariate GP
give rise to processes that can be described by a system of coupled
stochastic linear differential equations where the network structure
and coupling weights are unknown. Exploiting the state-space repre-
sentation of this system [12, 13], computationally efficient Kalman
filtering techniques are used in this work to score candidate network
structures given the observed data, in terms of the a posteriori candi-
date probabilities. The calculation of these scores, however, requires
the estimation of the coupling weights. Those can be computed
according to maximum a posteriori or maximum-likelihood criteria
by a projected steepest-descent procedure that avails itself of the
Kalman filtering recursions [14]. Hence, the proposed estimation
approach is computationally efficient. Another advantage of the
outlined representation is that it can naturally accommodate missing
temporal measurements.

This paper is organized as follows. In Sec. 2, the basic data
model is introduced, the network reconstruction problem is formu-
lated, and the motivation for our approach is recapitulated. The
approach is developed in Sec. 3 and its performance illustrated in
Sec. 4. A discussion follows in Sec. 5

2. PRELIMINARIES

Consider an undirected network of P nodes described by a candi-
date adjacency matrixA of size P ×P , with real-valued trajectories
x1(t), . . . , xP (t) that are realizations of a P -dimensional multivari-
ate wide-sense stationary random process. The trajectories, indexed
by p = 1, . . . , P , are observed atN time points ti, i = 0, . . . , N−1,
subject to measurement noise:

yp,i = xp(ti) + εp,i. (1)

The noise processes {εp,i} are spatially and temporally independent
and identically distributed (i.i.d.), with εi , [ε1,i, . . . , εP,i]

> ∼
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N (0P , σ
2
ε IP ), where 0P and IP are the all-zero vector of size P ×

1 and identity matrix of size P × P , respectively. Let x(t) ,
[x1(t), . . . , xP (t)]>. In GP regression, a joint Gaussian prior is
specified over {x(ti)}:

x(t0), . . . ,x(tN−1) ∼ N (0NP , CA) (2)

where the covariance matrix CA is an N × N block matrix with
blocksCA,ij = E

[
x(ti)x

>(tj)
]

of sizeP×P , i, j = 0, . . . , N−1.
The matrix CA should ideally reflect the underlying candidate
network structure as captured by the adjacency matrix A. Let
yi , [y1,i, . . . , yP,i]

>. The a posteriori probability of the can-
didate adjacency matrix A given the measurements y0:N−1 ,
{yi, i = 0, . . . , N − 1}, p

(
A | y0:N−1

)
, assuming all adjacency

matrices to be equally probable, is proportional to the conditional
likelihood of the measurements given the adjacency matrix, the
conditional data likelihood:

p
(
y0:N−1 | A

)
= ΠN−1

i=0 N
(
yi; x̂A,i|i−1, PA,i|i−1 + σ2

εIP
)

(3)

where x̂A,i|i−1 and PA,i|i−1 are filtering estimates, given the struc-
ture candidate A, of x(ti) given measurements up to ti−1 and the
corresponding estimator covariance, which coincide with the min-
imum mean-square-error estimate and mean-square-error estimator
covariance, respectively. In Bayesian model inference, the condi-
tional data likelihood (3) is used as a means to score candidate mod-
els, the adjacency matrices in this work. However, the calculation
of the necessary quantities x̂A,i|i−1 and PA,i|i−1 involves the inver-
sion of matrices of sizes (i − 1)P × (i − 1)P , i = 2, . . . , N − 1.
Moreover, there is a lack of insight as to how best to design the co-
variance matrix CA. In this work, we tackle the two problems of
computational complexity and design ambiguity jointly, in that we
devise a covariance kernel for the multivariate GP that allows for the
description of the process by a system of coupled stochastic linear
differential equations. The state-space representation of this system
lends itself to the application of computationally efficient Kalman
filtering techniques for the calculation of the quantities in question.
The covariance kernel design proposed here is itself informed by the
system description, as we demonstrate in the next section.

3. APPROACH

3.1. Linear Time-invariant (LTI) Stochastic Differential Equa-
tion Model

Now, assume the multivariate GP x(t) given a candidate adjacency
matrix A to be described by the following nth-order stochastic dif-
ferential equation:

dnx(t)

dtn
+Bn−1

dn−1x(t)

dtn−1
+. . .+B1

dx(t)

dt
+B0x(t) = z(t) (4)

where z(t) , [z1(t), . . . , zP (t)]> is a vector of mutually indepen-
dent zero-mean white Gaussian noise processes with powers σ2

z,p,
p = 1, . . . , P ; and Bn′ = [b

(k`)

n′ ], n′ = 0, 1, . . . , n − 1, k, ` =
1, . . . , P , are coupling matrices. It is assumed for simplicity that
the nonzero pattern of the matrices Bn′ for all n′ is the same as
that of the matrix A + IP . The coupling coefficients b(k`)n′ are to
be specified in Sec. 3.2, where it will be shown that an intuitively
motivated specification of these coupling coefficients translates to a
reasonable design for the covariance matrix CA in (2) on the one
hand, and an efficient computation of the filtering estimates towards
the calculation of the structure candidate scores on the other hand by

exploiting the model (4). In this manner, the aforementioned twofold
problem of design ambiguity and computational complexity is ade-
quately tackled.

The state-space representation of the model (4) is given by

dx̃(t)

dt
= B̃x̃(t) + Lz(t), (5)

a first-order Markov process, where

x̃(t) , [x̃1(t), . . . , x̃P (t)]>

x̃p(t) ,

[
xp(t),

dxp(t)

dt
, . . . ,

dn−1xp(t)

dtn−1

]>
, p = 1, . . . , P

L , col{L1, . . . , LP }

where the operator col {·} stacks its arguments vertically, with

Lp =

[
0(n−1)×P
eP,p

]
for p = 1, . . . , P , where 0c×d is the all-zero matrix of size c×d and
eP,p is the pth canonical row basis vector of length P . The matrix
B̃ is a P × P block matrix with blocks B̃k` of size n× n given by

B̃k` =



[
0(n−1)×n

−b̃(k`)>

]
, if ` 6= k

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−b̃(kk)>

 , if ` = k

(6)

where b̃(k`) , [b
(k`)
0 , b

(k`)
1 , . . . , b

(k`)
n−1]>. The state-space represen-

tation will prove handy in the derivation of the discrete-time state-
space model in Sec. 3.4. The latter model forms the basis for the
application of computationally efficient discrete-time Kalman filter-
ing techniques towards the calculation of the filtering estimates for
the subsequent computation of the structure candidate scores.

3.2. Multivariate GP Specification

The LTI system represented by (4) is depicted in Fig. 2 in terms of
frequency responses ĥpq(jω), p, q = 1, . . . , P , that are given by the
entries of the matrix

Ĥ(jω) =
[
(jω)nIP + (jω)n−1Bn−1 + . . .+B0

]−1
. (7)

Furthermore, it is assumed that the system is stable, i.e., the eigenval-
ues of B̃ have strictly negative real parts. The auto- and cross-power
spectral densities (PSDs) of the network nodes are given, respec-
tively, by

sxk (jω) =
P∑

m=1

σ2
z,m

∣∣∣ĥkm(jω)
∣∣∣2 (8a)

sxkx`(jω) =

P∑
m=1

σ2
z,mĥkm(jω) ĥ∗`m(jω) (8b)

for each node k and pair of nodes k, ` = 1, . . . , P . The correspond-
ing auto- and cross-covariance functions are given by the Fourier
transform of the auto- and cross-PSDs, respectively. It is then clear
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Fig. 2. LTI system represented by (4).

that the multivariate GP is completely specified by the coupling co-
efficients b(k`)n′ . In the following, we propose a specification inspired
by a univariate GP analog, where the nodes are decoupled. Note that
the univariate GP framework [12] is recovered when A = IP ; and
the matrices Bn′ and Ĥ(jω) are diagonal, n′ = 0, 1, . . . , n − 1,
so that ĥk`(jω) = 0, if ` 6= k. For decoupled nodes, consider the
following design for the frequency responses based on the Matérn
covariance function [8, 12] (b(kk)

n ≡ 1 ∀k):

ĥk`(jω) =

{
1∑n

n′=0
b
(kk)

n′ (jω)n
′

!
= 1

(λ+jω)n
, ` = k

0 , o.w.
(9)

where λ ,
√

2ν
l

, with ν , n − 1
2

being the smoothness parameter
and l, the length-scale parameter. Motivated by (9), consider the fol-
lowing design for the frequency-response matrix of the multivariate
GP (7):

Ĥ(jω)
!
=
(
D̂o(jω)� (A+ IP )

)−1

(10)

where the entries of the P × P matrix D̂o(jω) are given by

d̂ok`(jω) =

{
(λ+ jω)n, if ` = k
(λ+ jω)n−1, if ` 6= k

(11)

and� denotes the Hadamard (entry-wise) product. The coupling co-
efficients b(k`)n′ can be read off directly given the frequency-response
matrix (7) and the design equations (10) and (11). Necessarily,
σ2
z,p ≡ σ2

z = 2σ2√πλ2n−1Γ(n)
PΓ(ν)

for all p, where σ2 is the magni-
tude parameter of the Matérn covariance function. We illustrate the
proposed design using an example:

A =


0 1 0 0 1
1 0 1 1 1
0 1 0 1 0
0 1 1 0 0
1 1 0 0 0

 , n = 2, λ = 5, σ2 = 1. (12)

The resulting covariance functions are plotted in Fig. 3, revealing
that disconnected node pairs in the network described by the adja-
cency matrix in (12) have smaller cross-covariance than those that
are connected. A similar pattern is observed with the resulting PSDs.
This pattern is to be expected, since the zero pattern imposed on the
frequency-response matrix in (10) induces conditional independence
relations among the corresponding node pairs. Conditional indepen-
dence relations, however, do not imply marginal independence re-
lations, which the covariance functions are meant to capture [15].
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Fig. 3. Auto- and cross-covariance functions for the example in (12).

3.3. Weighted Interactions

Thus far, the coupling coefficients b(k`)n′ , which essentially determine
the strength of the interactions among the network nodes, are dic-
tated by the design equations (10) and (11). In order to render the
model at hand more flexible while maintaining a relatively low com-
plexity overhead, we propose a simple modification to the model to
account for weighted interactions. To this end, consider the P × P
weights matrix Ω = [wk`] that is positive definite, with entries
wk` = 1 if ` = k, and wk` = 0 if the nodes k and ` are discon-
nected. The corresponding trajectories can then be described by

dnx(t)

dtn
+ Ω�

n−1∑
r=0

Br
drx(t)

dtr
= z(t). (13)

The corresponding modification to (5) follows by replacing B̃ with
B̃Ω , B̃ � (Ω ⊗ 1n×n), where 1c×d is the all-ones matrix of size
c × d. It is now assumed that the eigenvalues of B̃Ω have strictly
negative real parts such that the resulting system is stable.

3.4. Discrete-time State-space Model

For measurement times ti, i = 0, . . . , N − 1, xi ≡ x̃(ti), the
discrete-time process equation is given by

xi+1 = Fixi + qi (14)



where

Fi = exp
(
B̃Ω∆ti+1

)
, ∆ti+1 , ti+1 − ti, (15)

the process noise {qi} is a white Gaussian process, with qi ∼
N (0NP , Qi), where

Qi= (16)∫ ∆ti+1

0

exp
[
B̃Ω(∆ti+1 − τ)

]
LΣzL

> exp
[
B̃Ω(∆ti+1 − τ)

]>
dτ

with Σz = σ2
zINP . Essentially, x0 ∼ N (0NP ,Π∞), where Π∞

solves the continuous Lyapunov equation of the continuous-time
process model. The measurement equation is given by

yi = Hxi + εi (17)

where H selects {xp(ti)} from x̃(ti), and {εi} are i.i.d. measure-
ment noises, independent of the process and process noise, with
εi ∼ N (0P , σ

2
εIP ).

3.5. Structure Scoring

Structure candidates are scored according to their a posteriori prob-
ability in terms of the conditional data likelihood:

p
(
y0:N−1 | A, Θ̂A

)
(18)

= ΠN−1
i=0 N

(
yi;Hx̂

(Θ̂A)

A,i|i−1, HP
(Θ̂A)

A,i|i−1H
> + σ2

εIP
)

where x̂(Θ̂A)

A,i|i−1 and P (Θ̂A)

A,i|i−1 are the discrete-time Kalman filter a
posteriori ith state mean and covariance matrices, respectively, given
the structure candidate A and the estimated (hyper)parameters Θ̂A,
under the discrete-time state-space model in Sec. 3.4. Unknown (hy-
per)parameters ΘA (interaction weights, noise variances, and covari-
ance function parameters) can be estimated jointly with the Kalman
filter procedure in either a maximum-likelihood (ML) or a maximum
a posteriori (MAP) sense [14]. Although this approach marks a de-
parture from a fully Bayesian inference framework, where unknown
(hyper)parameters are averaged out (cf. [16]), it is preferred when
a low computational complexity needs to be maintained. Moreover,
by resorting to ML estimation of the (hyper)parameters, the need to
specify priors is obviated. For this reason, we restrict our attention
henceforth to ML estimation. Let the ML estimates be denoted by
Θ̂ML
A , and the corresponding conditional data log-likelihood score by

scoreL(A) = ln p
(
y0:N−1 | A, Θ̂ML

A

)
(19)

where L in the subscript is for likelihood. Another note is in order:
The likelihood score (19) tends to prefer dense networks to sparse
ones [15]. It is therefore justified to add a penalty term. This leads
to the following Bayesian information criterion (BIC) score [15]:

scoreBIC(A) = ln p
(
y0:N−1 | A, Θ̂ML

A

)
− NΘA

2
lnN (20)

where NΘA is the number of ML-estimated parameters.

3.6. Structure Search and Prior Network Information

Greedy (local hill-climbing) structure search algorithm variants can
be used to find a locally optimal structure when an exhaustive search
over all possible structure candidates proves computationally pro-
hibitive [15]. In greedy search, starting from some initial structure,

one edge at a time is modified by insertion or deletion as long as its
modification leads to a structure with better score. However, greedy
approaches often converge to structures that are only locally optimal.
In order to circumvent this, several greedy search instances may be
launched starting with different initial structures and the resulting
locally optimal structures combined in some manner. The selection
of the initial structures may benefit from some prior network knowl-
edge, derived, in biological network reconstruction applications, for
example, from biological databases [17].

4. PERFORMANCE ILLUSTRATION

First, in order to illustrate the average performance of our network
reconstruction algorithm, we chose a small enough network size of
P = 4 nodes ∈ {1, 2, 3, 4} with two possible edge sets, E1 =
{(1, 2), (1, 4), (2, 3), (2, 4)} and E2 = {(1, 2), (3, 4)}, leading to
the two network structures denoted asN1 andN2, and second-order
(n = 2) stochastic differential equations such that an exhaustive
search over all possible network structures is admissible by the sys-
tem at hand. All our experiments were conducted using MATLAB
2016b running on a standard desktop computer with 2.7 GHz CPU
and 8 GB RAM. The parameters λ and σ2 were set to 3 and 1, re-
spectively. The off-diagonal weights wk`, ` 6= k, were selected ran-
domly and independently over [−10, 10), then projected such that
Ω, with ones along the diagonal, is positive definite. The measure-
ments {yi} were taken every time-unit, here hours, with measure-
ment noise variance σ2

ε = 10−1—see Figs. 4 and 5 for sample re-
alizations of ten-hour trajectories arising from N1 and N1, respec-
tively, with superimposed noisy measurements. We estimated the
off-diagonal weights in an ML fashion, performing gradient-based
optimization of the energy function by means of the Kalman filter
sensitivity equations [14, Appendix 3]. The partial derivatives of
Fi with respect to the individual weights were computed using the
result by Wilcox for the differentiation of the matrix exponential
function [18], while linearization was utilized to compute the par-
tial derivatives of Qi. For optimization we employed a projected
steepest-descent method to ensure the estimated weights matrix Ω
is positive definite [19]. The adaptive Barzilai–Borwein [20] step-
size construction was used in the steepest-descent method; and the
method was terminated when the Euclidean norm of the difference
between successive iterates fell below 10−3—it was observed that
the number of iterations in this experiment never exceeded ten. CVX
was called to solve the projection problem [21]. For each of the true
underlying network structures N1 and N2, for a given number of
measurements (10, 50, 100, 500, 1, 000, 5, 000, or 10, 000), each
of the 64 possible network structures were scored according to the
likelihood and BIC scores in (19) and (20). The two scores of each
possible structure for a given true underlying structure and a given
number of measurements were then averaged each over 40 Monte
Carlo runs. Then, the two sets of scores for all possible structures
for a given true underlying structure and a given number of mea-
surements were ordered descendingly and the respective rank of the
true structure was computed. In Fig. 6, the resulting ranks of the true
underlying structures arising from the likelihood and BIC scores are
plotted with respect to the number of available measurements, a rank
of one being the best achievable. The average computational run
time was around 2 minutes for 10 measurements, and rose to around
13 minutes for 10, 000 measurements.
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Fig. 4. Sample realization of ten-hour trajectories of the four nodes
of the network corresponding to structureN1 with superimposed se-
quence of noisy measurements.
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Fig. 5. Sample realization of ten-hour trajectories of the four nodes
of the network corresponding to structureN2 with superimposed se-
quence of noisy measurements.

5. DISCUSSION

Hinging on computationally efficient Kalman filtering techniques,
the proposed approach scales favorably with network size. Com-
pared with classical inference employing matrix inversion of com-
putational complexityO(N3P 3), the Kalman filtering approach en-
joys a computational complexity O(NP ) for small stochastic dif-
ferential equation order n relative to the number of time points N
and network size P . An obvious bottleneck towards the applica-
tion of the approach for the reconstruction of high-dimensional net-
works remains to be the graph enumeration procedure underlying all
scoring-based methods.
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Fig. 6. Rank achieved by true network structures N1 (solid, blue)
and N2 (dashed, red) according to conditional data log-likelihood
score (circles) and BIC score (crosses) relative to the number of
available measurements.
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