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PROJECT SPECIFICATION 

 

Trident is a novel node load characterization tool that can look at various metrics with respect to the 
Core, Memory and I/O. Trident uses a three-pronged approach to analyze the node’s utilization and 
understand the stress on different parts of the node based on the given workload with the goal to 
optimize the overall performance. Trident is different from other profiling tools by focusing only on 
fundamental hardware and software counters where monitoring does not induce any significant 
overhead to the execution of the application. It is also different from other tools that work at the 
application level which only look at limited metrics such as CPU usage and memory consumption. 
Currently core metrics such as memory bandwidth, core utilization, active processor cycles, etc., are 
being collected with minimal overhead. The interpretation of this data requires often a deep 
understanding of the system at hardware and software level.  

POSEIDON aims to provide automated data analysis on the data monitored by Trident to construct 
feedback over the applications that can be understood and exploited by the average developer. In 
addition to this, POSEIDON will be able to profile an application workflow under several metrics over 
a timeline by computing similarity measures between them and specialized benchmarks. Poseidon 
achieves its goals by using multi-variate time series analysis methodologies and machine learning 
techniques. 
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ABSTRACT 

 

Improving the performance of an application is an important objective carried out from the application 
conception until its deprecation. Developers are constantly trying to improve the performance of their 
applications, either by using more computationally efficient algorithms, migrating to distributed 
processing platforms or doing intensive computation tasks on modern GPU’s. This is no surprise, given 
that achieving even a slight improvement in the performance of an application can be translated into 
the saving of time and economical resources. Every component of a system is responsible for the 
running time of an application, which is the most tangible representation of performance. Therefore, 
monitoring the activity of these components on application runtime is essential in order to understand 
and optimize the application. Trident is a profiling tool which does the latter by monitoring the relevant 
hardware and software counters throughout the execution of an application at the node level, without 
inducing significant overhead. However, data produced by Trident often requires a deep understanding 
of computer systems at a hardware and software level to be correctly interpreted. The present study 
introduces our framework Poseidon which aims to profile and describe a running application based 
entirely upon specialized benchmarks, turning trident data into knowledge for developers. Poseidon 
use a novel approach of Multi-variate time series classification denominated WEASEL + MUSE (Word 
ExtrAction for time SEries cLassification + Multivariate Unsupervised Symbols and dErivatives), to 
measure the degree of similarity between the Trident monitored metrics of these benchmarks and the 
running applications. Applying our framework, we were able to profile our ground-truth data with a 
96.36% of accuracy. Moreover, we satisfactorily discovered different workflow phases embedded in 
real applications and profiled their Trident data based upon the knowledge present on benchmarks.   
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1. INTRODUCTION 

Understanding the performance of an application can be a challenging task. Many factors such as the 
application complexity, code design and node infrastructure have direct influence on its performance. In 
fact, the smallest performance improvements can be a great accomplishment, taking into account that this 
enhancement may represent costs reduction in time, money and resources. Therefore, it is no surprise that 
developers are constantly eager to improve the performance of the applications they develop. Either by 
using more computationally efficient algorithms, migrating to distributed processing platforms or doing 
intensive computation on modern GPU’s instead of CPU’s.  

Performance can be described as simple as the running time of an application. Which is, the most tangible 
representation of good/bad performance. On the other hand, we can dig deeper to analyze the performance 
of each of the components of a modern system (Figure 1). 

 

Figure 1. Modern multi-processor and multi-core system. (Image taken from Willhalm et al. 2012 [1]). 

When an application is being executed on a system, each of the system components reacts in a particular 
way. Despite the complexity of these systems, it is possible to monitor its components “reactions” at 
application runtime. This is advantageous to profile the behavior of an application, resulting into possible 
fault-detections and further software optimization [2]. In addition to this, monitoring can also help us do in-
depth performance analysis [2].  

As exposed in [2], a considerable amount of applications runtime monitoring tools have been developed 
over the years. Each one of these tools have unique characteristics and use monitoring to accomplish 
specific goals, such as system fault detections, monitoring oriented programming or overhead optimization. 
Most of them are attached to a specific programming language and are focused on software counters. 
Moreover, each of them has different implementations (e.g. single processor, multi-processor), placement 
(e.g. in line, off line, synchronous), monitoring points (i.e. application stage where the motoring will start), 
etc.  

Nonetheless, the exposed constraints, usage limitations and induced overhead of these tools is an obstacle 
to overcome for the CERN IT-DI-WLCG: Understanding Performance team. Hence, they have developed a 
novel node load characterization tool: Trident. Trident uses a three-pronged approach to analyze the node’s 
utilization and understand the stress on different parts of it. Trident can look at various metrics with respect 
to the Core, Memory and I/O by focusing only on fundamental hardware and software counters where 
monitoring does not induce any significant overhead to the execution of the application.  However, Trident 
monitored data does not represent useful information for the average developer, since the correct 
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interpretation of this data often requires a deep understanding of the system at the hardware and software 
level. 

In this report, we propose a framework called Poseidon. Poseidon aims to mitigate the presented problem 
by transforming the raw data of trident into information that can be utilized by the average developer. 
Poseidon use Multi-variate Time Series classification techniques to compute similarity measures between 
trident data obtained from specialized benchmarks and trident data obtained from the developed 
applications. Hence, Poseidon proceeds to profile and describe the performance of the latter at a high-
level based on these benchmarks. In doing so, we make the following contributions: 

• We present a novel strategy to analyze Trident data from different workflows in an optimal and quick 
fashion. This information allows us to compare different workflows and transform Trident data into 
knowledge for applications developers. 

• We propose a method to find the different phases or segments embedded in a long-running 
application workflow. 

This document is structured as follows: Section 2 describe and illustrate the data collected by Trident. Next, 
in Section 3 we present with high granularity the methodology used to conduct the experiments to analyze 
the data.  Section 4 present the results of the conducted experiments. Section 5 comprise the conclusions 
of our work, the methodology limitations and motivations for further research. Finally, we provide a 
description on the implementation of Poseidon in Section 6. 

2. TRIDENT TOOL DATA 

Trident is a monitoring and load characterization tool, designed to record the relevant hardware and software 
counters produced by the systems components throughout the execution of an application. Trident novelty 
relies on the completeness of the retrieved information and the absence of significant overhead in the 
applications that run on par with it. 

Trident is currently collecting 94 metrics (refer to Appendix A.) for any workflow being executed at the node 
level on par with it. Each of these metrics can be described as a time series (TS). Formally, a time series 𝑇 

is defined as a sequence of 𝑛 ∈  ℝ real values being recorded in chronological order, 𝑇 =
(𝑡1, 𝑡2, 𝑡3, … 𝑡𝑛), 𝑡𝑖  ∈  ℝ. Thus, when we retrieve Trident data for any workflow, we are in front of 94 time 
series. Since each of these time series are being recorded in parallel over time (i.e. Trident retrieving 
hardware and software counters every ~10ms), we can describe the obtained data as Multi-variate Time 
Series (MTS). Figure 2 shows 6 dimensions (i.e. metrics) of Trident data plotted in area charts.  

As of the writing of this report, there is no approach to profile a running application just by analyzing the 
monitored Trident data. In order for Poseidon to describe these running applications, we built knowledge 
using benchmarking workflows, and recorded the Trident data obtained from them. Benchmarking 
workflows differ from applications workflows in the knowledge embedded in them. Benchmarks are 
application of which the team holds enough knowledge to describe them at a high granularity.  
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Figure 2.  MTS raw Trident data measured on ATLAS 1JUL cmd3 experiment (6 metrics). 

3. METHODOLOGY 

In order to profile applications at a high level we propose a methodology which is entirely built upon 
benchmarks. Poseidon measures at which extent these benchmarks share similarity with applications, to 
then proceed on profiling them based on the knowledge present in the benchmarks.  

Data recorded by Trident has some unique characteristics. One of them, is the high fluctuation of the 
monitored metrics in a small-time window (Figure 3). In addition to this, trident TS length can be variable 
between applications, and benchmarks. Hence, it would be impractical to analyze this type of data with 
whole series-based analysis methods (i.e. point wise comparisons). Hence, we transform the raw trident 
data from benchmarks and applications following a Bag of Patterns (BOP) approach, as described in [3], to 
obtain adequate features from the raw Time Series. 

 

Figure 3. Application ATLAS CMD1 fe bound S0 time series plot showing high fluctuation of values.  
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BOP is the analog of Bag of Words approach in text mining problems. This BOP representation let us use 
feature-based methods to analyze trident data [8] which let us work freely with time series of different length, 
being invariant to “noise”, and providing us with high computational scalability for long time series analysis. 
BOP model construction can be described in the following steps: 1) The TS is subject to a windowing 
process using a sliding window. 2) Each window is normalized. 3) Every window is converted to a Symbolic 
Aggregate Approximation (SAX) string representation.  This step is called discretization. Discretization 
objective is to produce a lower dimensional representation of a TS transforming the raw data into a symbolic 
word (Figure 4). 4) The set of symbolic words is converted to a word-sequence matrix. In which every row 
denotes each obtained SAX string, every column represents each time series in the dataset, and every cell 
contains the number of times that a SAX string appeared among the different time series. Finally, this word-
sequence matrix, which is the BOP model, can be used for further classification tasks. 

 

Figure 4. Time Serie discretization illustration. The discretization process encodes the string ‘cbccbaab', reducing 
the dimensionality of the TS from 128 to 8.  (Image taken from J. Lin et al. 2012 [8]).  

 

Once the benchmarks and applications trident data has been preprocessed (i.e. transformed to a BOP 
model), we use the benchmarks data to train a multi-variate TS classification model in which the labels to 
predict (i.e. classes) are each benchmark. Then, we use the trained model to find the degree of similarity of 
the application with each benchmark and obtain the one with the highest probability of sharing similar 
properties. Finally, we profile the application by mapping the results of the classification with the knowledge 
embedded in the benchmarks. It is important to highlight an additional step in the process, in which we 
divide the application in segments. Each of these steps is explained in detail in the following subsections. 
Entire pipeline is presented at a high level in Figure 5.  
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Figure 5. High-level abstraction of Poseidon pipeline.   

a. PRE-PROCESS BENCHMARKS & APPLICATIONS TRIDENT DATA 

We can categorize the approaches to conduct Time Series analysis into two groups: Whole series-based 
methods (i.e. point-wise time series comparison) and feature-based methods (i.e. computing invariant 
features from time series) [8]. As we previously stated, the unique characteristics of trident data prevents 
us from using whole series-based methods to conduct our analysis. In addition to this, it has been proven 
that the use of common distance measures as Euclidean Distance or Manhattan Distances on point-wise 
time series comparison methods (i.e. whole series-based methods), is meaningless in Time Series 
classification and clustering problems [5, 6]. Moreover, it has been shown that common techniques such as 
Dynamic Time Warping and 1-NN Euclidean Distance for whole series-based TS classification and 
clustering fail with noisy or long TS, among many computational complexity issues [3].  

In order to make Trident data digestible and useful for any model, we transform our benchmarks and 
applications TS using WEASEL (Word ExtrAction for time SEries cLassification). WEASEL is a novel 
approach which follows the Bag of Patterns (BOP) model previously introduced. Since WEASEL approach 
is based on BOP, it is robust to noise, present high scalability, and deal with variable lengths and offset on 
time series. WEASEL implements improvements over each step of the BOP approach. The most relevant 
improvement of WEASEL is the use of Symbolic Fourier Approximation (SFA) [13] instead of SAX (Symbolic 
Aggregate Approximation) in the discretization step. SFA approximates the raw time series data using 
discrete Fourier Transformations and quantization. WEASEL also makes use of co-occurrent SFA words 
(i.e. bigrams), sliding windows of different length and the use of an aggressive Chi-Squared test for filtering 
only the most relevant features that distinguish each class on the classification model.  
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i. SEGMENTING APPLICATION 

Applications can usually run for many hours, or even days. In addition to this, they are not limited to run 
isolated tasks but many different tasks, one after another. This characteristic makes them harder to be 
profiled as a whole. Therefore, we propose a simple but effective methodology to divide an application in 
segments before transforming them into a BOP model with WEASEL. We define a segment as a group of 
points within the time series whose statistical properties differs from the group of points surrounding them. 
To find these segments we use a Change Point Detection (CPD) technique, called Wild Binary 
Segmentation (WBS) [7].  

As described in [7], WBS select random data subsamples from a TS and calculate the CUmulative SUM 
(CUSUM) statistic for each of the subsamples. After maximizing each CUSUM statistic, the largest of the 
entire set of CUSUMs is chosen as a possible candidate for being a change point. If the candidate passes 
a simple test against a previously defined threshold, it is chosen as change point. After this, the TS is divided 
in two segments by this change point (i.e. the segments at the left and right of the point), and the process 
is repeated recursively with each of the segments until no candidate pass the threshold test (Figure 8).  

b. CLASSIFICATION MODEL (MUSE + WEASEL) 

Benchmarks data is going to be used to train a Multi-variate time series classification model. To obtain the 
most relevant features for classification from the MTS, we are going to use a multi-variate extension of the 
WEASEL approach we introduced in the previous subsection, called WEASEL + MUSE (Multivariate 
Unsupervised Symbols and Derivatives) [4]. WEASEL + MUSE follows the same approach of WEASEL (i.e. 
building an enhanced BOP model from the Time Series), with every TS on every dimension. To distinguish 
the SFA strings of different dimensions, identifiers are concatenated to them. In addition to this, when 
building the classifier, it considers the interplay of dimensions (i.e. giving higher weights if two features from 
different variables co-occurrence is relevant to the likelihood of a class) and it consider each dimension TS 
derivatives into the analyzed samples [4]. Entire pipeline of WEASEL + MUSE transformation is presented 
in Figure 6. Finally, a logistic regression classifier is used to train the model using the features obtained from 
WEASEL + MUSE.  

 

Figure 6. WEASEL + MUSE pipeline.  (Image taken from Schäfer et al. 2017 [4]).  

c. INFERRING KNOWLEDGE 

We use the trained MTS classification model to predict the degree of similarity of each of the application 
segments with each available benchmark. We pick the benchmark with the highest probability of sharing 
similar properties with every segment. Using the benchmarks knowledge and the probability of a segment 
belonging to the class (i.e. benchmark) given by the model, we generate a report to the user.  
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4. RESULTS  

Benchmarking applications runs are usually executed a certain number of times (i.e. iterations of the same 
process). In our case, most of the benchmarks had three iterations. Due to many factors, the speed they 
are executed can diverge, resulting on these iterations being out of phase from each other. When trying to 
find the most representative value of the three iterations (i.e. an average signal) the latter can be a problem. 
However, since all of the iterations are from the same nature, we used the Dynamic Time Warping (DTW) 
[10] algorithm to find an optimal match for every point in the three iterations (Figure 7). Using the matching 
points, we can calculate an average signal with the most representative values for the given benchmark 
(Figure 8). Nevertheless, we did not follow this approach in Poseidon methodology, given that it reduces to 
one the number of samples within a benchmark, which is counterproductive for the model training.  

 

Figure 7. Two Iterations of a HS06 28 Jun 444 Benchmark be bound metric. Using Dynamic Time Warping the best 
matching points from the two signals are computed (black connection), even though they are out of phase.   

 

Figure 8. The figure in the right comprise the three iterations of HS06 28JUN 444 benchmark be bound s0 metric. 
The figure on the left, shows the average signal computed by applying DTW to the three benchmarks iterations and 

obtaining an arithmetic average of the resulting matches. 
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We conducted our first experiments of the proposed methodology using two of the three iterations to train 
the MTS classification model and the last iteration to evaluate it. Using 8 dimensions (i.e. top down analysis 
on s0 & s1) an accuracy of 100% was achieved. Afterwards, we repeated the same experiment, but 
randomly subsampling the evaluation data (i.e. the last iterations), to simulate the segmentation process. 
We use these random segments to evaluate the model. Using 8 dimensions (i.e. top down analysis on s0 
& s1) an accuracy of 96.36% was achieved.  

Before testing Poseidon with real applications workflows, we start by applying our segmentation process to 
them. When tested on CMD3 ATLAS 1JUL experiment, WBS performed as expected. Figure 9 shows the 
process of segmentation. Figure 9.a & Figure 9.b shows how WBS find different phases in the application 
workflow without being sensitive to noise.  

 

Figure 9. Wild Binary Segmentation [4] automatically finding segments in CMD3 ATLAS 1JUL experiment on fe 
bound s0 metric. a) and b) are expanded images of the first and last section on the plot.    

After computing the segments for an application, we proceed to pre-process and transform the metrics 
(WEASEL + MUSE) in order to build the classification model.  The results obtained from Poseidon reflected 
segments of the applications which were not similar at all with benchmarks. However, there were other 
segments which the model reflected a high probability of belonging to a benchmark class. Figure 10 & Figure 
11 reflects the Poseidon results of both cases. It is important to highlight, that we only used 12 dimensions 
for these results (Top down analysis S0 & S1, and RBW / WBW S1 & S0).  
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Figure 10. Poseidon report for a segment which reflected high probability of belonging to a benchmark class.  
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Figure 11. Poseidon report for a segment which reflected low probability of belonging to a benchmark class.  
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5. CONCLUSIONS & FUTURE WORK 

This report exposed the first phase of Poseidon, in which we successfully analyzed data monitored by 
Trident to describe applications workflows based on the knowledge embedded on specialized benchmarks 
using WEASEL + MUSE novel MTS classification approach. Furthermore, we successfully used Wild Binary 
Segmentation (WBS) to find the different segments embedded on large application workflows. We tested 
our proposed framework with ground-truth data, obtaining a 96.36% of accuracy. Moreover, we tested 
Poseidon on real applications workflows obtaining preliminary but promising results. As expected, most of 
the segments obtain a low highest probability of belonging to a benchmark class. However, a few of them 
did achieve a high highest probability ( > 70%) of being similar to a benchmark. The latter have to be 
analyzed in-depth in future research. 

However, these results are currently limited by the richness of the benchmarks repository and the amount 
of knowledge present on it. In addition to this, the features generation and weighting of WEASEL + MUSE 
leave us clueless of the most relevant Trident metrics for the model. This happens since WEASEL + MUSE 
generated features are transformed discretizations of the original metrics.  

Nevertheless, Poseidon can start to grow upon our work. We encourage future work to try and contrast 
WEASEL + MUSE with other techniques of MTS classification, such as the one described in [9], in which 
Short – Long Term Memory Fully Convolutional Networks (LSTM - FCN) are used for high-dimensionality 
MTS classification. In addition to this, we highly recommend the construction of a ground-truth applications 
repository, in order to correctly compute performance measures on the trained classifiers or more basic 
methodologies as baselines. Moreover, find the most relevant trident metrics for the model is still an 
important unfinished task.  Finally, we encourage future works to take Poseidon further beyond by adding 
more functionalities to the framework such as, the measurement of the variation in execution “speed” of two 
equal applications running in different systems architectures using Dynamic Time Warping algorithm [10] or 
the generation of synthetic benchmarks starting from application segments that could not be profiled by 
Poseidon.  
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6. IMPLEMENTATION 

 

Figure 12. Poseidon framework code implementation. 

Figure 12 shows the software architecture behind Poseidon. The framework follows a mediator design 
pattern, in which we have a mediator (poseidon.py) which orchestrate all the other components of the 
framework (1 - 5) for them to work correctly. This implementation let us have each step of the framework 
isolated from the others, resulting in an independent and modularized code in which each individual step 
can be executed individually. First, we prepare the datasets in order to be digestible for the transformation 
step (i.e. 1, 2), next we segment the application (i.e. 3) and finally we use WEASEL + MUSE to transform 
the raw data to build the logistic regression model and generate knowledge from the model prediction results 
(i.e. 4, 5). Each of the components is constantly reading and writing to the file system. The implementation 
of Poseidon is mainly on Python 3.7, being WEASEL + MUSE transformation and training and evaluation 
of the model implemented in Java 8 [11].  
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APPENDIX A. TRIDENT METRICS BEING COLLECTED 

Metric Description 

S0/S1/S2/.../SN: Represent a Socket  

C0/C1/C2/C3: Represent a Core 

P1/P2/P3/.../PN: Represent a Port 

UOPS:                       

uOp, or micro-op, is a low-level hardware 

operation. The CPU Front-End is responsible 

for fetching the program code represented in 

architectural instructions and decoding them 

into one or more uOps. 

READ BW (MIB): Quantity of Read Bandwidth in MIB 

WRITE BW (MIB): Quantity of Written Bandwith in MIB 

ACT COUNT: 
DRAM Activate Count (# of times the DRAM 

became active) 

PAGE ACT COUNT: 
DRAM Page Activate Count (# of times the Page 

DRAM became active) 

PRE_COUNT.PAGE_MISS: 
DRAM Precharg events due to page Miss (i.e. 

page conflict) 

INST                        Total number of instructions retired 

CYC                         Total number of cycles 

IDQ UPS NOT DELV CORE       

This event counts the number of uops not 

delivered to Resource Allocation Table (RAT) 

per thread adding “4 – x” when Resource 

Allocation Table (RAT) is not stalled and 

Instruction Decode Queue (IDQ) delivers x 

uops to Resource Allocation Table (RAT) 

(where x belongs to {0,1,2,3}). Counting does 

not cover cases when: a. IDQ-Resource 

Allocation Table (RAT) pipe serves the other 

thread; b. Resource Allocation Table (RAT) 

is stalled for the thread (including uop 

drops and clear BE conditions); c. 

Instruction Decode Queue (IDQ) delivers four 

uops. 

UOPS ISSUED                 

This event counts the number of Uops issued 

by the Resource Allocation Table (RAT) to the 

reservation station (RS). 
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UOPS RETIRED                

This event counts all actually retired uops. 

Counting increments by two for micro-fused 

uops, and by one for macro-fused and other 

uops. Maximal increment value for one cycle 

is eight. 

INT MISC RECOVERY CYCLES    

Core cycles the allocator was stalled due to 

recovery from earlier clear event for any 

thread running on the physical core (e.g. 

misprediction or memory nuke). 

S[N] UOPS EXEC P[M] 
Cycles of core N when uops are dispatched to 

port M. 

slots                       4 * cpu_clk_unhalted 

fe bound (top down analysis)                idq_uops_not_delivered / slots 

bad spec (top down analysis)                                 
(uops_issued - uops_retired_slots + 

4*recovery_cycles) / slots 

retiring (top down analysis)                                 uops_retired_slots / slots 

be bound (top down analysis)                                 1 - fe_bound - bad_spec - retiring 

RBW                         Total read bandwidth 

WBW                         Total written bandwidth 

CY                          Cycles           

IN                          Instructions 

IPC                         Instructions per cycle (IN / CY) 

RATIO                       Ratio of the port usage 

PO   

PM   

 

 


