
SWORD V3 BoF
Implmentation, Sustainability & Community

Agenda

● Introductions (10 mins)
● Name, Affiliation, Experience with SWORD (any version)

● Current Status and Overview (30 mins)

● Development Plans (15 mins)
○ Validation Suite

○ Reference Implementation

● Discussion (25 mins)

● Next Steps (10 mins)

Introductions

● Oxford/D2P
○ Neil Jefferies (Community Lead)

● Jisc
○ Dom Fripp, John Kaye (Funder)

● Cottage Labs
○ Richard Jones (Technical Lead)

Current Status

● Website: http://swordapp.org

● Alpha release (funded by Jisc)
● Responses and reviews still welcome

● Mailing list (contact details on website)

● Final Release only after working code
● Validation tests

● Reference Implementation

● Timeline mid-late 2019

SWORD Overview

● Part of the COAR Next Generation Repository roadmap

● SWORD 3.0 is a protocol enabling clients and servers to communicate around

complex digital objects

● Complex digital objects consist of both Metadata and File content, where the Files

may be in a variety of formats, there may be many files, and some may be very

large.

● It defines semantics for creating, appending, replacing, deleting, and retrieving

information about these complex resources.

● It also enables servers to communicate regarding the status of treatment of

deposited content, such as exposing ingest workflow information.

A Little History

● The first major version of SWORD (1.3) built upon the Resource creation

aspects of AtomPub to enable fire-and-forget package deposit to a server.

● There are use-cases where this is insufficient: e.g. that the depositor

wishes to construct a digital artifact file by file over a period of time before

deciding that it is time to archive it.

● SWORD 2.0 was developed to service these use cases.

● SWORD 3.0 is a radical departure from SWORD 2.0 moving to a much

stricter REST+JSON approach, utilising JSON-LD for alignment with Linked

Data, and supporting Research Data Management use cases.

SWORD Object Structure

Key features

● Concurrency Control

● Continued Deposit

● Metadata Deposit

● Package Deposit

● Segmented File Upload

● By Reference Deposit

Concurrency Control

● Servers MAY implement Concurrency Control, to prevent clients from

unintentionally overwriting data.

● The Server provides the ETag header on every response, which contains a

unique version number for the Object.

● The client must then provide the If-Match header with every request to

change data, which reflects the latest ETag

Continued Deposit

● Clients can indicate to a server that there is more content coming, and the

item shouldn't be injected into any post-submission workflows by

providing the In-Progress header.

Metadata Deposit

● SWORD allows the client to deposit arbitrary metadata onto the server

through agnostic support for metadata formats.

● SWORD has a default format which MUST be supported by the server,

which consists of the set of DCMI Terms expressed as JSON

● During deposit, the client specifies a Metadata-Format header which

contains the identifier for the format.

Package Deposit

● SWORD allows you to deposit both Files and Metadata simultaneously

through support of Packaged Content.

● When depositing Packaged Content, the client indicates information about

the format using the Packaging header.

● Explicit BagIT support

Segmented File Upload (replaces multipart)

● If a client has a very large file that it wishes to transfer to the server by

value, then in may be beneficial to do this in several small operations,

rather than as a single large operation.

● In order to transfer a large file, the client can break it down into a number

of equally sized segments of binary data (the final segment may be a

different size to the rest). It can then initialise a Segmented File Upload

with the server, and then transfer the segments. The server will

reconstitute these segments into a single file, and then the client may

deposit this file by-reference.

By-Reference Deposit

● By-Reference Deposit is when the client provides the server with URLs for

Files which it would like the server to retrieve asynchronously to the

deposit request itself.

● This could be useful in a number of contexts, such as when the files are

very large and are stored on specialist staging hardware, or where the files

are already readily available elsewhere.

More detailed overview…

● OR Workshop slides

● https://swordapp.github.io/swordv3/workshop

Validation suite

● Jisc (Funder)
● Dom Fripp, John Kaye

● Cottage Labs (Development)
● Richard Jones (Technical Lead)

● Validation for client and server implementations

● Testing for client and server implmentations

● In parallel, but slightly ahead of, reference implementation

Reference Implementation

● NII/WEKO (Pilot User, Funder)
● Kazu Yamaji, Masaharu Hayashi

● CERN/Invenio (Development)
● Lars Holm-Nielsen

● Python

● Modular for maximum re-usability

● Feeds back into final spec

Timescale

● …still being worked out

● …mid-late 2019 for completion

● …code availability before then

Discussion Topics

● Role of a potential RDA WG

● Development Partners

● Community

Role of a potential WG

● Under Repository Interoperability IG

○ Logical follow of from BagIT work

○ SWORD provides a transport for Bags

● RDA Endorsement of Spec -> EU Tech Spec

○ Encourages adoption

● Setup of community mechanisms

Development Partners

● https://github.com/swordapp/

● Code available when core functionality complete
○ Alternative implementations

○ Issues/commits for reference implementation

○ Testing

○ Documentation

● ArXiv and CADRE in the pipeline

Community

○ Community mechanisms
■ Roles and process

■ RDA Maintenance Group?

■ CLiR

○ Stewardship of spec/code/harness

○ Recognition/aggregation of other work
■ Links to alternative implementations/possibilities/projects

■ Documentation

Next Steps

● Dev partners

● WG partners

● Community partners

