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Abstract 

Pedestrians are among the most vulnerable victims of road traffic accidents. Establishing an unsignalized 
pedestrian crossing at intersections occasionally results in a high crash risk due to the fact that many vehicle 
drivers do not heed the legitimate right of way of pedestrians, either deliberately or because of some kind of 
distraction, speeding or deficiencies in the traffic environment. The primary objective of the OBSERVE project 
was to develop a novel approach for evaluating crosswalks based on data from observed pedestrian-vehicle 
driver interactions and local site conditions. Within the project, 85 unsignalized pedestrian crossings in the cities 
of Graz and Vienna were investigated by means of video observation. The trajectories of different road user 
categories were analysed to obtain information on driving and walking speeds, traffic behaviour, time gaps etc. 
That information was subsequently used to model driving behaviour. For the modelling process, data from 54 
zebra crossings were used. A beta-regression model identified the parameters ‘pedestrian crossing type’ and 
‘pedestrian crossing width’ having the highest influence on the stopping probability. 
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1. Introduction 

1.1. Pedestrian crashes and Safe System Approach 

Pedestrians are among the most vulnerable victims of road traffic accidents. Unprotected by vehicle body, safety 
belts or helmets, they are especially exposed to risk of serious injury and have a smaller chance of surviving a 
crash with a motorized vehicle. There continues to be a problem in Austria related to the safety of pedestrians 
who attempt to cross streets, particularly at unsignalized pedestrian crossings. According to Stefan et al. (2017), 
every 6th (16.8%) road injury crash involving at least one pedestrian occurs at an uncontrolled pedestrian 
crossing. Zeeger et al. (2017) investigated different types of pedestrian treatments at crosswalks and concludes 
that both the road environment (lane width, number of lanes, traffic volume etc.) and the installed safety 
equipment play a critical role in determining pedestrian safety levels. 
 
The Safe System Approach has been adopted by road agencies around the world. Sweden’s ‘Vision Zero’ and 
the Dutch ‘Sustainable Safety’ concepts are the underlying basis for the Safe System approach. ‘Vision Zero’ 
suggests that it is not acceptable for fatal or serious injuries to occur on the road system, and that account must 
be taken of human tolerances when designing road infrastructure. ‘Sustainable Safety’ is also underpinned by 
human-centered principles such as predictability of road course by a recognizable road design, homogeneity of 
mass and/or speed and forgivingness of the environment (Steinmetz et al., 2015). The safe system concept 
merges those principles and comprises of the following elements: a) safe roads and roadsides, b) safe speeds c) 
safe vehicles and d) safe road users. 
 
National road administrations and road operators play a crucial role for the provision of road safety – it is both in 
their power and responsibility to affect the design and layout of the first element of a safe system approach, i.e. 
safe roads and roadsides. In order to do so, stakeholders need comprehensible and scientific-based information 
concerning the cause-effect relationship of crashes on dedicated pedestrian facilities. 

1.2. Decision-support tool for safety assessment  

The primary objective of the OBSERVE project was to develop a novel approach for evaluating unsignalized 
pedestrian crossings based on data from observed pedestrian-vehicle driver interactions and site conditions. 
According to Stefan et al. (2007), the likelihood of a crash occurring at an unsignalized pedestrian crossing 
highly negatively correlates with the willingness of vehicle drivers to stop in front of the crosswalk. Hence, 
(infrastructural) factors influencing the motivation of drivers to heed the right of way of pedestrians at such 
facilities play a crucial role for improving safety levels for vulnerable road users. Within the OBSERVE project, 
a decision-support tool was developed to evaluate the effectiveness of different infrastructural mitigating 
measures such as speed bumps or road islands and also to give an indication on the importance of well-
established traffic parameters such as vehicle or pedestrian flow. 

2. Video observation and trajectory extraction 

2.1. Hardware 

Detection of the pedestrian-vehicle driver interactions was accomplished by means of a high-resolution camera 
(see Fig. 1) which was reassembled specifically for this project in order to continuously monitor pedestrian and 
vehicular movement over a time period of several days. The weatherproof camera body was mounted at lamp 
posts or similar objects (traffic signs, trees) near the crosswalk (15-20m) at a height of 4m in order to provide an 
unobstructed view on the crossing and the most relevant road pathway.  
 
The project-specific requirements concerning the camera equipment were as follows: 
 

 Autonomous operation for more than 72 hours 
 Quick and easy-to-accomplish installation in order not to disturb traffic flow 
 Non-destructive installation of the camera unit on different objects in order to guarantee comparable 

monitoring conditions 
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Furthermore, a mobile measuring vehicle (BMW X3) with stereoscopic cameras and GPS-tracking equipment 
(Applanix) installed on the roof top was used to collect data concerning the road infrastructure (road width, 
number of lanes, traffic signs, road markings etc.) of each pedestrian crossing under investigation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Mobility Observation Box for detection of pedestrian-vehicle driver interactions 

2.2. Computer vision 

One of the main challenges within this project originated from the need to evaluate hundreds of hours of outdoor 
videos, which were used as data source for the automated traffic analysis. To this end, a visual pedestrian 
detector and tracker was developed, which should be reasonably i) efficient, so that processing time remains 
manageable, and ii) accurate enough to allow for solid tracking data in a real-world outdoor scenario.  
 
According to both Dalal and Triggs (2005) and Benenson et al. (2014), cascaded HOG (Histogram of Oriented 
Gradients) detectors and the recently developed Deep Convolutional Networks (DCNN) were suitable 
approaches for this task (Zhang et al., 2016). For the work presented in this paper, the speed of HOG with its 
fairly good detection accuracy and a specifically trained DNN were combined into a novel five stage cascaded 
detector with overall high performance, high detection rate, and low false positive rate (see Fig. 2). The resulting 
detection cascade was fast and robust enough to provide the automatic evaluation of a large amount of traffic 
video data.  

Fig. 2 Structure of the proposed HOG/CNN detector cascade 
 
The first step within the developed framework was to localize object candidates by means of the implemented 
HOG cascade and then verify each of the candidates with a DCNN. The threshold for the HOG detector was set 
at a low value so that basically all objects of interest within an image were detected. The parameters of each 
HOG cascade stage (blocks and cells positioning) were optimized using a genetic optimization algorithm and the 
selected features were then trained and classified by means of a linear Support Vector Machine (SVM) 
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(Cristianini and Shawe-Taylor, 2000). The resulting cascaded detector was particularly suited for localizing 
objects within an image – even the highly overlapped full scanning of an entire HD image (sometimes up to 
200,000 of HOG detections and SVM classifications) could be done closely to real-time on a standard CPU 
(without the use of a GPU). 
 
Even though a fine tuned HOG detector can provide good detection capabilities, it certainly has its limits. 
Preliminary results showed that the useful number of training samples for HOG was about 50,000 samples. On 
the contrary, deep DCNNs allow unlimited training potential with the sample numbers currently in use. In almost 
each modern detection benchmark, deep network based algorithms resulted in superior detection results. Hence, 
the task of the last detector stage, the DCNN, was to weed out the remaining false positives. In this way, only a 
very small number of detection candidates needed to be processed, thus spending little time on the demanding 
DCNN inference process.  
 
To render the detection algorithm practically useful, scale invariance was achieved by testing sample windows of 
different sizes at every image location. To support the detection process and to be able to create useful 
measurements from the detection results, a geometric calibration of the camera view was undertaken. By 
referring to an expected size range for each object class (e.g. the known size range of pedestrians) in an image, 
we were able to limit the detector size window to reasonable values and thus save computing time and enhance 
the detection accuracy. 

3. Trajectory analysis 

3.1. Trajectory (pre)processing and filtering 

Trajectories were (pre)processed by projecting the video coordinates into a plane world coordinate system and 
applying smoothing filters to reduce irregular movements induced by (small) errors in the tracking algorithm. By 
providing additional information about the pedestrian crossing, trajectories were filtered and analysed/interpreted 
with respect to local conditions. A wide range of parameters describing the traffic situation were derived as well 
and used in the modelling process described in Chapter 4. 

3.1.1. Projection 

Camera calibration was needed for the analytics after detection, e.g. the automatic measurement of distances and 
velocities. A defined camera calibration allowed for projecting every image point to its corresponding world 
point on the ground plane and vice versa. 
 
The calibration process was based on Tsai’s method of lens camera calibration (Tsai, 1986), which uses a set of 
corresponding points from the camera to ground plane and basic information about the sensor geometry in order 
to establish the following camera parameters: the focal length f, a radial lens distortion coefficient k, the 
translation Tx, Ty, Tz and rotation Rx, Ry, Rz of the camera in world coordinates. Due to the monocular setup, a 
calibration could only be established for a preset elevation above the ground plane, which is typically the street 
level. Depending on the camera resolution and the distance of the object to the camera, measurement accuracies 
of a few centimeters were possible using the proposed calibration method.  

3.1.2. Smoothing 

Varying object-detection-accuracy may lead to discontinuities in the trajectories. To smooth out such 
irregularities, a centered moving average over 10 consecutive frames was applied to the trajectory data. At a 
sampling rate of 25Hz, this amounts to a window duration of 0.4s. Given the time scale of an average pedestrian-
vehicle interaction and the procedure developed below, no loss of potential information due to smoothing was to 
be expected. The smoothed trajectories (see Fig. 3) provided more reliable information on pedestrian and vehicle 
driving dynamics and were subsequently used for the calculation of the parameters for the pedestrian-driver 
interactions. 
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Fig. 3 (a) Raw vehicle trajectory (b) smoothed trajectory 

3.1.3. Context and Filtering 

In order to interpret the trajectories in the given local environmental context of the pedestrian crossing, specific 
markers as well as regions encapsulating this information were defined. The aerial shot in Fig. 4 gives an 
example of the markers and regions outlined below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Fig. 4 Pedestrian crossing markers for trajectory interpretation  
 
Crosswalk-Region: a (purple) polygonal region covering the crosswalk covers the crossing itself. An additional 
buffer (+10% offset) defines a proximity area. A pedestrian inside this region is interpreted as an individual who 
wants to cross the road. 
 
Pedestrian-Marker: a (red) line perpendicular to the crosswalk differentiates between the before- and after-
crossing situations. A pedestrian needs to cross this line to be considered relevant for the analysis. Furthermore, 
the direction of movement of the pedestrian can be inferred. 
 
Vehicle-Marker: a (blue) line perpendicular to the vehicle lane relevant for the pedestrian crossing under 
consideration allows to differentiate different vehicle trajectories in a similar fashion as for pedestrians. A 
vehicle needs to cross this line to be considered relevant. 
 
Trajectories with a length below 3m were excluded from the analysis. A vehicle was considered to be in 
proximity of the pedestrian crossing if the distance between the vehicle and the vehicle-marker was below 15m. 
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By computing the time at which a given trajectory crosses the corresponding line, the course of events, i.e. a 
sequence stating who crosses when, could be derived automatically. 

3.1.4. Parameters 

From the smoothed trajectories in the world coordinate system, an object’s speed could be estimated by 
computing the distance covered between consecutive frames (the distance between 10 frames turned out to 
provide a satisfying approximation of the actual speed). Based on above markers and regions, additional 
information answering below questions were attached to each trajectory: 
 

 Does the object cross the corresponding marker and if so when? 
 From which direction does the object approach the crosswalk? 
 For each point in (frame), is the object in proximity of the crosswalk? 
 Vehicle: for each point in time (frame), is the vehicle able to stop before passing the crosswalk? Here 

constant deceleration with a reaction time of 1s and a deceleration rate of 8m/s² is assumed. 
 
Besides per-object information, summary statistics describing the traffic situation (number of 
vehicles/pedestrians, average (vehicle) velocities) were also calculated. 
 
As outlined in the introduction, the willingness to stop was used as a proxy to describe the traffic safety level at a 
pedestrian crossing. In the context of the present work, the willingness to stop was defined as follows: 
 

Willingness to stop = Amount of vehicles that behave correctly / Amount of all relevant vehicles 
 
Here:  
“all vehicles that behave correctly” was a subset of “all relevant vehicles”. To apply this reasoning, a precise 
definition of “correct/incorrect” and “relevance” was needed. 

3.1.5. Trajectory/Object Selection and Iteration 

Out of all observed trajectories, those objects and time spans are selected that satisfy the following criteria: 
 
Vehicle: 

 approaches crosswalk from relevant direction 
 is close to the crosswalk, i.e. distance is below 15m 
 is next to cross the crosswalk (vehicle-marker) 

 
Pedestrian: 

 is at least once inside the buffer region 
 is close to the crosswalk, i.e. inside the buffer region 
 is next to cross the crosswalk (pedestrian-marker) 

 
As already pointed out, both the vehicle and the pedestrian trajectories have to cross the crosswalk and be 
sufficiently long, i.e. more than 3m. The importance of the last bullet point needs to be highlighted, since it 
allows to assign to each vehicle a unique sequence of pedestrians thereby defining the relevant actors at each 
moment (frame). In an iterative manner, for each vehicle all pedestrians which are observed within the same time 
period are identified. For each of those vehicle-pedestrian pairs, the events in the common time interval in which 
both are going to be the next objects to cross the crosswalk are further analysed. During this overlapping time 
interval the so called pedestrian-vehicle-interaction takes place. 
 
This approach implies (and is therefore based on this assumption) that at each point in time (frame) the situation 
at a crosswalk can be sufficiently described by a single vehicle and a single pedestrian. Since only single lane 
roads are considered and an assessment of the average vehicle-pedestrian interaction is sought, these 
assumptions appear justified. 
 
Extensive manual review of annotated video material indicates that the methodology outlined in this paper 
provides a stable and reasonable assessment of pedestrian- vehicle interactions. 
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The flowchart in Fig. 5 describes the procedure to assess a vehicle-pedestrian-interaction. A more elaborate 
description of the decision steps is summarized in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Interaction analysis for pedestrian crossing  
 
 

Table 1 Decision criteria for evaluation of pedestrian-vehicle interactions 
 

Code Decision criteria Definition/Translation 

(1) Does pedestrian cross 
before vehicle? 

The vehicle is observed to cross 
before the pedestrian does. 

(2) 

Is the vehicle, at any 
point in time, able to stop 
before the pedestrian 
passes? 

Is at some point the stopping 
distance smaller than the actual 
distance to the crosswalk? (Then 
the vehicle would be able to stop 
safely)

(3) Is the vehicle driving too 
fast? 

At some point in time, the speed 
of the vehicle is greater than the 
allowed speed limit + 5km/h. 

(4) 

Is the vehicle in close 
proximity AND (logical 
or) could it pass the 
intersection before the 
pedestrian crosses? 

The vehicle is closer than 15m 
OR, assuming constant velocity, 
the vehicle would pass before the 
pedestrian. 
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Having estimated the willingness to stop as well as additional parameters describing the traffic situation for all 
pedestrian crossings under investigation, a safety assessment as described in the following chapter was carried 
out.  

4. Safety assessment 

To assess the safety of unsignalized crosswalks, a model describing the relationship between the willingness to 
stop and the adjacent road environmental was developed. Video observations were then conducted in the two 
largest cities of Austria, Vienna and Graz. To find appropriate locations for the surveillance, several open spatial 
data sets were used to obtain an overview of the whole population – open government data from the municipality 
of Vienna and OpenStreetMap data in Graz. Vienna provided a detailed digital map with a relative accuracy of a 
few centimeters, showing the delimitations of public street areas and a polygonal vector layer which contained 
detailed information on buildings, roads, buildings, sidewalks, parking lots, traffic islands, speed humps etc. 
 
Video observations and trajectory computations were conducted for a stratified sample of 85 different locations. 
All other relevant infrastructure parameters (e.g. traffic signs, road width) were collected on-site. After a manual 
quality check n=54locations were considered for statistical modelling. 
 
Since the willingness to stop at unsignalized crosswalks as defined in Section 3.2 is given by proportion data, the 
response/dependent variable was defined from the closed unit interval [0,1]. Various methods are proposed in the 
literature to model proportion data. A common strategy for most of them is to transform the response, e.g. using 
the logit transformation, and apply ordinary least squares (OLS) regression. This has some major drawbacks, as 
the assumptions of OLS regression are often not met (e.g. homoscedasticity). An alternative approach is given by 
regression models which are based on the binomial distribution, i.e. logistic regression. However, in practice 
proportion data are often non-binomial, e.g. in case of overdispersion, where the observed variance is greater 
than the expected variance given by the underlying distribution. To overcome the aforementioned problems and 
limitations, a so-called beta regression model (Ferrari and Cribari-Neto (2004), Cribari-Neto and Zeileis (2010)) 
was used in this study. The model is based on the assumption that the response is beta-distributed. Beta 
regression is similar to a binomial generalized linear model (GLM) but provides much more flexibility due to the 
beta law. 
 
The class of beta regression models assumes the continuous variables y to be restricted on the open unit interval 

(0,1), therefore the transformation y →
ሺ୷ሺ୬ିଵሻା଴.ହሻ

୬
 (Smithson and Verkuilen, 2006) was applied to the response 

in a first step. The following set of explanatory variables was considered in the beta regression model: 
 
Categorical predictors: 

 posted speed limit (<50 km/h (24) and 50 km/h (30)) 
 crossing type (zebra crossing (17), zebra crossing with traffic island (22) and zebra crossing with speed 

humps (15)) 
 

Continuous covariables: 
 pedestrian crossing width 
 number of vehicles 
 number of pedestrians 

 
Note that a beta regression model is linear in the coefficients. To find an appropriate functional form of the 
predictors, generalized additive models were employed. Variable selection was performed using boosting 
methods (Mayr et al., 2012). The regression parameters of the beta regression model are interpretable in terms of 
the mean of the response and are shown for a final model in Table 2. Bootstrapping methods and boosting also 
showed that the crossing type and pedestrian crossing width have the highest influence on the response variable 
(i.e. the readiness to stop). 
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Table 2 Model coefficients and 95% confidence interval of the Beta regression model 
 

Beta regression model 

centre island 
(c_isl) 

0.313

(-0.124, 0.750)

speed bump 
(s_bump) 

0.715**

(0.104, 1.325)

traffic volume 
(n_veh) 

-0.001*

(-0.003, 0.0002)

Pedestrian 
volume (n_ped) 

-0.020

(-0.045, 0.004)

I(n_veh^2) 
0.0003**

(0.00002, 0.0005)

road width 
(r_width) 

-0.118***

(-0.195, -0.040)

speed limit <50 
km/h (s_limit) 

-0.504**

(-0.918, -0.089)

constant 
3.363***

(2.439, 4.287)

observations 54

pseudo-R2 0.379

log Likelihood 68.900

note 
*p<0.1; **p<0.05; ***p<0.01

5. Conclusions 

A literature review conducted at the beginning of the project revealed that previous model approaches mainly 
focused on the influence of vehicle speed on willingness to stop but did not include several influencing factors of 
the road environment. Within this project, the methodological approach was widened in order to include 
important risk factors such as pedestrian crossing type, traffic and pedestrian volume or road width. The 
established beta regression model gives planers and decision makers a valuable tool to evaluate the safety related 
consequences of different mitigating measures up front. The modelling results prove that speed bumps and the 
available road width have the largest influence on vehicle driver’s willingness to stop. Installing a speed bump at 
unsignalized pedestrian crossings increases the stopping probability by more than 8 percent. Road islands in 
conjunction with pedestrian bulbouts nearly have the same effect.  
 
After conducting several test runs at unsignalized pedestrian crossings, the correct setup for the observational 
study also became evident. Sites need to be selected with great care in order to prevent selection bias blemishing 
the results of the modelling process. A reasonable straight road segment leading to the crosswalk under 
investigation was found to be paramount for reasonable trajectory detection. Furthermore, the distance of the 
mounted camera unit to the pedestrian crossing should not exceed 20m. Otherwise, movement tracking becomes 
increasingly instable and the number of analyzable trajectories decreases significantly. 
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