

CERN OPENLAB REPORT // 2018

ABSTRACT

There are two very popular concepts that we hear in the world of technology, Big
Data and Internet of Things. Big data is referring to a data which size, complexity and
velocity is really high and is difficult to capture, pre-process and analyze it with
conventional technologies. As a response to this new demands, a set of new
technologies were developed to manage these new data flow problems. The second
concept used is Internet of things,the network of physical devices, vehicles, and other
items embedded with electronics, software, sensors and connectivity which enables
these things to connect and exchange data.

The purpose of the project is to create data pipelines using Big Data technologies for
Iot systems and asses how each one this technologies works and compare them,
and made decisions of how those works in the context of the iot system.

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

2

CERN OPENLAB REPORT // 2018

TABLE OF CONTENTS

I. Introduction ……………………………………………………………........4

II. Background information …,………………….…………………………….....5

III. Solution Architecture …….………………………………………………….10

IV. Phase #1 and results …….…………………………………………………..11

V. Phase #2 and results …….…………………………………………………..17

VI. Impact and future work ….…………………………………………………...22

VII. Conclusion …………………………………………………………………….23

VIII. Bibliography …………………………………………………………………..24

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

3

CERN OPENLAB REPORT // 2018

INTRODUCTION

As John Naisbitt stated “We are drowning in information but starved for knowledge”,
we are living in a world where Data is the new gold and the volume of information
that we can get from Data is getting bigger every day. The needs in the world of
technology are constantly changing and the use of data becomes increasingly
important in decision making. While the needs grow, the data also grow too and for
this reason the concept of Big Data was born.

Big Data is a term that describes the large volume of data, both structured and
unstructured, that is part of businesses every day. The collection of large amounts of
data and the search for trends and hidden patterns within the data, allow companies
to move quickly, smoothly and efficiently in decision making. It also allows them to
avoid problem before they are really happening. Big Data analysis helps
organizations take advantage of their data and use it to identify new
opportunities.Doing this, it is possible to make smarter movements, more efficient
operations and higher profits.

Due to the existence of Big Data, it was necessary to create new technologies that
made it possible to manage this data and its exploitation. In the project that will be
discussed below, technologies such as Kafka, Flume, Telegraf, InfluxDB and
Grafana were used. Another important concept related to the project is Internet of
Things, that basically is network of physical devices, vehicles, and other items
embedded with electronics, software, sensors and connectivity which enables these
things to connect and exchange data. The idea of the project was the development of
pipelines for the resolution of a use case with the Iot platform of CERN. Data from
sensors must travel through these pipelines to be monitored and visualized. The
aforementioned tools were chosen in order to assess them, learn how they work and
make a decision toward the implementation of a final solution.

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

4

CERN OPENLAB REPORT // 2018

BACKGROUND INFORMATION

During the development of this project we used the following technologies:

● Telegraf is a plugin-driven server agent for collecting & reporting metrics, and
is the first piece of the TICK stack. Telegraf has plugins to source a variety of
metrics directly from the system it’s running on, pull metrics from third party
APIs, or even listen for metrics via a statsd and Kafka consumer services. It
also has output plugins to send metrics to a variety of other datastores,
services, and message queues, including InfluxDB, Graphite, OpenTSDB,
Datadog, Librato, Kafka, MQTT, NSQ, and many others.

Key features

Here are some of the features that Telegraf currently supports that make it a
great choice for metrics collection.

● Written entirely in Go. It compiles into a single binary with no external
dependencies.

● Minimal memory footprint.
● Plugin system allows new inputs and outputs to be easily added.
● A wide number of plugins for many popular services already exist for

well known services and APIs.

Telegraf is able to parse the following input data formats into metrics:

1. InfluxDB Line Protocol
2. JSON
3. Graphite
4. Value, ie: 45 or “booyah”
5. Nagios
6. Collectd
7. Dropwizard

Telegraf metrics, like influxDB points, are a combination of four basic parts:

1. Measurement name
2. Tags

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

5

https://influxdata.com/time-series-platform/
https://docs.influxdata.com/telegraf/v1.7/concepts/data_formats_input/#influxdb-line-protocol
https://docs.influxdata.com/telegraf/v1.7/concepts/data_formats_input/#json-data-format
https://docs.influxdata.com/telegraf/v1.7/concepts/data_formats_input/#value
https://docs.influxdata.com/telegraf/v1.7/concepts/data_formats_input/#nagios-data-format
https://docs.influxdata.com/telegraf/v1.7/concepts/data_formats_input/#collectd-data-format
https://docs.influxdata.com/telegraf/v1.7/concepts/data_formats_input/#dropwizard-data-format

CERN OPENLAB REPORT // 2018

3. Fields
4. Timestamp

● Flume is a distributed, reliable, and available service for efficiently collecting,
aggregating, and moving large amounts of log data. It has a simple and
flexible architecture based on streaming data flows. It is robust and fault
tolerant with tunable reliability mechanisms and many failover and recovery
mechanisms. It uses a simple extensible data model that allows for online
analytic application.

● Apache Kafka is a distributed streaming platform, that it means three key
capabilities:

● Publish and subscribe to streams of records, similar to a message

queue or enterprise messaging system.
● Store streams of records in a fault-tolerant durable way.
● Process streams of records as they occur.

Kafka is generally used for two broad classes of applications:

● Building real-time streaming data pipelines that reliably get data
between systems or applications.

● Building real-time streaming applications that transform or react to the
streams of data

To understand how Kafka does these things, let's dive in and explore
Kafka's capabilities from the bottom up. First a few concepts:

● A Kafka cluster consists of one or more servers (Kafka brokers), which
are running Kafka.

● Kafka is run as a cluster on one or more servers that can span multiple
datacenters.

● The Kafka cluster stores streams of records in categories called topics.
● Topic: A Topic is a category/feed name to which messages are stored

and published.
● Topic partition: Kafka topics are divided into a number of partitions,

which allows you to split data across multiple brokers.

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

6

CERN OPENLAB REPORT // 2018

● Replicas A replica of a partition is a "backup" of a partition. Replicas
never read or write data. They are used to prevent data loss.

● Producer: Application that sends the messages.
● Consumer: Application that receives the messages.
● Message: Information that is sent from the producer to a consumer

through Apache Kafka.
● Connection: A connection is a TCP connection between your

application and the Kafka broker.
● Consumer Group: A consumer group includes the set of consumer

processes that are subscribing to a specific topic.
● Offset: The offset is a unique identifier of a record within a partition. It

denotes the position of the consumer in the partition.

Kafka has four core APIs:

● The Producer API allows an application to publish a stream of records
to one or more Kafka topics.

● The Consumer API allows an application to subscribe to one or more
topics and process the stream of records produced to them.

● The Streams API allows an application to act as a stream processor,
consuming an input stream from one or more topics and producing an
output stream to one or more output topics, effectively transforming the
input streams to output streams.

● The Connector API allows building and running reusable producers or
consumers that connect Kafka topics to existing applications or data
systems. For example, a connector to a relational database might
capture every change to a table.

● InfluxDB is an open-source time series database developed by InfluxData. It
is written in Go and optimized for fast, high-availability storage and retrieval of
time series data in fields such as operations monitoring, application metrics,
Internet of Things sensor data, and real-time analytics. It also has support for
processing data from Graphite.

● Grafana is a beautiful dashboard for displaying various Graphite metrics
through a web browser. Grafana is nice because it is simple to set up and

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

7

https://kafka.apache.org/documentation.html#producerapi
https://kafka.apache.org/documentation.html#consumerapi
https://kafka.apache.org/documentation/streams
https://kafka.apache.org/documentation.html#connect
https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Time_series_database
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Graphite_(software)

CERN OPENLAB REPORT // 2018

maintain and is easy to use and displays metrics in a very nice Kibana like
display style.

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

8

CERN OPENLAB REPORT // 2018

 PROJECT DETAILS

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

9

CERN OPENLAB REPORT // 2018

SOLUTION ARCHITECTURE

 Figure 1: Solution Architecture.

The figure 1 describes a draft solution. First we can see some sensors with IoT data
and send it to MQTT. After this, the data will flow to a kafka cluster with brokers. The
data will be store in influxDB using kafka-connect-influxDB. Finally the data will be
show in Grafana. The final idea is create some alerts and alarms for monitoring.

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

10

CERN OPENLAB REPORT // 2018

PHASE #1 AND RESULTS

The project was developed in two phases. The phase number one consisted in using
Telegraf and flume as a generator. With this task, i managed to get experience of
how these technologies works.

Figure 2: Telegraf to Kafka

1. The first task consisted in using Telegraf to send Data to Kafka. It is
important to say that Telegraf use SSL certificates as authentication. I worked
with version of Kafka 2.11-1.1.1.

We can find the configuration file as:

[tags]
 dc = "us-east-1"
OUTPUTS
[outputs]
#[outputs.influxdb]
urls = ["https://XXXXX:port"]
database = "XXXX"
username="user"
password="XXXXXXXXXXXXXX"

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

11

CERN OPENLAB REPORT // 2018

[[outputs.kafka]]
 brokers = ["broker1:port","broker2:port","broker3:port"]
 topic = "topic name"
 required_acks = -1
 max_retry = 3

Optional SSL Config
ssl_ca = "/System/Library/OpenSSL/certs/ca.pem"

ssl_cert ="/System/Library/OpenSSL/certs/c.crt.pem"

ssl_key = "/System/Library/OpenSSL/private/c.key.pem"

Use SSL but skip chain & host verification*
insecure_skip_verify = true
#data_format = "influx"

PLUGINS
Read metrics about cpu usage
[cpu]
 percpu = false
 totalcpu = true

~

 Figure 3: Telegraf

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

12

CERN OPENLAB REPORT // 2018

In this configuration file, we are sending data to Kafka and InfluxDB too. The
code to send data to influxdb are commented.

 Figure 4: Data in InfluxDB

In the figure number 3 we can see that telegraf was working correctly and the
CPU data was sending to kafka and in figure number 4, we can see some
data inserted in InfluxDB. Telegraf was configure to authenticate with SSL
certificates.

 Figure 5: Data received from Telegraf to Kafka

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

13

CERN OPENLAB REPORT // 2018

2. The second task consisted in using Flume to send data to Kafka. We can
see the two configuration files. The first one represent the sink and the second one
represent the source.

#Agent Configuration

flume_agent.channels = memory_channel
flume_agent.sources = stresssource-1
flume_agent.sinks = kafka_sink

#Channel
flume_agent.channels = memory_channel
flume_agent.channels.memory_channel.type = memory

#Flume Source
flume_agent.sources.stresssource-1.type =
org.apache.flume.source.StressSource
flume_agent.sources.stresssource-1.channels = memory_channel
flume_agent.sources.stresssource-1.size = 100

Flume Sink
flume_agent.sinks.kafka_sink.type =
org.apache.flume.sink.kafka.KafkaSink
flume_agent.sinks.kafka_sink.channel = memory_channel
flume_agent.sinks.kafka_sink.kafka.bootstrap.servers
server1,server2,server3
flume_agent.sinks.kafka_sink.kafka.topic = topic_name
flume_agent.sinks.kafka_sink.kafka.producer.security.protocol =
SASL_SSL
flume_agent.sinks.kafka_sink.kafka.producer.sasl.mechanism =
GSSAPI
flume_agent.sinks.kafka_sink.kafka.producer.sasl.kerberos.service.na
me = kafka
flume_agent.sinks.kafka_sink.kafka.producer.ssl.truststore.location =
/path//truststore.jks
flume_agent.sinks.kafka_sink.kafka.producer.ssl.truststore.password =
XXXXXXXX

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

14

CERN OPENLAB REPORT // 2018

Source Agent:

#Agent Configuration
flume_agent.channels = memory_channel
flume_agent.sources = kafka_source
flume_agent.sinks = null_sink

#Channel
flume_agent.channels = memory_channel
flume_agent.channels.memory_channel.type = memory
flume_agent.channels.memory_channel.capacity = 1000
flume_agent.channels.memory_channel.transactionCapacity = 1000

#Flume Source
flume_agent.sinks.null_sink.type = null
flume_agent.sinks.null_sink.channel = memory_channel

Flume Source
flume_agent.sources.kafka_source.type =
org.apache.flume.source.kafka.KafkaSource
flume_agent.sources.kafka_source.channels = memory_channel
flume_agent.sources.kafka_source.kafka.bootstrap.servers
=server1,server2,server3
flume_agent.sources.kafka_source.kafka.topics = topic_name
flume_agent.sources.kafka_source.kafka.consumer.security.protocol =
SASL_SSL
flume_agent.sources.kafka_source.kafka.consumer.sasl.mechanism =
GSSAPI
flume_agent.sources.kafka_source.kafka.consumer.sasl.kerberos.servi
ce.name = kafka
flume_agent.sources.kafka_source.kafka.consumer.ssl.truststore.locati
on = /path/t.jks
flume_agent.sources.kafka_source.kafka.consumer.ssl.truststore.pass
word = XXXXXXXXXX

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

15

CERN OPENLAB REPORT // 2018

 Authentication Works with Graphite format(influxDB format)

Flume Kerberos NO

Telegraf SSL Certificates YES

The table describes the comparison between the two technologies used. I decided to
continue using Telegraf because it worked with Graphite format, the one is the format
that InfluxDB works with. Was interesting to learn how to configure each
technologies.

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

16

CERN OPENLAB REPORT // 2018

PHASE #2 AND RESULTS

Figure 6: Second phase of the architecture

In this part of the project, the challenge consists in connect Kafka with influxDB using
Kafka-connect-InfluxDB, which is a connector.

 I followed this steps:

1. Downloaded
https://github.com/Landoop/stream-reactor/releases/download/1.1.0/kafka-con
nect-influxdb-1.1.0-1.1.0-all.tar.gz

2. Create the database in InfluxDB: CREATE DATABASE mydb

 3. Configure the connector with kerberos:

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

17

CERN OPENLAB REPORT // 2018

PHASE #2 AND RESULTS

influx-sink properties

connector name

name=influxdb-sink

connector class

connector.class=com.datamountaineer.streamreactor.connect.influx.InfluxSink
Connector

maximum number of Kafka Connect tasks

tasks.max=1

Kafka topic to read from (example: influx-topic)

topics=topic_name

KCQL query - should include InfluxDB measurement name fo write to and
Kafka topic to read from

connect.influx.kcql=INSERT INTO cpu SELECT * cert-test WITHTIMESTAMP
sys_time()

InfluxDB instance parameters

connect.influx.url=https://XXXX:XX

connect.influx.db=database_name

connect.influx.username=user

connect.influx.password=XXXXXXXXX

connect-standalone.properties

These are defaults. This file just demonstrates how to override some
settings.

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

18

CERN OPENLAB REPORT // 2018

bootstrap.servers=server1:port,server2:port,server3:port

if you run more than one standalone connector on the same host, each of
them must have a unique rest.port (default: 8083)

in that case you would also need to prepare two separate
connect-standalone.properties files

rest.port = XXX

set key.converter and value.converter

key.converter=org.apache.kafka.connect.json.JsonConverter

value.converter=org.apache.kafka.connect.json.JsonConverter

if you want to send JSON payload only (without a schema) set the variables
below to false

key.converter.schemas.enable=false

value.converter.schemas.enable=false

if your cluster is using SSL security, set values as below (use consumer.
prefix as it is a sink connector):

consumer.sasl.kerberos.service.name = kafka

consumer.sasl.mechanism = GSSAPI

consumer.security.protocol = SASL_SSL

plugin.path=path

But we encountered an error with kerberos. This error was cause for the way that
kerberos authentication works with the key in the cluster. This error is reported for
find a future solution. When this problem was founded, an alternaty was using the
connector with SSL certificates with the following configuration file.

connect-standalone.properties

bootstrap.servers=server1:port,server2:port,server3:port

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

19

CERN OPENLAB REPORT // 2018

if you run more than one standalone connector on the same host,
each of them must have a unique rest.port (default: 8083)

in that case you would also need to prepare two separate
connect-standalone.properties files

rest.port = XXX

set key.converter and value.converter

key.converter=org.apache.kafka.connect.json.JsonConverter

value.converter=org.apache.kafka.connect.json.JsonConverter

if you want to send JSON payload only (without a schema) set the
variables below to false

key.converter.schemas.enable=false

value.converter.schemas.enable=false

if your cluster is using SSL security, set values as below (use
consumer. prefix as it is a sink connector):

sasl.kerberos.service.name = kafka

sasl.mechanism = GSSAPI

security.protocol = SASL_SSL

sasl.jaas.config = com.sun.security.auth.module.Krb5LoginModule
required \

useKeyTab=true \

storeKey=true \

keyTab="/etc/krb5.keytab" \

principal="principal";

consumer.sasl.kerberos.service.name = kafka

consumer.sasl.mechanism = GSSAPI

consumer.security.protocol = SASL_SSL

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

20

CERN OPENLAB REPORT // 2018

consumer.sasl.jaas.config =
com.sun.security.auth.module.Krb5LoginModule required \

useKeyTab=true \

storeKey=true \

keyTab="/etc/krb5.keytab" \

principal="principal";

plugin.path=path..

But we encountered another problem. This problem was reported for a future
solution.

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

21

CERN OPENLAB REPORT // 2018

IMPACT & FUTURE WORK

Impact

The data coming from sensors will be in the future data for monitoring radioactivity
level of containers from other Iot system at CERN. This case of use is really
interesting, because CERN The radioactivity level of more than 100 metallic
containers for ordinary waste is routinely monitored.In a technical way, the user of
Kafka 2.11-1.1.1 version, give a lot of problems in first time, and one of this problems
with ACLS permission. While doing the configuration a ACLS error was encountered.
The DB-IT group started working with Kafka 2.11-1.1.1 and with the before kafka
version too. During the use of the new Kafka version, the problems with ACLS was
useful to check what was happening.

For the future work:

1. The first task for the future work consists in encountered a solution for the
kafka-connect-influxDB with the Kafka 2.11-1.1.1 version, so the data flow in
this case will be finished.

2. Stop using telegraf for generating random data and replace for the sensors
data using MQTT source and MQTT-kafka-connector.

3. Integrating kafka with Spark.

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

22

CERN OPENLAB REPORT // 2018

CONCLUSION

When we talk about Big Data and its impact, we also talk about the use of
technologies that flood the market today. Each technology has different
characteristics and different configurations that are interesting to assess to
make a final decision on a architecture’s solution.The development of this
project consisted in the Development of streaming pipelines and analytics
solutions for CERN’s IoT Platform.

The draft solution consisted of sending sensor data using MQTT source, then
sending data to Kafka, store in influxDB and then being monitored by Grafana.
The realization of this solution was divided into two phases. In the first phase,
data from sensors was not used, but two tools were tested: Telegraf and
Flume. The main difference in its configuration is the way in which it
authenticates and that Telegraf for example already accepts the Graphite data
format, which is the one used by InfluxDB.

The second phase of the project consisted, once the data was in kafka, was
sent to influxDB for monitoring in Grafana. For sending the data, we used the
kafka-connect-nfluxdb connector.During the accomplishment of this task,
some errors arose. First the connector was configured using Kerberos and
then with SSL certificates, but in both cases errors were found. Having tested
each of these tools was very useful to learn its operation and make better
decisions for the final solution.Even mistakes found during the learning were
useful for the team to solve other conflicts. For the future it would be
necessary to solve the pending errors, use the sensors instead of Telegraf
and Flume, and make an integration with Kafka and Spark.

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

23

CERN OPENLAB REPORT // 2018

REFERENCES

[1] Power Data. https://www.powerdata.es/big-data.

[2] Apache kafka. https://kafka.apache.org/intro.

[3] Telegraf. https://www.influxdata.com/time-series-platform/telegraf/.

[4] Telegraf. input data formats
https://docs.influxdata.com/telegraf/v1.7/concepts/data_formats_input/.

[5] InfluxDB. https://en.wikipedia.org/wiki/InfluxDB.

[6] Apache Flume. https://flume.apache.org/.

[7] Josh Reichardt(04-06-2014) Introduction to Grafana
https://thepracticalsysadmin.com/introduction-to-grafana/.

[8] internet of Things. https://en.wikipedia.org/wiki/Internet_of_things.

[9] Lovisa Johansson(2016-12-13). Part 1: Apache Kafka for beginners - What
is Apache Kafka? .https://www.cloudkarafka.com/.

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

24

CERN OPENLAB REPORT // 2018

Develop streaming pipelines and analytics solutions for CERN’s IoT Platform

25

