
HDGM: Hierarchical Dynamic Goal

Management for Many-Core Resource

Allocation
Amir M. Rahmani, Senior Member, IEEE, Axel Jantsch, Member, IEEE, and Nikil Dutt, Fellow, IEEE

Abstract

Many-core systems are highly complex and require thorough orchestration of different goals across the computing

abstraction stack to satisfy embedded system constraints. Contemporary resource management approaches typically

focus on a fixed objective, while neglecting the need for replanning (i.e., updating the objective function). This trend

is particularly observable in existing resource allocation and application mapping approaches that allocate a task

to a tile to maximize a fixed objective (e.g., the cores’ and network’s performance), while minimizing others (e.g.,

latency and power consumption). However, embedded system goals typically vary over time, and also over abstraction

levels, requiring a new approach to orchestrate these varying goals. We motivate the problem by showcasing conflicts

resulting from state-of-the-art fixed-objective resource allocation approaches, and highlight the need to incorporate

dynamic goal management from the very early stages of design. We then present the concept of a Hierarchical

Dynamic Goal Manager (HDGM) that considers the priority, significance, and constraints of each application, while

holistically coupling the overlapping and/or contradicting goals of different applications to satisfy embedded system

constraints.

Index Terms

Goal Management, Many-cores, Resource Allocation, Dynamic Mapping, Dark Silicon, Lifetime Balancing

Amir M. Rahmani is with the Department Computer Science, University of California Irvine, CA, 92697 USA & Institute of Computer
Technology, TU Wien, 1040 Vienna, Austria, e-mail: amirr1@uci.edu.

Axel Jantsch is with the Institute of Computer Technology, TU Wien, 1040 Vienna, Austria, e-mail: axel.jantsch@tuwien.ac.at.

Nikil Dutt is with the Department Computer Science, University of California Irvine, CA, 92697 USA, e-mail: dutt@uci.edu.

1

HDGM: Hierarchical Dynamic Goal

Management for Many-Core Resource

Allocation

I. INTRODUCTION

Aggressive technology scaling has exacerbated challenges resulting from process variation, failure of Dennard’s

law, emergence of dark silicon, poor energy proportionality, faults manifesting from thermal issues, aging [1], etc.

Thus, hardware platforms for embedded systems are becoming increasingly inefficient and vulnerable to diverse

conflicting system constraints such as limited power resources, temperature accumulation, silicon meltdown, faster

aging, etc. We define Constraint as a parameter that controls what we are interested in to satisfy for instance by

keeping it within particular limits.

In this context, embedded systems face extreme challenges in ensuring their objective such as QoS, energy

efficiency, reliability, etc., over a diverse set of applications, in the face of multiple, possibly conflicting constraints.

We define Objective as a cost function that linearly combines different constraints through different weights (e.g.,

priorities) for achieving a specific result within these constraints. In this context, being Multi-objective indicates

having an objective function with more than one constraint. The radar chart in Figure 1 illustrates these challenges.

State-of-the-art performance-driven resource allocation approaches have the fixed objective of exclusively focusing

on power-performance optimization (blue overlay), while they do not adapt at runtime to consider other critical

requirements such as error detection, life-time balancing, and temperature accumulation [2]–[6]. The same applies

to reliability, thermally-efficient, and life-time balancing oriented designs (grey overlay), where considerations on

QoS and performance surges are not addressed dynamically [7]–[9]. Similarly, throughput driven approaches focus

on maximizing the system throughput while sacrificing the latency constraints of individual applications (orange

overlay) [10].

Thus there is a growing need for a systematic scheme to manage system goals through coordinated orchestration.

We define Goal as high-level loosely defined plans of the system that can be selected, prioritized (i.e., managed) at

runtime due to changes in the environment or the system’s own state, and would consequently result in updating the

weights in the objective function (i.e., replanning). Therefore, objectives are more specific and easier to measure

than goals. We posit that a Hierarchical Dynamic Goal Manager (HDGM – right side of Figure 1) can effectively

manage a pyramid of goals by considering varying goal priority, as well as the significance and requirements of

each application to serve application requests. HDGM could improve efficiency in resource utilization and decision

making, since the goals of different applications may be fully or partially exclusive, overlapping, or contradicting.

For instance, an NVIDIA study reports that most mobile devices (deploying embedded multicore platforms) are

2

Per-
application

Latency

System
Throughput

Resource
Utilization

Power and
Energy

Life-time
Reliability

Thermal
Stability

Performance Driven Throughput Driven Lifetime Reliability Driven

Varying

Workload and

User Demands

Time

Goal

Time

Goal

System

Aberrations

and Constraints

Hierarchical

Dynamic Goal

Manager

Figure 1. Hierarchical Dynamic Goal Management for Goal Switching

typically in standby state 80% of the time, and execute compute-intensive mobile applications only 20% of the time

[11]. However, the usage of individual devices varies greatly, based on user activity and preferences. Similarly, a

study of server utilization in public clouds reports that the workload at night is half the workload during the day

[12]. Intuitively, performance is of higher priority during the active mode for mobile processors or during the day

for cloud providers due to heavier workloads. With reduced workload during the standby mode or the night and

lower requirement on performance, available/idle resources can be utilized to manage other goals such as life-time

balancing by updating their priorities.

In this article, we motivate the problem by showcasing some of the conflicts arising from state-of-the-art resource

allocation approaches that are typically focused on a fixed objective. We then present a high-level architecture for

Hierarchical Dynamic Goal Management (HDGM) that can handle the significance, constraints, and requirements of

each application, while holistically considering the overlapping and/or contradicting goals of different applications

to satisfy system-level goals.

II. CONFLICTING GOALS IN FIXED-OBJECTIVE RESOURCE ALLOCATION APPROACHES

To motivate the need for coordinated, dynamic goal management, we now highlight conflicting goals resulting

from examples of typical contemporary fixed-objective resource allocators for many-core systems. It should be

noted that each of the works discussed in the following is representatives of a rich class of resource allocation

techniques.

3

A. Performance-Driven Resource Allocation

Problem Definition and Objective: Given a new application commencing execution at runtime, map it to

an optimal region on the system which results in the lowest per-application execution time, i.e., lowest average

Manhattan distance, lowest average packet latency, lowest internal and external congestion, and lowest mapped

region dispersion. To meet this objective, the selected region needs to have the following attributes: i) Spatially

available - enough number of free nodes around it to map the application, ii) Contiguous - free nodes that are

contiguous to minimize internal congestion, and iii) Near Convex - free nodes forming a near convex geometrical

shape (square shaped) to minimize dispersion and external congestion.

Solution: We use MapPro [2] as an exemplar of a contemporary technique from the class of approaches addressing

this objective. MapPro’s preferred mapping solutions result in lower congestion, dispersion, power consumption and

higher performance, which is realized by mapping dense and contiguously. It deploys a proactive region selection

strategy which quantitatively represents the propagated impact of spatial availability and dispersion on the network

with every new mapped application. Figure 2(a) shows a scenario where three applications are already mapped

and running on a 12×12 system, and there is an application with a size of 7 tasks (App4) issuing an execution

request. Figure 2(b) shows how MapPro maps this application onto the system and updates the probability of the

unoccupied cores around App4 for the future mappings. MapPro enhances congestion and dispersion in the system

by up to 28% and 21%, respectively, compared to other state-of-the-art region selection methods in the same class

such as [4]. We observe that the main goal of these dynamic resource allocation approaches is fixed on enhancing

per-application execution time (i.e., latency) and cannot adapt to focus on improving the overall system utilization

and throughput.

App2

App3

App1

(a) System state before mapping App4

App2

App3

App1

App4

(b) System state after mapping App4

Figure 2. Mapping dense and contiguously by using MapPro [2]

4

B. Throughput- and Power-Constrained Resource Allocation

Problem Definition: Another class of resource allocation problems addresses orthogonal issues in managing the

higher power density and potential hotspots, that in turn result in reducing the chip’s utilizable power budget. With

contiguous mapping of applications, all the active cores are tightly packed, resulting in the heat dissipated by every

active core affecting its neighbors; consequently, cores can reach their critical temperature even when on a lower

power budget. On the other hand if the cores are spread out, the heating effect of one active core on the others is

minimized, thereby allowing cores to consume more power before reaching their critical temperature. Furthermore,

dark silicon constraints will force a variable number of cores to be inactive (dark). This results in the upper bound

on power consumption largely varying at runtime. A sensible way to avoid this is to use a variable and realistic

upper bound on power consumption, Thermal Saturation Power (TSP), as proposed in [13]. For instance, mapping

of the 3 applications contiguously on a NoC-based many-core system with 144 cores, under safe peak operating

temperature (80◦C), results in a power budget of 66W (Figure 3(a)), while a non-contiguous and spread-out mapping

of the same applications (as well tasks) leads to a power budget of 74.6W (Figure 3(b)).

Objective: Given an incoming application, find a region at runtime that has minimal effect in terms of temperature

on other regions, and align (i.e., map) active cores in a way that results in a higher power budget over some other

mapping. Subsequently, the surplus budget gained through mapping can be utilized to power up additional, otherwise

dark cores, thereby maximizing overall system utilization and throughput.

Solution: A representative approach by Kanduri et al. [10] deploys a closed-loop feedback Budget Manager

(the upper left side of Figure 4) interacting with the runtime mapping unit (RMU). The Budget Manager’s TSP

Calculator computes the TSP using the the current mapping configuration of the system. The RMU considers the

spatial distribution of applications and sparsity among tasks of each individual application in the selected region to

perform the allocation.

In this approach, inter-core communication latency and per-application latency are traded off to improve maximum

App. 1

App. 2

App. 3

App. 1

App. 2

App. 3

(a) (b)
Figure 3. Effect of mapping on temperature accumulation [10]

5

Reliability Analysis

Unit

Runtime Mapping

Unit

TSP

Allocation

Execution

Request

Power

Supply

NoC-based Many-core

System

......

......

Per-core Temperature (T)

Power

Monitor

Reliability Monitor

Aging

Status

Reliability

Requirement

Rlifetime

[]...

R1,1

Rn,1

R1,m...

Rn,m

...

...[]...

R1,1

Rn,1

R1,m...

Rn,m

...

...

Reliability

Metrics[]...

ΔR1,1

ΔRn,1

ΔR1,m...

ΔRn,m

...

...[]...

ΔR1,1

ΔRn,1

ΔR1,m...

ΔRn,m

...

...

[]...

m1,1

mn,1

m1,m...

mn,m

...

...[]...

m1,1

mn,1

m1,m...

mn,m

...

...

[]...

T1,1

Tn,1

T1,m...

Tn,m

...

...[]...

T1,1

Tn,1

T1,m...

Tn,m

...

...

-

+TSP

Calculator
Power Headroom

Current Power

Reliability Manager

Budget Manager

Figure 4. High-level architecture implementing throughput-driven vs. reliability-driven mapping strategy

utilizable power budget and thus gain system throughput. This results in increased average application execution

time due to longer communication latency, while the surplus power budget allows more incoming applications to

be executed (i.e., more parallelism and less dark silicon). We note that these goals are contradictory to the previous

performance-driven allocator, and as the objective is fixed, the system cannot adapt to possible changes.

C. Lifetime-Reliability-Driven Resource Allocation

Problem Definition: A third class of resource allocators focuses on lifetime reliability: uneven resource allocation

stresses components of a chip in a non-uniform fashion, resulting in imbalanced aging and reliability of the chip.

Recent studies have shown that a 10− 15◦C difference in operating temperature may result in a 2× difference in

the overall lifespan of a device [14].

Objective: These resource allocation methods aim to optimize system performance, while maximizing the overall

system lifetime by choosing less stressed resources and providing long term recovery periods for highly stressed

cores.

Solution: A representative approach [8], [9] achieves lifetime-reliability balancing by deploying a centralized

controller composed of a long-term runtime reliability analysis unit and a short-term runtime mapping unit (the

lower left side of Figure 4). The Reliability Analysis Unit is the long-term controller responsible for monitoring the

aging status of the various cores. The unit analyzes the current reliability value of each core w.r.t. the target aging

reference to compute a specific reliability metric describing the aging trend. The Runtime Mapping Unit as the

6

short-term controller dispatches the applications onto the system considering the provided reliability information.

Hagyhbayan et al. [8], [9] showed that assuming the goal is to provide at least a 30% reliability for each single

core at the end of the target lifetime of a 12×12 many-core system, performance-centric and reliability-agnostic

dynamic mapping strategies such as MapPro miss the requirement before 6 years (Figure 5(a)). However, with

reliability-aware dynamic resource allocation it is possible to guarantee the specified reliability constraint (as shown

in Figure 5(b) where only after 12 years the first core has a reliability lower than 30%).

0 1 2 3 4 5 6 7 8 9 10 11

01234567891011

0.2

0.3

0.4

0.5

0.6

0.7

(a) Using MapPro (lifetime=5.52 years)

0 1 2 3 4 5 6 7 8 9 10 11

01234567891011

0.2

0.3

0.4

0.5

0.6

0.7

(b) Using reliability aware mapping (life time=12 years)

Figure 5. The effect of different runtime mapping approached on overall system lifetime (until the first core’s reliability reaches 30%) [9]

Here, the chip’s lifetime was considerably improved while imposing a 7% average performance slowdown (with

considerably higher worst case penalty).

Once again, this approach presents a fixed objective function as well as partially overlapping and contradicting

goals on resource allocation viz., to enhance power-performance characteristics vs. to enhance balanced allocation.

To summarize these three case studies: (a) performance driven allocation leads to dense mappings that are not

optimal for temperature dissipation, utilization and a long life-time; (b) Power-constraint driven allocation leads to

lower performance and also ignores life-time concerns; (c) life-time maximizing allocation leads to non-optimal

performance and ignores temperature dissipation concerns. While sometimes these different goals can be reconciled,

very often one has to be compromised for the benefit of another goal through prioritization of different constraints

w.r.t. changes in the user preferences, environment, or system’s own state. The challenge is how to decide when to

compromise which goal.

III. HIERARCHICAL DYNAMIC GOAL MANAGEMENT

We argue that the pursuit of isolated goals is not effective for handling the complexity of modern many-cores.

We believe that a Hierarchical Dynamic Goal Management (HDGM) approach will enable improved abstraction

to effectively handle complexity, manage on-chip resources, and establish synergistic actuations to meet various

(conflicting and complementary) QoS guarantees. HDGM can effectively fuse sensory data across layers and deploy

a hierarchy of goals and commands from the application layer, to orchestrate effective system execution, while

7

Subsystem 1

(Thermal

State)

Subsystem 2

(Aging State)

Subsystem S

(Power State)

Plant (Many-core Fabric)

Physical relations
among different
aspects

Leaf controllers

report their state

upwards

Leaf Controllers
for managing
temperature,
power,

Controller 1 Controller 2 Controller S

Leaf Controllers

Leaf
controllers
communicate
with each
other

Variable Goals

and Policies

Plant Properties

and States

PGCPGC

Hierarchical Dynamic Goal Manager
GCs inform PGCs about

state, progress, and

deviations.

Primary Goal
Controllers (PGCs)
Goal Controllers (GCs)

PGCs give

directions to

GCs.

PGCPGC

GCGC GCGC

M
id

d
le

w
a

re
O

S
P

la
n

t

Goals give direction

for management of

the plant and

subplants

Figure 6. High-Level architecture for hierarchical dynamic goal management.

meeting the dynamic changes in the priorities of goals and sub-goals at runtime. It needs to also to adapt and

evolve over time to optimize itself. Such a framework can generalize the existing management policies and simplify

them by separating the many-core platform from the goal management system.

A HDGM needs to navigate through a space with: i) a set of goals/subgoals, including a predefined subset

of goals, that can be dynamically generated and eliminated at runtime (e.g., the case when an incoming realtime

application requests execution while there is not any other realtime application running on the system), ii) a set of

priorities for changing the significance of goals at runtime (e.g., life-time balancing gets a higher priority when a

system is in the active standby mode), iii) a notion of time as an input to the goal function to update priority of

goals over time, to be used for goal tracking epochs with different timescales (e.g., overboosting can be a short-term

goal while lifetime balancing is a long-term one), etc., iv) an inspection function to audit how the current resource

allocation is effective in meeting the goals, and v) a goal function capable of categorization and holistic orchestration

of application-level and system-level goals over time considering the inputs from the inspection function, the system,

and the application layer.

An example high-level architecture of a HDGM is shown in Figure 6. HDGM manages a pyramid of goals in

a hierarchical fashion. One possible implementation is to consider a two-tier hierarchy of controllers, denoted as

Primary Goal Controllers (PGCs) and Goal Controllers (GCs), respectively, as shown in Figure 6. In this architecture,

8

HDGM receives primary goals from the application layer while having access to properties and initial states of the

manycore fabric. Primary goals are highest up in the goal hierarchy. They include application specific goals but

also basic, generic goals concerning survival and harm avoidance. Goal controllers manage application relevant,

partial goals such as frame rate, survival time, audio quality, etc. An important challenge in the realm of goals is

to arbitrate between conflicting and competing goals. In this architecture, PGCs give directions to GCs, and GCs

inform PGCs about state, progress, and deviations. Leaf Controllers at the bottom layer interact with the HDGM

and the controlled system. They are responsible for managing low-level parameters of the many-core fabric such

as temperature, power, etc. A leaf controller can be for example a power budget or reliability manager (e.g., the

controllers shown in Figure 4). In the same fashion, leaf controllers report their state upwards to the HDGM, and

based on the assessment, directions to the leaf controllers are given by the HDGM.

While this architecture can be a good initial exemplar for a HDGM, it does not consider the required theoretical

models, and implementation and verification complexity/challenges of realizing such a manager, however it can lay

the ground for future work to address many of the open challenges we describe next.

IV. CONCLUSIONS AND CHALLENGES

In this article, we illustrated some of the conflicts resulting from state-of-the-art many-core resource allocation

approaches when the focus is a fixed objective. We then motivated the need for dynamic hierarchical goal managers

to holistically coordinate the overlapping and/or contradicting goals of different applications as well as system-

driven goals which may vary over time. Although we argue that explicit goal management (GM) is becoming

a necessity for emerging many-core embedded systems, significant challenges remain open to realize systematic,

efficient, interoperable, and robust goal management approaches. We also believe that goal management has to

be incorporated into the system at the very early design stage to appropriately handle specification, design and

verification. Although there are many open problems, we pose the following challenges to initiate research in this

area:

• How to formally model and formulate the GM?

• How to verify it w.r.t. convergence, efficiency, robustness, QoS guarantees, etc.?

• How to design efficient cross-layer architectures for GM?

• How to handle the hierarchy of goals?

• How to make GM lightweight and interoperable?

ACKNOWLEDGMENT

We thank M. Hashem Haghbayan, Anil Kanduri, Antonio Miele, and Pasi Liljeberg for the conception and

development of the approaches presented in Section III. We also acknowledge financial support by the Marie Curie

Actions of the European Union’s H2020 Programme.

9

REFERENCES

[1] A. Rahmani et al., The Dark Side of Silicon, 1st ed. Springer, Switzerland, 2016.

[2] M.-H. Haghbayan et al., “MapPro: Proactive Runtime Mapping for Dynamic Workloads by Quantifying Ripple Effect of Applications on

Networks-on-Chip,” in Proc. of NOCS, 2015.

[3] M. Fattah et al., “Mixed-Criticality Run-Time Task Mapping for NoC-Based Many-Core Systems,” in Proc. of PDP, 2014.

[4] ——, “Smart hill climbing for agile dynamic mapping in many-core systems,” in Proc. of DAC, 2013.

[5] A.-M. Rahmani et al., “Dynamic Power Management for Many-Core Platforms in the Dark Silicon Era: A Multi-Objective Control

Approach,” in Proc. of ISLPED, 2015.

[6] M.-H. Haghbayan et al., “Dark Silicon Aware Power Management for Manycore Systems under Dynamic Workloads,” in Proc. of ICCD,

2014.

[7] C. Bolchini et al., “Lifetime-aware load distribution policies in multi-core systems: An in-depth analysis,” in Proc. of DATE, 2016.

[8] M. H. Haghbayan et al., “Can Dark Silicon Be Exploited to Prolong System Lifetime?” IEEE Design and Test, 2017.

[9] ——, “A lifetime-aware runtime mapping approach for many-core systems in the dark silicon era,” in Proc. of DATE, 2016.

[10] A. Kanduri et al., “Dark Silicon Aware Runtime Mapping for Many-core Systems: A Patterning Approach,” in Proc. of ICCD, 2015.

[11] NVIDIA, “Variable SMP - A Multi-Core CPU Architecture for Low Power and High Performance,” White paper, 2011.

[12] H. Liu, “A Measurement Study of Server Utilization in Public Clouds,” in Proc. of DASC, 2011.

[13] S. Pagani et al., “TSP: thermal safe power: efficient power budgeting for many-core systems in dark silicon,” in Proc. of CODES+ISSS,

2014.

[14] Y. Xiang et al., “System-Level Reliability Modeling for MPSoCs,” in Proc. of CODES+ISSS, 2010.

