
PyXRootD PyPI distribution and
new declarative file access API for

XRootD Client

AUGUST 2018

AUTHOR:
Krzysztof
Jamróg

CERN IT-ST-AD

SUPERVISORS(S):

Michał Simon
Lars Nielsen

CERN openlab Report 2018

Abstract

The project described in this report is related to XRootD framework development. It was
divided into two parts. First part was about publishing XRootD python bindings called PyXRootD
to Python Package Index. This makes PyXRootD installation much easier and resolves problem
with versioning. Second part was about creating new API for file operations, which are one of
mainly used components of XRootD framework. Introduced API provides more readable and
convenient way of using asynchronous functions available in XRootD.

This report describes the motivation behind both parts of the project and their implementation.

ii

CERN openlab Report 2018

Acknowledgements

First of all, I would like to thank my supervisors Michał and Lars for giving me the opportunity
to work on this project, for their great support and a lot of knowledge I got from them.

I would also like to thank the whole CERN Openlab team for the organisation of this pro-
gramme and a lot of help with addministrative issues.

Last but not least I would like to thank all summer students for making this summer a great
experience.

iii

CERN openlab Report 2018

Contents

Contents iv

1 Introduction 1

2 PyXRootD PyPI distribution 2
2.1 The previous installation process and its problems 2
2.2 New approach . 2
2.3 Integration with GitLab CI . 3

3 New file access API 4
3.1 File and FileSystem - file access API in XRootD . 4
3.2 Asynchronous API problems . 5
3.3 New solution . 7

3.3.1 Declarative syntax . 7
3.3.2 Compile time checking of workflow declaration 8
3.3.3 Error handling . 8
3.3.4 Passing arguments between operations . 8
3.3.5 Application and tests . 10

4 Conclusions 11

Bibliography 12

iv

CERN openlab Report 2018

1. Introduction

One of the main challenges for high-energy physics community working at CERN is dealing
with huge amount of data generated each day. The data is distributed across multiple data servers
or even multiple sites, therefore there is a need for software allowing users to access remote data
in easy and efficient way. XRootD is a low latency file access framework of choice for High
Energy Physics community and the backbone of the EOS project, the main storage solution used
at CERN.

The framework is plugin based what makes it very customizable and therefore allows to meet
even very specific requirements.

It has client-server architecture, where the former is responsible for aggregating multiple data
storages and providing API to access them, and the latter is designed to use this exposed API to
access remote data from the local machine.

The software is written in C++, but from the end user’s perspective one of the key components
of XRootD client are python bindings which allow to use all of its functionalities from Python
scripts. These bindings are called PyXRootD.

The project described in this report is related to XRootD client and its python bindings. The
first chapter describes new PyXRootD installation process and the motivation to introduce it. The
second chapter is related to new file access API. It describes its key functionalities with some
implementation details and usage examples.

1

CERN openlab Report 2018

2. PyXRootD PyPI distribution

This chapter describes the motivation of publishing PyXRootD to Python Package Index as
well as current distribution and installation process

2.1 The previous installation process and its problems

Until now there were two ways of installing PyXRootD. First way was to use package manage-
ment utilities. There are two of them, where this package is available:

• Official XRootD YUM repository

• EPEL (Extra Packages for Enterprise Linux)

However, PyXRootD is sometimes installed in environments, in which these tools are not avail-
able. In these cases, the second way of installation is used, which involves manually downloading
and compiling the source code. The typical procedure used to installing PyXRootD in this way is
shown below:

g i t c lone h t t ps : / / g i thub . com/ xrootd / x rootd . g i t
mkdir b u i l d
cd b u i l d
cmake . . / x rootd / . −DCMAKE INSTALL PREFIX=/ i n s t a l l a t i o n / path
cd b ind ings / python
make
make i n s t a l l
python setup . py i n s t a l l

Listing 2.1: PyXRootD manual installation steps

There are several problems with both approaches described above. First of all, there is no
support for python virtual environments, which are commonly used not only in testing environ-
ments, but also in production. It is user’s responsibility to copy package files to appropriate folder
so that it could be visible in a given virtual environment. The second problem is related to ver-
sioning. Especially in the second approach, the only way to install specific version is to change
a branch after cloning the repository, to one that contains desired version. This requires some
additional knowledge about branches naming convention, which is problematic for users who do
not belong to the development team. The last problem is that these installation ways are dif-
ferent than classic python package installation approach. That means this process cannot be
easily automated so the package needs to be installed separately which might sometimes be
inconvenient.

2.2 New approach

Before moving to the description of new way of PyXRootD installation, it is worth to have a
general overview of what PyPI and PIP are. PyPI is the official repository for Python libraries. At

2

CERN openlab Report 2018

Figure 2.1: PyXRootD uploaded to PyPI

the time of writing this report it contains over 150 thousands of different packages. All of those
packages can be installed by PIP which is a package management system used to install and
manage Python packages.

The solution to the problems described in the previous section was to upload PyXRootD to
PyPI (Fig. 2.1). After that the installation is very easy and can be done using PIP:

pip i n s t a l l x rootd ==4.8.4

There is also no problem with versioning anymore. Version can be specified in installation
command as shown above. PIP allows to automate installation of entire group of packages by
creating properly formatted requirements.txt file and installing it as following:

pip i n s t a l l −r requirements . t x t

That allows to install PyXRootD automatically with other Python packages used in the given
project.

2.3 Integration with GitLab CI

The process of publishing PyXRootD to PyPI has been integrated with GitLab CI/CD (Contin-
uous Integration & Deployment) tool. This was done by adding job which builds required archives
whenever new version of XRootD framework is published.

3

CERN openlab Report 2018

3. New file access API

3.1 File and FileSystem - file access API in XRootD

As XRootD is mainly used with file-based repositories, one of its most important components
is the file access API. This utility contains both single file and file system functions.

There are two versions of each of those functions: synchronous and asynchronous. The
main difference from the API perspective is that asynchronous functions take one more argument
which is a handler object. This object implements specific interface and its methods are called
when the response from asynchronous function call arrives. The example of two versions of Write
method are shown in Listings 3.1 and 3.2. Listing 3.3 shows example handler implementation.

XRootDStatus Wri te (u i n t 6 4 t o f f s e t ,
u i n t 3 2 t s ize ,
const vo id ∗bu f fe r ,
u i n t 1 6 t t imeout = 0) ;

Listing 3.1: Synchronous version of Write method

XRootDStatus Wri te (u i n t 6 4 t o f f s e t ,
u i n t 3 2 t s ize ,
const vo id ∗bu f fe r ,
ResponseHandler ∗handler ,
u i n t 1 6 t t imeout = 0) ;

Listing 3.2: Asynchronous version of Write method

c lass SimpleHandler : p u b l i c ResponseHandler {
p u b l i c :

vo id HandleResponse (XrdCl : : XRootDStatus ∗ s ta tus , XrdCl : : AnyObject ∗ response) {
/ /−−−
/ / ! Perform opera t ions using response ob jec t
/ /−−−
de le te s ta tus ;
de le te response ;
de le te t h i s ;

}
} ;

Listing 3.3: Example handler class

4

CERN openlab Report 2018

3.2 Asynchronous API problems

Asynchronous API in many cases can be much more efficient than synchronous code. As
well known, in case of asynchronous functions, program does not wait for the function execution
end and it is the handler which is responsible to control the execution flow. To perform specific
operation on a file, usually there is a need to call at least few functions in specific order. For
example reading a file usually consists of the following steps:

• Opening file

• Reading file content

• Closing file

To ensure proper execution flow, each next function needs to be called from the previous
function’s handler. The typical flow of the case described above is shown in Figure 3.1. At first
Open operation is called. After its execution is finished, provided handler is run. Inside the
handler, the second operation (Read) is called with another handler in which the third operation
(Close) is called.

Defining that relatively simple flow requires quite a lot of work. At first, each operation call
requires different arguments so each handler needs to have different implementation. That means
for each handler user needs to define separate class. Furthermore, in each handler the operation
status needs to be checked and potential errors should be handled. This process becomes even
more difficult in case of more complex flow including parallel operations, as shown in Figure 3.2.

Apart from complexity, there is also another problem with current asynchronous API, which is
code readability. The example usage of asynchronous function is shown in Listing 3.4. As it can
be seen, at the first sight only first operation call can be seen and further execution is done in
handler. That means to understand whole execution flow user would need to go through set of
handlers what can be very inconvenient and time consuming.

const s t r i n g path = ” / tmp / t e s t f i l e . t x t ” ;
const OpenFlags : : Flags f l a g s = OpenFlags : : Read ;
const Access : : Mode mode = Access : : None ;

auto openHandler = new CustomOpenHandler () ;

F i l e ∗ f i l e = new F i l e () ;
f i l e −>Open(path , f l ags , mode , openHandler) ; / / Fur ther execut ion i n handler : Read−>Close

Listing 3.4: Asynchronous usage example

5

CERN openlab Report 2018

Open file Open handler

Read file Read handler

Close file Close handler

Figure 3.1: File reading operations flow

Open
lock file

Open
first file

Read
first file

Close
first file

Open
second file

Read
second file

Close
second file

Close
lock file

Figure 3.2: More complex file operations flow (handlers are skipped for readability)

6

CERN openlab Report 2018

3.3 New solution

The goal of that part of the project was to make usage of asynchronous API easier and thus
mitigate the problems described in previous section. For this purpose, new declarative API has
been designed and implemented. It has been built on top of existing API and provides additional
level of abstraction for the end user. This section describes the main parts and characterictics of
introduced mechanism as well as its usage examples and some implementation details.

There are several requirements which needed to be met to make this API the easiest and
the most useful. At first, it should be possible to define whole operations workflow in one place
without a need to spread the logic into many classes. Secondly, the syntax should be as easy and
declarative as possible so that users could focus on what operations they want to perform without
caring about proper execution flow. What is more, as the syntax can be very specific, user should
be notified about potentially incorrect configuration during compilation time. The next important
thing is error handling. As the whole workflow declaration is supposed to be done in one place,
it should also be possible to check for potential errors in the same place. The challenge was to
meet all of these requirements and at the same time have all functionality which was there before.
So for example, it should be still possible to create communication between operations so that
the result of one operation could be used to compute arguments for the next operation.

3.3.1 Declarative syntax

The syntax for workflows declaration was created with usage of operators overloading utility
available in C++. The example of its usage is shown in Listing 3.5.

u i n t 6 4 t o f f s e t = 0 ;
u i n t 3 2 t s ize = 50;
char∗ b u f f e r = new char [s i ze] () ;
const s t r i n g path = ” / tmp / t e s t f i l e . t x t ” ;
const OpenFlags : : Flags f l a g s = OpenFlags : : Read ;
const Access : : Mode mode = Access : : None ;

F i l e ∗ f i l e = new F i l e () ;

auto readHandler = new ResponseHandler () ;

auto &p i p e l i n e = Open(f i l e) (path , f l ags , mode)
| Read(f i l e) (o f f s e t , s ize , b u f f e r) >> readHandler
| Close (f i l e) () ;

Workflow workf low (p i p e l i n e) ;
workf low . Run () . Wait () ;

Listing 3.5: Workflow declaration syntax

First few lines of this code snippet contain operations parameters declarations. Then the
operations flow is declared and assigned to the pipeline variable. The declaration consists of the
following elements: for each operation the correcponding object is created. Then the () operator
is used to pass arguments to the operation. The number of arguments and their types are directly
dependant on the operation. After that the >> operator can be used to provide a custom handler
for the given operation. However this is optional and right now the handler should be used only
to perform some additional actions with operation result. It is no longer responsible for controlling
the flow. This mechanism also has support for lambda functions which can be used instead
of defining separate class. In this example the handler is specified only for Read operation.
Operations defined in this way can be connected by | operator. After defining the pipeline the
Workflow object is created. It is a wrapper responsible for running operations, storing the result
of the execution and controlling the flow using semaphores mechanism. After creation of this

7

CERN openlab Report 2018

object the Run() method is called to execute defined operations. Wait() method stops current
thread until the whole workflow will be executed.

Provided syntax allows also to define parallel execution of two operations flow. For that pur-
pose, dedicated Parallel class is used. The example usage of this functionality is shown in Listing
3.6. It implements the flow shown in Figure 3.2.

auto & f i r s t P i p e = Open(f i r s t F i l e) (f i r s t F i l e P a t h , f l a g s)
| Read(f i r s t F i l e) (o f f s e t , s ize , f i r s t B u f f e r)
| Close (f i r s t F i l e) () ;

auto &secondPipe = Open(secondFi le) (secondFi lePath , f l a g s)
| Read(secondFi le) (o f f s e t , s ize , secondBuffer)
| Close (secondFi le) () ;

auto &pipe = Open(l o c k F i l e) (l o c k F i l e U r l , f l a g s)
| P a r a l l e l {& f i r s t P i p e , &secondPipe}
| Close (l o c k F i l e) () ;

Workflow workf low (pipe) ;
workf low . Run () . Wait () ;

Listing 3.6: Workflow with parallel operations (parameters declarations are skipped for readability)

As it can be seen it is used in the same way as normal operation, the only difference is that its
constructor accepts the collection of operations and there is no need to use () operation as this
is not an operation thus does not need to take arguments.

3.3.2 Compile time checking of workflow declaration
Workflow declaration syntax is very readable and easy to understand. However it has very

specific syntax which needs to be followed. That is why the compile time declaration checking
has been introduced so that user will be notified about malformed declaration during compilation.
This has been done with usage of template metaprogramming and static assertions. Going into
details, just after creation operation object has different template type than the types returned by
() and >> operators and different methods are available. Therefore for example adding handler
to the operation which is not configured will not be possible and will end up with the following
error message:

static assertion failed: Operator >> is available only for type Operation<Configured>

3.3.3 Error handling
As in proposed mechanism it is no longer neccessary to provide handlers, there is a need to

have the possibility to handle failed operations statuses in the same place in which the workflow
is defined. Therefore in internal workflow implementation status of each operation is checked
and if it is not correct, then workflow execution ends and this failed status is saved as a status of
workflow. Otherwise the next operation is run and if everything goes correctly the status of the
last operation will be saved as the workflow status. It can be accessed by GetStatus() method
implemented in Workflow class.

3.3.4 Passing arguments between operations
Ofter there is a need to use the result of one operation as an argument for another operation.

For example Stat operation can return information about the size of the file which can be used in
Read operation. For that purpose the mechanism of passing arguments between operations has
been implemented. Parameters passing can be done in handler. For that be possible handler

8

CERN openlab Report 2018

needs to inherit from ForwardingHandler class, which contains ForwardParam method dedicated
for that purpose. This is a template method in which user needs to specify forwarded argument
type as a template parameter and its value as a function argument. The example implementation
of such handler is shown in Listing 3.7.

c lass StatHandler : p u b l i c ForwardingHandler {
p u b l i c :

vo id HandleResponse (XrdCl : : XRootDStatus ∗ s ta tus , XrdCl : : AnyObject ∗ response) {
S t a t I n f o ∗ s t a t = 0 ;
response−>Get (s t a t) ;
u i n t 3 2 t s ize = s ta t−>GetSize () ;
char∗ b u f f e r = new char [s i ze] () ;
ForwardParam<Read : : Buf ferArg >(b u f f e r) ;
ForwardParam<Read : : SizeArg>(s i ze) ;

de le te s ta tus ;
de le te response ;

}
} ;

Listing 3.7: Handler with parameters forwarding

To enable usage of forwarded parameter, dedicated notdef object needs to be provided to
operation configuration function instead of real value (Listing 3.8).

auto s ta tHand le r = new StatHandler () ;

auto &pipe = Open(f) (f i l e U r l , f l a g s)
| Sta t (f) (t r ue) >> s ta tHand le r
| Read(f) (o f f s e t , notdef , no tdef)
| Close (f) () ;

Workflow workf low (pipe) ;
workf low . Run () . Wait () ;

Listing 3.8: Workflow with notdef params declaration

Parameters forwarding can also be done with lambda functions, as shown in Listing 3.9

auto s ta tHand le r = [] (XRootDStatus &st , S t a t I n f o& s ta t , ParamsContainerWrapper& params) {
u i n t 3 2 t s ize = s t a t . GetSize () ;
char∗ b u f f e r = new char [s i ze] () ;
params . ForwardParam<Read : : Buf ferArg >(b u f f e r) ;
params . ForwardParam<Read : : SizeArg>(s i ze) ;

} ;

auto &pipe = Open(f) (f i l e U r l , f l a g s)
| Sta t (f) (t r ue) >> s ta tHand le r
| Read(f) (o f f s e t , notdef , no tdef)
| Close (f) () ;

Workflow workf low (pipe) ;
workf low . Run () . Wait () ;

Listing 3.9: Forwarding parameters using lambda function

9

CERN openlab Report 2018

Figure 3.3: Unit tests results

3.3.5 Application and tests
All of the functionalities described above are applied to all file and file system functions avail-

able in XRootD client. The mechanism has been tested with unit tests which result is shown in
Figure 3.3.

10

CERN openlab Report 2018

4. Conclusions

In this project PyXRootD packages has been successfully published to Python Package Index.
This allows to use PIP to install this package what makes installation process much more conve-
nient and easier to automate. Furthermore, PIP provides support for python virtual environments
and proper version management.

Additionaly, new declarative file access API for XRootD client has been introduced. Its clear
syntax makes usage of asynchronous file and file system access functions much easier and the
code much more readable.

11

CERN openlab Report 2018

Bibliography

[1] XRootD repository https://github.com/xrootd/xrootd

[2] XRootD Home Page http://xrootd.org/

[3] PyXRootD package in PyPI https://pypi.org/project/xrootd/

[4] Python Packaging User Guide https://packaging.python.org/

12

https://github.com/xrootd/xrootd
http://xrootd.org/
https://pypi.org/project/xrootd/
https://packaging.python.org/

	Contents
	Introduction
	PyXRootD PyPI distribution
	The previous installation process and its problems
	New approach
	Integration with GitLab CI

	New file access API
	File and FileSystem - file access API in XRootD
	Asynchronous API problems
	New solution
	Declarative syntax
	Compile time checking of workflow declaration
	Error handling
	Passing arguments between operations
	Application and tests

	Conclusions
	Bibliography

