

POSEIDON: Analyzing the secrets

of the Trident Node monitoring

Tool
AUGUST 2018

AUTHOR(S):

Leonardo Xavier Kuffo Rivero

IT-DI-WLCG: Understanding Performance

SUPERVISOR(S):

Servesh Muralidharan.
David Smith.

CERN openlab Report // 2018

2

 TRIDENT-POSEIDON // Leonardo Kuffo

PROJECT SPECIFICATION

Trident is a novel node load characterization tool that can look at various metrics with respect to the
Core, Memory and I/O. Trident uses a three-pronged approach to analyze the node’s utilization and
understand the stress on different parts of the node based on the given workload with the goal to
optimize the overall performance. Trident is different from other profiling tools by focusing only on
fundamental hardware and software counters where monitoring does not induce any significant
overhead to the execution of the application. It is also different from other tools that work at the
application level which only look at limited metrics such as CPU usage and memory consumption.
Currently core metrics such as memory bandwidth, core utilization, active processor cycles, etc., are
being collected with minimal overhead. The interpretation of this data requires often a deep
understanding of the system at hardware and software level.

POSEIDON aims to provide automated data analysis on the data monitored by Trident to construct
feedback over the applications that can be understood and exploited by the average developer. In
addition to this, POSEIDON will be able to profile an application workflow under several metrics over
a timeline by computing similarity measures between them and specialized benchmarks. Poseidon
achieves its goals by using multi-variate time series analysis methodologies and machine learning
techniques.

CERN openlab Report // 2018

3

 TRIDENT-POSEIDON // Leonardo Kuffo

ABSTRACT

Improving the performance of an application is an important objective carried out from the application
conception until its deprecation. Developers are constantly trying to improve the performance of their
applications, either by using more computationally efficient algorithms, migrating to distributed
processing platforms or doing intensive computation tasks on modern GPU’s. This is no surprise, given
that achieving even a slight improvement in the performance of an application can be translated into
the saving of time and economical resources. Every component of a system is responsible for the
running time of an application, which is the most tangible representation of performance. Therefore,
monitoring the activity of these components on application runtime is essential in order to understand
and optimize the application. Trident is a profiling tool which does the latter by monitoring the relevant
hardware and software counters throughout the execution of an application at the node level, without
inducing significant overhead. However, data produced by Trident often requires a deep understanding
of computer systems at a hardware and software level to be correctly interpreted. The present study
introduces our framework Poseidon which aims to profile and describe a running application based
entirely upon specialized benchmarks, turning trident data into knowledge for developers. Poseidon
use a novel approach of Multi-variate time series classification denominated WEASEL + MUSE (Word
ExtrAction for time SEries cLassification + Multivariate Unsupervised Symbols and dErivatives), to
measure the degree of similarity between the Trident monitored metrics of these benchmarks and the
running applications. Applying our framework, we were able to profile our ground-truth data with a
96.36% of accuracy. Moreover, we satisfactorily discovered different workflow phases embedded in
real applications and profiled their Trident data based upon the knowledge present on benchmarks.

CERN openlab Report // 2018

4

 TRIDENT-POSEIDON // Leonardo Kuffo

TABLE OF CONTENTS

INTRODUCTION 01

TRIDENT TOOL DATA 02

METHODOLOGY 03

PRE-PROCESS BENCHMARKS & APPLICATIONS TRIDENT DATA

SEGMENTING APPLICATIONS

CLASSIFICATION MODEL (MUSE + WEASEL)

INFERRING KNOWLEDGE

RESULTS 04

CONCLUSIONS & FUTURE WORK 05

IMPLEMENTATION 06

REFERENCES 07

CERN openlab Report // 2018

5

 TRIDENT-POSEIDON // Leonardo Kuffo

1. INTRODUCTION

Understanding the performance of an application can be a challenging task. Many factors such as the
application complexity, code design and node infrastructure have direct influence on its performance. In
fact, the smallest performance improvements can be a great accomplishment, taking into account that this
enhancement may represent costs reduction in time, money and resources. Therefore, it is no surprise that
developers are constantly eager to improve the performance of the applications they develop. Either by
using more computationally efficient algorithms, migrating to distributed processing platforms or doing
intensive computation on modern GPU’s instead of CPU’s.

Performance can be described as simple as the running time of an application. Which is, the most tangible
representation of good/bad performance. On the other hand, we can dig deeper to analyze the performance
of each of the components of a modern system (Figure 1).

Figure 1. Modern multi-processor and multi-core system. (Image taken from Willhalm et al. 2012 [1]).

When an application is being executed on a system, each of the system components reacts in a particular
way. Despite the complexity of these systems, it is possible to monitor its components “reactions” at
application runtime. This is advantageous to profile the behavior of an application, resulting into possible
fault-detections and further software optimization [2]. In addition to this, monitoring can also help us do in-
depth performance analysis [2].

As exposed in [2], a considerable amount of applications runtime monitoring tools have been developed
over the years. Each one of these tools have unique characteristics and use monitoring to accomplish
specific goals, such as system fault detections, monitoring oriented programming or overhead optimization.
Most of them are attached to a specific programming language and are focused on software counters.
Moreover, each of them has different implementations (e.g. single processor, multi-processor), placement
(e.g. in line, off line, synchronous), monitoring points (i.e. application stage where the motoring will start),
etc.

Nonetheless, the exposed constraints, usage limitations and induced overhead of these tools is an obstacle
to overcome for the CERN IT-DI-WLCG: Understanding Performance team. Hence, they have developed a
novel node load characterization tool: Trident. Trident uses a three-pronged approach to analyze the node’s
utilization and understand the stress on different parts of it. Trident can look at various metrics with respect
to the Core, Memory and I/O by focusing only on fundamental hardware and software counters where
monitoring does not induce any significant overhead to the execution of the application. However, Trident
monitored data does not represent useful information for the average developer, since the correct

CERN openlab Report // 2018

6

 TRIDENT-POSEIDON // Leonardo Kuffo

interpretation of this data often requires a deep understanding of the system at the hardware and software
level.

In this report, we propose a framework called Poseidon. Poseidon aims to mitigate the presented problem
by transforming the raw data of trident into information that can be utilized by the average developer.
Poseidon use Multi-variate Time Series classification techniques to compute similarity measures between
trident data obtained from specialized benchmarks and trident data obtained from the developed
applications. Hence, Poseidon proceeds to profile and describe the performance of the latter at a high-
level based on these benchmarks. In doing so, we make the following contributions:

• We present a novel strategy to analyze Trident data from different workflows in an optimal and quick
fashion. This information allows us to compare different workflows and transform Trident data into
knowledge for applications developers.

• We propose a method to find the different phases or segments embedded in a long-running
application workflow.

This document is structured as follows: Section 2 describe and illustrate the data collected by Trident. Next,
in Section 3 we present with high granularity the methodology used to conduct the experiments to analyze
the data. Section 4 present the results of the conducted experiments. Section 5 comprise the conclusions
of our work, the methodology limitations and motivations for further research. Finally, we provide a
description on the implementation of Poseidon in Section 6.

2. TRIDENT TOOL DATA

Trident is a monitoring and load characterization tool, designed to record the relevant hardware and software
counters produced by the systems components throughout the execution of an application. Trident novelty
relies on the completeness of the retrieved information and the absence of significant overhead in the
applications that run on par with it.

Trident is currently collecting 94 metrics (refer to Appendix A.) for any workflow being executed at the node
level on par with it. Each of these metrics can be described as a time series (TS). Formally, a time series 𝑇

is defined as a sequence of 𝑛 ∈ ℝ real values being recorded in chronological order, 𝑇 =
(𝑡1, 𝑡2, 𝑡3, … 𝑡𝑛), 𝑡𝑖 ∈ ℝ. Thus, when we retrieve Trident data for any workflow, we are in front of 94 time
series. Since each of these time series are being recorded in parallel over time (i.e. Trident retrieving
hardware and software counters every ~10ms), we can describe the obtained data as Multi-variate Time
Series (MTS). Figure 2 shows 6 dimensions (i.e. metrics) of Trident data plotted in area charts.

As of the writing of this report, there is no approach to profile a running application just by analyzing the
monitored Trident data. In order for Poseidon to describe these running applications, we built knowledge
using benchmarking workflows, and recorded the Trident data obtained from them. Benchmarking
workflows differ from applications workflows in the knowledge embedded in them. Benchmarks are
application of which the team holds enough knowledge to describe them at a high granularity.

CERN openlab Report // 2018

7

 TRIDENT-POSEIDON // Leonardo Kuffo

Figure 2. MTS raw Trident data measured on ATLAS 1JUL cmd3 experiment (6 metrics).

3. METHODOLOGY

In order to profile applications at a high level we propose a methodology which is entirely built upon
benchmarks. Poseidon measures at which extent these benchmarks share similarity with applications, to
then proceed on profiling them based on the knowledge present in the benchmarks.

Data recorded by Trident has some unique characteristics. One of them, is the high fluctuation of the
monitored metrics in a small-time window (Figure 3). In addition to this, trident TS length can be variable
between applications, and benchmarks. Hence, it would be impractical to analyze this type of data with
whole series-based analysis methods (i.e. point wise comparisons). Hence, we transform the raw trident
data from benchmarks and applications following a Bag of Patterns (BOP) approach, as described in [3], to
obtain adequate features from the raw Time Series.

Figure 3. Application ATLAS CMD1 fe bound S0 time series plot showing high fluctuation of values.

CERN openlab Report // 2018

8

 TRIDENT-POSEIDON // Leonardo Kuffo

BOP is the analog of Bag of Words approach in text mining problems. This BOP representation let us use
feature-based methods to analyze trident data [8] which let us work freely with time series of different length,
being invariant to “noise”, and providing us with high computational scalability for long time series analysis.
BOP model construction can be described in the following steps: 1) The TS is subject to a windowing
process using a sliding window. 2) Each window is normalized. 3) Every window is converted to a Symbolic
Aggregate Approximation (SAX) string representation. This step is called discretization. Discretization
objective is to produce a lower dimensional representation of a TS transforming the raw data into a symbolic
word (Figure 4). 4) The set of symbolic words is converted to a word-sequence matrix. In which every row
denotes each obtained SAX string, every column represents each time series in the dataset, and every cell
contains the number of times that a SAX string appeared among the different time series. Finally, this word-
sequence matrix, which is the BOP model, can be used for further classification tasks.

Figure 4. Time Serie discretization illustration. The discretization process encodes the string ‘cbccbaab', reducing
the dimensionality of the TS from 128 to 8. (Image taken from J. Lin et al. 2012 [8]).

Once the benchmarks and applications trident data has been preprocessed (i.e. transformed to a BOP
model), we use the benchmarks data to train a multi-variate TS classification model in which the labels to
predict (i.e. classes) are each benchmark. Then, we use the trained model to find the degree of similarity of
the application with each benchmark and obtain the one with the highest probability of sharing similar
properties. Finally, we profile the application by mapping the results of the classification with the knowledge
embedded in the benchmarks. It is important to highlight an additional step in the process, in which we
divide the application in segments. Each of these steps is explained in detail in the following subsections.
Entire pipeline is presented at a high level in Figure 5.

CERN openlab Report // 2018

9

 TRIDENT-POSEIDON // Leonardo Kuffo

Figure 5. High-level abstraction of Poseidon pipeline.

a. PRE-PROCESS BENCHMARKS & APPLICATIONS TRIDENT DATA

We can categorize the approaches to conduct Time Series analysis into two groups: Whole series-based
methods (i.e. point-wise time series comparison) and feature-based methods (i.e. computing invariant
features from time series) [8]. As we previously stated, the unique characteristics of trident data prevents
us from using whole series-based methods to conduct our analysis. In addition to this, it has been proven
that the use of common distance measures as Euclidean Distance or Manhattan Distances on point-wise
time series comparison methods (i.e. whole series-based methods), is meaningless in Time Series
classification and clustering problems [5, 6]. Moreover, it has been shown that common techniques such as
Dynamic Time Warping and 1-NN Euclidean Distance for whole series-based TS classification and
clustering fail with noisy or long TS, among many computational complexity issues [3].

In order to make Trident data digestible and useful for any model, we transform our benchmarks and
applications TS using WEASEL (Word ExtrAction for time SEries cLassification). WEASEL is a novel
approach which follows the Bag of Patterns (BOP) model previously introduced. Since WEASEL approach
is based on BOP, it is robust to noise, present high scalability, and deal with variable lengths and offset on
time series. WEASEL implements improvements over each step of the BOP approach. The most relevant
improvement of WEASEL is the use of Symbolic Fourier Approximation (SFA) [13] instead of SAX (Symbolic
Aggregate Approximation) in the discretization step. SFA approximates the raw time series data using
discrete Fourier Transformations and quantization. WEASEL also makes use of co-occurrent SFA words
(i.e. bigrams), sliding windows of different length and the use of an aggressive Chi-Squared test for filtering
only the most relevant features that distinguish each class on the classification model.

CERN openlab Report // 2018

10

 TRIDENT-POSEIDON // Leonardo Kuffo

i. SEGMENTING APPLICATION

Applications can usually run for many hours, or even days. In addition to this, they are not limited to run
isolated tasks but many different tasks, one after another. This characteristic makes them harder to be
profiled as a whole. Therefore, we propose a simple but effective methodology to divide an application in
segments before transforming them into a BOP model with WEASEL. We define a segment as a group of
points within the time series whose statistical properties differs from the group of points surrounding them.
To find these segments we use a Change Point Detection (CPD) technique, called Wild Binary
Segmentation (WBS) [7].

As described in [7], WBS select random data subsamples from a TS and calculate the CUmulative SUM
(CUSUM) statistic for each of the subsamples. After maximizing each CUSUM statistic, the largest of the
entire set of CUSUMs is chosen as a possible candidate for being a change point. If the candidate passes
a simple test against a previously defined threshold, it is chosen as change point. After this, the TS is divided
in two segments by this change point (i.e. the segments at the left and right of the point), and the process
is repeated recursively with each of the segments until no candidate pass the threshold test (Figure 8).

b. CLASSIFICATION MODEL (MUSE + WEASEL)

Benchmarks data is going to be used to train a Multi-variate time series classification model. To obtain the
most relevant features for classification from the MTS, we are going to use a multi-variate extension of the
WEASEL approach we introduced in the previous subsection, called WEASEL + MUSE (Multivariate
Unsupervised Symbols and Derivatives) [4]. WEASEL + MUSE follows the same approach of WEASEL (i.e.
building an enhanced BOP model from the Time Series), with every TS on every dimension. To distinguish
the SFA strings of different dimensions, identifiers are concatenated to them. In addition to this, when
building the classifier, it considers the interplay of dimensions (i.e. giving higher weights if two features from
different variables co-occurrence is relevant to the likelihood of a class) and it consider each dimension TS
derivatives into the analyzed samples [4]. Entire pipeline of WEASEL + MUSE transformation is presented
in Figure 6. Finally, a logistic regression classifier is used to train the model using the features obtained from
WEASEL + MUSE.

Figure 6. WEASEL + MUSE pipeline. (Image taken from Schäfer et al. 2017 [4]).

c. INFERRING KNOWLEDGE

We use the trained MTS classification model to predict the degree of similarity of each of the application
segments with each available benchmark. We pick the benchmark with the highest probability of sharing
similar properties with every segment. Using the benchmarks knowledge and the probability of a segment
belonging to the class (i.e. benchmark) given by the model, we generate a report to the user.

CERN openlab Report // 2018

11

 TRIDENT-POSEIDON // Leonardo Kuffo

4. RESULTS

Benchmarking applications runs are usually executed a certain number of times (i.e. iterations of the same
process). In our case, most of the benchmarks had three iterations. Due to many factors, the speed they
are executed can diverge, resulting on these iterations being out of phase from each other. When trying to
find the most representative value of the three iterations (i.e. an average signal) the latter can be a problem.
However, since all of the iterations are from the same nature, we used the Dynamic Time Warping (DTW)
[10] algorithm to find an optimal match for every point in the three iterations (Figure 7). Using the matching
points, we can calculate an average signal with the most representative values for the given benchmark
(Figure 8). Nevertheless, we did not follow this approach in Poseidon methodology, given that it reduces to
one the number of samples within a benchmark, which is counterproductive for the model training.

Figure 7. Two Iterations of a HS06 28 Jun 444 Benchmark be bound metric. Using Dynamic Time Warping the best
matching points from the two signals are computed (black connection), even though they are out of phase.

Figure 8. The figure in the right comprise the three iterations of HS06 28JUN 444 benchmark be bound s0 metric.
The figure on the left, shows the average signal computed by applying DTW to the three benchmarks iterations and

obtaining an arithmetic average of the resulting matches.

CERN openlab Report // 2018

12

 TRIDENT-POSEIDON // Leonardo Kuffo

We conducted our first experiments of the proposed methodology using two of the three iterations to train
the MTS classification model and the last iteration to evaluate it. Using 8 dimensions (i.e. top down analysis
on s0 & s1) an accuracy of 100% was achieved. Afterwards, we repeated the same experiment, but
randomly subsampling the evaluation data (i.e. the last iterations), to simulate the segmentation process.
We use these random segments to evaluate the model. Using 8 dimensions (i.e. top down analysis on s0
& s1) an accuracy of 96.36% was achieved.

Before testing Poseidon with real applications workflows, we start by applying our segmentation process to
them. When tested on CMD3 ATLAS 1JUL experiment, WBS performed as expected. Figure 9 shows the
process of segmentation. Figure 9.a & Figure 9.b shows how WBS find different phases in the application
workflow without being sensitive to noise.

Figure 9. Wild Binary Segmentation [4] automatically finding segments in CMD3 ATLAS 1JUL experiment on fe
bound s0 metric. a) and b) are expanded images of the first and last section on the plot.

After computing the segments for an application, we proceed to pre-process and transform the metrics
(WEASEL + MUSE) in order to build the classification model. The results obtained from Poseidon reflected
segments of the applications which were not similar at all with benchmarks. However, there were other
segments which the model reflected a high probability of belonging to a benchmark class. Figure 10 & Figure
11 reflects the Poseidon results of both cases. It is important to highlight, that we only used 12 dimensions
for these results (Top down analysis S0 & S1, and RBW / WBW S1 & S0).

CERN openlab Report // 2018

13

 TRIDENT-POSEIDON // Leonardo Kuffo

Figure 10. Poseidon report for a segment which reflected high probability of belonging to a benchmark class.

CERN openlab Report // 2018

14

 TRIDENT-POSEIDON // Leonardo Kuffo

Figure 11. Poseidon report for a segment which reflected low probability of belonging to a benchmark class.

CERN openlab Report // 2018

15

 TRIDENT-POSEIDON // Leonardo Kuffo

5. CONCLUSIONS & FUTURE WORK

This report exposed the first phase of Poseidon, in which we successfully analyzed data monitored by
Trident to describe applications workflows based on the knowledge embedded on specialized benchmarks
using WEASEL + MUSE novel MTS classification approach. Furthermore, we successfully used Wild Binary
Segmentation (WBS) to find the different segments embedded on large application workflows. We tested
our proposed framework with ground-truth data, obtaining a 96.36% of accuracy. Moreover, we tested
Poseidon on real applications workflows obtaining preliminary but promising results. As expected, most of
the segments obtain a low highest probability of belonging to a benchmark class. However, a few of them
did achieve a high highest probability (> 70%) of being similar to a benchmark. The latter have to be
analyzed in-depth in future research.

However, these results are currently limited by the richness of the benchmarks repository and the amount
of knowledge present on it. In addition to this, the features generation and weighting of WEASEL + MUSE
leave us clueless of the most relevant Trident metrics for the model. This happens since WEASEL + MUSE
generated features are transformed discretizations of the original metrics.

Nevertheless, Poseidon can start to grow upon our work. We encourage future work to try and contrast
WEASEL + MUSE with other techniques of MTS classification, such as the one described in [9], in which
Short – Long Term Memory Fully Convolutional Networks (LSTM - FCN) are used for high-dimensionality
MTS classification. In addition to this, we highly recommend the construction of a ground-truth applications
repository, in order to correctly compute performance measures on the trained classifiers or more basic
methodologies as baselines. Moreover, find the most relevant trident metrics for the model is still an
important unfinished task. Finally, we encourage future works to take Poseidon further beyond by adding
more functionalities to the framework such as, the measurement of the variation in execution “speed” of two
equal applications running in different systems architectures using Dynamic Time Warping algorithm [10] or
the generation of synthetic benchmarks starting from application segments that could not be profiled by
Poseidon.

CERN openlab Report // 2018

16

 TRIDENT-POSEIDON // Leonardo Kuffo

6. IMPLEMENTATION

Figure 12. Poseidon framework code implementation.

Figure 12 shows the software architecture behind Poseidon. The framework follows a mediator design
pattern, in which we have a mediator (poseidon.py) which orchestrate all the other components of the
framework (1 - 5) for them to work correctly. This implementation let us have each step of the framework
isolated from the others, resulting in an independent and modularized code in which each individual step
can be executed individually. First, we prepare the datasets in order to be digestible for the transformation
step (i.e. 1, 2), next we segment the application (i.e. 3) and finally we use WEASEL + MUSE to transform
the raw data to build the logistic regression model and generate knowledge from the model prediction results
(i.e. 4, 5). Each of the components is constantly reading and writing to the file system. The implementation
of Poseidon is mainly on Python 3.7, being WEASEL + MUSE transformation and training and evaluation
of the model implemented in Java 8 [11].

CERN openlab Report // 2018

17

 TRIDENT-POSEIDON // Leonardo Kuffo

7. REFERENCES

[1] Willhalm, T., Dementiev, R., & Fay, P. (2012). Intel performance counter monitor-a better way to
measure cpu utilization. Dosegljivo: https://software.intel.com/en-us/articles/intel-performance-counter-
monitor-a-better-way-to-measure-cpu-utilization. [Dostopano: September 2014].

[2] Delgado, N., Gates, A. Q., & Roach, S. (2004). A taxonomy and catalog of runtime software-fault
monitoring tools. IEEE Transactions on software Engineering, 30(12), 859-872.

[3] Schäfer, P., & Leser, U. (2017, November). Fast and accurate time series classification with weasel.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (pp. 637-
646). ACM.

[4] Schäfer, P., & Leser, U. (2017). Multivariate time series classification with weasel+ muse. arXiv
preprint arXiv:1711.11343.

[5] Keogh, E., & Lin, J. (2005). Clustering of time-series subsequences is meaningless: implications for
previous and future research. Knowledge and information systems, 8(2), 154-177. [6] Making subsequence
time series clustering meaningful

[7] Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of
Statistics, 42(6), 2243-2281.

[8] Lin, J., Khade, R., & Li, Y. (2012). Rotation-invariant similarity in time series using bag-of-patterns
representation. Journal of Intelligent Information Systems, 39(2), 287-315.

[9] Karim, F., Majumdar, S., Darabi, H., & Harford, S. (2018). Multivariate LSTM-FCNs for Time Series
Classification. arXiv preprint arXiv:1801.04503.

[10] Salvador, S., & Chan, P. (2007). Toward accurate dynamic time warping in linear time and
space. Intelligent Data Analysis, 11(5), 561-580.

[11] Symbolic Fourier Approximation, WEASEL & WEASEL + MUSE. Github Repository:
https://github.com/patrickzib/SFA

[12] Truong, C., Oudre, L., & Vayatis, N. (2018). A review of change point detection methods. arXiv
preprint arXiv:1801.00718. GitHub repository: https://github.com/deepcharles/ruptures

[13] Schäfer, P., & Högqvist, M. (2012, March). SFA: a symbolic fourier approximation and index for
similarity search in high dimensional datasets. In Proceedings of the 15th International Conference on
Extending Database Technology (pp. 516-527). ACM.

https://github.com/patrickzib/SFA
https://github.com/deepcharles/ruptures

CERN openlab Report // 2018

18

 TRIDENT-POSEIDON // Leonardo Kuffo

APPENDIX A. TRIDENT METRICS BEING COLLECTED

Metric Description

S0/S1/S2/.../SN: Represent a Socket

C0/C1/C2/C3: Represent a Core

P1/P2/P3/.../PN: Represent a Port

UOPS:

uOp, or micro-op, is a low-level hardware

operation. The CPU Front-End is responsible

for fetching the program code represented in

architectural instructions and decoding them

into one or more uOps.

READ BW (MIB): Quantity of Read Bandwidth in MIB

WRITE BW (MIB): Quantity of Written Bandwith in MIB

ACT COUNT:
DRAM Activate Count (# of times the DRAM

became active)

PAGE ACT COUNT:
DRAM Page Activate Count (# of times the Page

DRAM became active)

PRE_COUNT.PAGE_MISS:
DRAM Precharg events due to page Miss (i.e.

page conflict)

INST Total number of instructions retired

CYC Total number of cycles

IDQ UPS NOT DELV CORE

This event counts the number of uops not

delivered to Resource Allocation Table (RAT)

per thread adding “4 – x” when Resource

Allocation Table (RAT) is not stalled and

Instruction Decode Queue (IDQ) delivers x

uops to Resource Allocation Table (RAT)

(where x belongs to {0,1,2,3}). Counting does

not cover cases when: a. IDQ-Resource

Allocation Table (RAT) pipe serves the other

thread; b. Resource Allocation Table (RAT)

is stalled for the thread (including uop

drops and clear BE conditions); c.

Instruction Decode Queue (IDQ) delivers four

uops.

UOPS ISSUED

This event counts the number of Uops issued

by the Resource Allocation Table (RAT) to the

reservation station (RS).

CERN openlab Report // 2018

19

 TRIDENT-POSEIDON // Leonardo Kuffo

UOPS RETIRED

This event counts all actually retired uops.

Counting increments by two for micro-fused

uops, and by one for macro-fused and other

uops. Maximal increment value for one cycle

is eight.

INT MISC RECOVERY CYCLES

Core cycles the allocator was stalled due to

recovery from earlier clear event for any

thread running on the physical core (e.g.

misprediction or memory nuke).

S[N] UOPS EXEC P[M]
Cycles of core N when uops are dispatched to

port M.

slots 4 * cpu_clk_unhalted

fe bound (top down analysis) idq_uops_not_delivered / slots

bad spec (top down analysis)
(uops_issued - uops_retired_slots +

4*recovery_cycles) / slots

retiring (top down analysis) uops_retired_slots / slots

be bound (top down analysis) 1 - fe_bound - bad_spec - retiring

RBW Total read bandwidth

WBW Total written bandwidth

CY Cycles

IN Instructions

IPC Instructions per cycle (IN / CY)

RATIO Ratio of the port usage

PO

PM

