#,Weather Type,Timing,Location,Citation,Link 1,Wildfire,2023,"Canada, Amazonia, Greece","Jones, M. W., Kelley, D. I., Burton, C. A., Di Giuseppe, F., Barbosa, M. L. F., Brambleby, E., Hartley, A. J., Lombardi, A., Mataveli, G., McNorton, J. R., Spuler, F. R., Wessel, J. B., Abatzoglou, J. T., Anderson, L. O., Andela, N., Archibald, S., Armenteras, D., Burke, E., Carmenta, R., Chuvieco, E., Clarke, H., Doerr, S. H., Fernandes, P. M., Giglio, L., Hamilton, D. S., Hantson, S., Harris, S., Jain, P., Kolden, C. A., Kurvits, T., Lampe, S., Meier, S., New, S., Parrington, M., Perron, M. M. G., Qu, Y., Ribeiro, N. S., Saharjo, B. H., San-Miguel-Ayanz, J., Shuman, J. K., Tanpipat, V., van der Werf, G. R., Veraverbeke, S., and Xanthopoulos, G.: State of Wildfires 2023–2024, Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, 2024.",https://essd.copernicus.org/articles/16/3601/2024/essd-16-3601-2024.html 2,Wildfire,2015/2016,"Extratropical Australia (SW/SE - October–February) Western North America (Fort McMurray - May–August)","Simon F. B. Tett, S. F. B., A. Falk, M. Rogers, F. Spuler, C. Turner, J. Wainwright, O. Dimdore-Miles, S. Knight, N. Freychet, M. J. Mineter, and C. E. R. Lehmann. 2018: Anthropogenic forcings and associated changes in fire risk in western North America and Australia during 2015/2016 [in “Explaining Extreme Events of 2016 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 99 (1), S54–S59, doi:10.1175/BAMS-D-17-0118.1. ",https://doi.org/10.1175/BAMS-ExplainingExtremeEvents2016.1 3,Wildfire,2017,British Columbia,"Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J., & Anslow, F. S. (2019). Attribution of the influence of human-induced climate change on an extreme fire season. Earth's Future, 7, 2–10. https://doi.org/10.1029/2018EF001050",https://doi.org/10.1029/2018EF001050 4,Precipitation,2021,British Columbia,"N.P. Gillett, A.J. Cannon, E. Malinina, M. Schnorbus, F. Anslow, Q. Sun, M. Kirchmeier-Young, F. Zwiers, C. Seiler, X. Zhang, G. Flato, H. Wan, G. Li, A. Castellan. Human influence on the 2021 British Columbia floods. Weather Clim. Extrem., 36 (2022), Article 100441, 10.1016/j.wace.2022.100441",https://doi.org/10.1016/j.wace.2022.100441 5,Wildfire,2017/2018,"California, Oregon","Hawkins, L. R., Abatzoglou, J. T., Li, S., & Rupp, D. E. (2022). Anthropogenic influence on recent severe autumn fire weather in the west coast of the United States. Geophysical Research Letters, 49, e2021GL095496. https://doi.org/10.1029/2021GL095496",https://doi.org/10.1029/2021GL095496 6,Heat,2021 (June),"British Columbia, Washington state, Oregon","Philip, S. Y., Kew, S. F., van Oldenborgh, G. J., Anslow, F. S., Seneviratne, S. I., Vautard, R., Coumou, D., Ebi, K. L., Arrighi, J., Singh, R., van Aalst, M., Pereira Marghidan, C., Wehner, M., Yang, W., Li, S., Schumacher, D. L., Hauser, M., Bonnet, R., Luu, L. N., Lehner, F., Gillett, N., Tradowsky, J. S., Vecchi, G. A., Rodell, C., Stull, R. B., Howard, R., and Otto, F. E. L.: Rapid attribution analysis of the extraordinary heat wave on the Pacific coast of the US and Canada in June 2021, Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, 2022.",https://doi.org/10.5194/esd-13-1689-2022 7,Wildfire,1979-2020,Western USA,"Zhuang, Y.; Fu, R.; Santer, B.D.; Dickinson, R.E.; Hall, A. Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2111875118.",https://doi.org/10.1073/pnas.2111875118 8,Wildfire,1972-2018,California,"Williams, A.P., Abatzoglou, J.T., Gershunov, A., Guzman- Morales, J., Bishop, D.A., Balch, J.K., Lettenmaier, D.P. (2019) Observed Impacts of Anthropogenic Climate Change on Wildfire in California, Earth’s Fututure, 7(8), 892-910.",https://doi.org/10.1029/2019EF001210 9,Wildfire,1975-2050,California,"Mann ML, Batllori E, Moritz MA, Waller EK, Berck P, Flint AL, et al. (2016) Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California. PLoS ONE 11(4): e0153589. https://doi.org/10.1371/journal.pone.0153589",https://doi.org/10.1371/journal.pone.0153589 10,Precipitation,1929-2018,"Northeast USA: CT, ME, MA, NH, RI, VT, NJ, NY, PA, DE, MD, VI, DC","Huanping Huang, Christina M. Patricola, Jonathan M. Winter, Erich C. Osterberg, Justin S. Mankin, Rise in Northeast US extreme precipitation caused by Atlantic variability and climate change, Weather and Climate Extremes, Volume 33, 2021, 100351, ISSN 2212-0947.",https://www.sciencedirect.com/science/article/pii/S221209472100044X 11,Wildfire,2014,California,"Yoon, J. H., S.-Y. S. Wang, R. R. Gillies, L. Hipps, B. Kravitz, and P. J. Rasch, 2015: Extreme fire season in California: A glimpse into the future? [in “Explaining Extremes of 2014 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 96 (12), S5–S9. ",https://doi.org/10.1175/BAMS-ExplainingExtremeEvents2014.1 12,Precipitation,2013 (Sept),"Boulder, Colorado",Jonathan M Eden et al 2016 Environ. Res. Lett. 11 124009.,https://iopscience.iop.org/article/10.1088/1748-9326/11/12/124009/meta 13,Precipitation,2013 (Sept),Colorado,"P. Pall, C.M. Patricola, M.F. Wehner, D.A. Stone, C.J. Paciorek, W.D. Collins. Diagnosing conditional anthropogenic contributions to heavy Colorado rainfall in September 2013. Weather Clim. Extrem., 17 (2017), pp. 1-6, 10.1016/j.wace.2017.03.004",https://doi.org/10.1016/j.wace.2017.03.004 14,Precipitation,2013 (Sept),Colorado (northeast),"Hoerling, M., and Coauthors, 2014: Northeast Colorado extreme rains interpreted in a climate change context [in ""Explaining Extremes of 2013 from a Climate Perspective""]. Bull. Amer. Meteor. Soc., 95 (9), S15–S18. ",https://doi.org/10.1175/1520-0477-95.9.S1.1 15,Storm,2013/2014 (winter),North America,"Yang, X., G. A. Vecchi, T. L. Delworth, K. Paffendorf, R. Gudgel, L. Jia, Seth D. Underwood, and F. Zeng. 2015: Extreme North America Winter Storm Season of 2013/14: Roles of Radiative Forcing and the Global Warming Hiatus [in “Explaining Extremes of 2014 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 96 (12), S5–S9.",https://doi.org/10.1175/BAMS-ExplainingExtremeEvents2014.1 16,Storm,2017 (August),Texas (Hurricane Harvey),"Frame, D.J., Wehner, M.F., Noy, I. et al. The economic costs of Hurricane Harvey attributable to climate change. Climatic Change 160, 271–281 (2020). https://doi.org/10.1007/s10584-020-02692-8",https://doi.org/10.1007/s10584-020-02692-8 17,Storm,2017 (August),Texas (Hurricane Harvey),Geert Jan van Oldenborgh et al 2017 Environ. Res. Lett. 12 124009,https://iopscience.iop.org/article/10.1088/1748-9326/aa9ef2 18,Storm,2017 (August),Texas (Hurricane Harvey),S-Y Simon Wang et al 2018 Environ. Res. Lett. 13 054014,https://iopscience.iop.org/article/10.1088/1748-9326/aabb85 19,Storm,2017 (August),Texas (Hurricane Harvey),"Trenberth, K. E., Cheng, L., Jacobs, P., Zhang, Y., and Fasullo, J.: Hurricane Harvey Links to Ocean Heat Content and Climate Change Adaptation, Earth’s Future, 6, 730–744, https://doi.org/10.1029/2018EF000825, 2018.",https://doi.org/10.1029/2018EF000825 20,Storm,2005 (August),Louisiana (Hurricane Katerina),"Irish, J.L., Sleath, A., Cialone, M.A. et al. Simulations of Hurricane Katrina (2005) under sea level and climate conditions for 1900. Climatic Change 122, 635–649 (2014).",https://doi.org/10.1007/s10584-013-1011-1 21,Storm,2004/2005 (Aug/Sept),South eastern USA (Hurricane Ivan and Katerina),"Trenberth, K. E., C. A. Davis, and J. Fasullo (2007), Water and energy budgets of hurricanes: Case studies of Ivan and Katrina, J. Geophys. Res., 112, D23106.",https://doi.org/10.1029/2006JD008303 22,Storm,2017 (Sept),Puerto Rico (Hurricane Maria),"Keellings, D., & Hernández Ayala, J. J. (2019). Extreme rainfall associated with Hurricane Maria over Puerto Rico and its connections to climate variability and change. Geophysical Research Letters, 46, 2964–2973.",https://doi.org/10.1029/2019GL082077 23,Storm,2005-2017,"South eastern North America (Hurricanes Katerina, Irma, Maria)","Patricola, C.M., Wehner, M.F. Anthropogenic influences on major tropical cyclone events. Nature 563, 339–346 (2018).",https://doi.org/10.1038/s41586-018-0673-2 24,Storm,2019 (August),South eastern North America (Hurricane Dorian),"Reed, K. A. et al., 2021 [pdf] Bulletin of the American Meteorological Society, DOI:10.1175/BAMS-D-20-0160.1",https://www.ametsoc.net/eee/2019/EEEin2019.pdf 25,Storm,2018 (Aug/Sept),"Atlantic coast, USA (Hurricane Florence)","K. A. Reed et al. ,Forecasted attribution of the human influence on Hurricane Florence.Sci. Adv.6,eaaw9253(2020).",https://doi.org/10.1126/sciadv.aaw9253 26,Storm,2012 (Oct/Nov),New York (Hurricane Sandy),"Sweet, W., C. Zervas, S. Gill, and J. Park, 2013: Hurricane Sandy inundation probabilities today and tomorrow [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 94 (9), S6–S9.",https://doi.org/10.1175/BAMS-D-13-00085.1 27,Storm,1800-2100,New York (Hurricane Sandy),"Lin, N. et al., (2016) PNAS, 113 (43) 12071-12075",https://doi.org/10.1073/pnas.1604386113 28,Storm,preindustrial to 2300,New York (Hurricane Sandy),"Garnera, A. et al., (2017), PNAS, 114 (45) 11861-11866",https://doi.org/10.1073/pnas.1703568114 29,Heat,2018,Northern hemisphere (north of 30° latitude),"Vogel, M. M., Zscheischler, J., Wartenburger, R., Dee, D., & Seneviratne, S. I. (2019). Concurrent 2018 hot extremes across Northern Hemisphere due to human-induced climate change. Earth's Future, 7, 692–703.",https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019EF001189 30,Precipitation,1951-2005,Northern hemisphere (north of 30° latitude) - 1 and 5 day totals,"Zhang, X., H. Wan, F. W. Zwiers, G. C. Hegerl, and S.-K. Min (2013), Attributing intensification of precipitation extremes to human influence, Geophys. Res. Lett., 40, 5252–5257.",https://doi.org/10.1002/grl.51010 31,Storm,1870-2004,Atlantic region,"Mann, M. E., and K. A. Emanuel (2006), Atlantic hurricane trends linked to climate change, Eos Trans. AGU, 87(24), 233–241.",https://doi.org/10.1029/2006EO240001 32,Heat,1949-2011,Northern hemisphere (north of 30° latitude),"Kamae, Y., H. Shiogama, M. Watanabe, and M. Kimoto (2014), Attributing the increase in Northern Hemisphere hot summers since the late 20th century, Geophys. Res. Lett., 41, 5192–5199.",https://doi.org/10.1002/2014GL061062 33,Heat,1860-2009,"North America, Europe, and Asia (Northern Hemisphere)","Jones, G. S., P. A. Stott, and N. Christidis (2008), Human contribution to rapidly increasing frequency of very warm Northern Hemisphere summers, J. Geophys. Res., 113, D02109, doi:10.1029/2007JD008914.",https://doi.org/10.1029/2007JD008914 34,Storm,2017,Atlantic region,"Lim, YK., Schubert, S.D., Kovach, R. et al. The Roles of Climate Change and Climate Variability in the 2017 Atlantic Hurricane Season. Sci Rep 8, 16172 (2018). https://doi.org/10.1038/s41598-018-34343-5",https://doi.org/10.1038/s41598-018-34343-5 35,Storm,2019,Japan (Typhoon Hagibis),"Li, S., Otto, F. The role of human-induced climate change in heavy rainfall events such as the one associated with Typhoon Hagibis. Climatic Change 172, 7 (2022). https://doi.org/10.1007/s10584-022-03344-9",https://doi.org/10.1007/s10584-022-03344-9 36,Precipitation,2007-2017,New Zealand,"Frame, D.J., Rosier, S.M., Noy, I. et al. Climate change attribution and the economic costs of extreme weather events: a study on damages from extreme rainfall and drought. Climatic Change 162, 781–797 (2020). https://doi.org/10.1007/s10584-020-02729-y",https://doi.org/10.1007/s10584-020-02729-y 37,Wildfire,2019/2020,Southeast Australia,"van Oldenborgh, G. J., Krikken, F., Lewis, S., Leach, N. J., Lehner, F., Saunders, K. R., van Weele, M., Haustein, K., Li, S., Wallom, D., Sparrow, S., Arrighi, J., Singh, R. K., van Aalst, M. K., Philip, S. Y., Vautard, R., and Otto, F. E. L.: Attribution of the Australian bushfire risk to anthropogenic climate change, Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, 2021.",https://doi.org/10.5194/nhess-21-941-2021 38,Wildfire,2015-2016,Australia,"Tett, S.F.B. et al., (2018) [pdf] Bull. Amer. Meteor. Soc., 99 (1), S60-S64.",https://doi.org/10.1175/BAMS-ExplainingExtremeEvents2016.1 39,Heat,2018,Europe,"Leach, N. et al., (2019) [pdf] Bull. Amer. Meteor. Soc.,",http://ametsoc.net/eee/2018/8_Leach0201_w.pdf 40,Drought,1900-2020,Europe,"Christidis, N., Stott, P.A., The influence of anthropogenic climate change on wet and dry summers in Europe, Science Bulletin, Volume 66, Issue 8, 2021, Pages 813-823.",https://doi.org/10.1016/j.scib.2021.01.020 41a,Precipitation,2016,France,"Van Oldenborgh, Geert Jan & Philip, Sjoukje & Aalbers, Emma & Vautard, Robert & Otto, Friederike & Haustein, Karsten & Habets, Florence & Singh, Roop & Cullen, Heidi. (2016). Rapid attribution of the May/June 2016 flood-inducing precipitation in France and Germany to climate change. Hydrology and Earth System Sciences Discussions. 1-23. 10.5194/hess-2016-308. ",https://www.worldweatherattribution.org/european-rainstorms-may-2016/ 41b,Precipitation,2016,Germany,"Van Oldenborgh, Geert Jan & Philip, Sjoukje & Aalbers, Emma & Vautard, Robert & Otto, Friederike & Haustein, Karsten & Habets, Florence & Singh, Roop & Cullen, Heidi. (2016). Rapid attribution of the May/June 2016 flood-inducing precipitation in France and Germany to climate change. Hydrology and Earth System Sciences Discussions. 1-23. 10.5194/hess-2016-308. ",https://www.worldweatherattribution.org/european-rainstorms-may-2016/ 42,Precipitation,1951-2014,Global (Extreme 1- and 5-day rainfall),"Dong, S., Y. Sun, C. Li, X. Zhang, S. Min, and Y. Kim, 2021: Attribution of Extreme Precipitation with Updated Observations and CMIP6 Simulations. J. Climate, 34, 871–881, https://doi.org/10.1175/JCLI-D-19-1017.1.",https://doi.org/10.1175/JCLI-D-19-1017.1 43,Precipitation,1951-2015,Global,"Paik, S., Min, S.-K., Zhang, X., Donat, M. G., King, A. D., & Sun, Q. (2020). Determining the anthropogenic greenhouse gas contribution to the observed intensification of extreme precipitation. Geophysical Research Letters, 46, e2019GL086875.",https://doi.org/10.1029/2019GL086875 44,Wildfire,2017-2023,British Columbia,"Parisien, MA., Barber, Q.E., Bourbonnais, M.L. et al. Abrupt, climate-induced increase in wildfires in British Columbia since the mid-2000s. Commun Earth Environ 4, 309 (2023). https://doi.org/10.1038/s43247-023-00977-1",https://doi.org/10.1038/s43247-023-00977-1 45,Wildfire,2023,Eastern Canada,"Barnes, C., Boulanger, Y., Keeping, T., Gachon, P., Gillett, N., Boucher, J., Roberge, F., Kew, S., Haas, O., Heinrich, D., Vahlberg, M., Singh, R., Elbe, M., Sivanu, S., Arrighi, J., Van Aalst, M., Otto, F., Zachariah, M., Krikken, F., Wang, X., Erni, S., Pietropalo, E., Avis, A., Bisaillon, A., Kim utai, J., (2023). World Weather Attribution, Climate change more than doubled the likelihood of extreme fire weather conditions in Eastern Canada, 22 August 2023.",https://doi.org/10.25561/105981 46,Storm,2023,South Korea,"Lee, M., Min, SK. & Cha, DH. Convection-permitting simulations reveal expanded rainfall extremes of tropical cyclones affecting South Korea due to anthropogenic warming. npj Clim Atmos Sci 6, 176 (2023). https://doi.org/10.1038/s41612-023-00509-w",https://doi.org/10.1038/s41612-023-00509-w 47,Heat,2023 (July),"USA/Mexico, Southern Europe, China","Zachariah, M; Philip, S; Pinto, I; Vahlberg, M; Singh, R; Arrighi, J; R; Barnes, C; Otto, FEL (2023). Extreme heat in North America, Europe and China in July 2023 made much more likely by climate change. ",https://doi.org/10.25561/105549 48,Precipitation,2024 (May),"Rio Grande do Sul, Brazil","Clarke, B., Barnes, C., Rodrigues, R., Zachariah, M., Alves, L.M., Haarsma, R., Pinto, I., Yang, W., Vahlberg, M., Vecchi, G., Izquierdo, K., Kimutai, J., Otto, F., Philip, S., Kew, S., Singh, R., Biehl, J., Mugge, M. (2024). Climate change, El Niño and infrastructure failures behind massive floods in southern Brazil",https://doi.org/10.25561/111882 49,Storm,2023/2024 (Oct-Mar),UK and Ireland,"Kew, S.F., McCarthy, M.,Ryan, C., Pirret, J.S.R., Murtagh, E., Vahlberg, M. Amankona, A., Pope, J.O., Lott, F.,,Claydon, O., Coonan, B., Pinto, I., Barnes, C., Philip, S., Otto, F., Wallace, E., Bryant, L., Tranter, E., Singh, R., Mijic, A. (2024). Autumn and Winter storms over UK and Ireland are becoming wetter due to climate change",https://doi.org/10.25561/111577 50,Precipitation,2024 (Apr),UAE,"Zachariah, M., Kimutai, J., Barnes, C., Gryspeerdt, E., Seneviratne, S.I., Almazroui, M., Vautard, R., Zhang, X., Pinto, I., Vahlberg, M., Sengupta, S., Saeed, F., Otto, F., Clarke, B., Philip, S., Lohmann, U., Wernli, H., Mistry, M., El Hajj, R., Singh, R., Arrighi, J., (2024). Heavy precipitation hitting vulnerable communities in the UAE and Oman becoming an increasing threat as the climate warms",https://doi.org/10.25561/110910 51,Precipitation,2023 (Feb),New Zealand's east coast (Cyclone Gabrielle),"Harrington, L.J., Dean, S.M., Awatere, S., Rosier, S., Queen, L., Gibson, P.B., Barnes, C., Zachariah, M., Philip, S., Kew, S., Koren, G., Pinto, I., Grieco, M., Vahlberg, M., Snigh, R., Heinrich, D., Thalheimer, L., Li, S., Stone, D., Yang, W., Vecchi, G.A., Frame, D.J., Otto, F. (2023). The role of climate change in extreme rainfall associated with Cyclone Gabrielle over Aotearoa New Zealand’s East Coast",https://doi.org/10.25561/102624 52,Drought,2018,Cape Town,"E. L. Otto, F. E. L., Wolski, P., Lehner, F., Tebaldi, C., van Oldenborgh, G. J., Hogesteeger, S., Singh, R., Holden, P., Fučkar, N.S., Odoulami, R.C., New, M., (13 July 2018). Likelihood of Cape Town water crisis tripled by climate change. World Weather Attribution.",https://www.worldweatherattribution.org/the-role-of-climate-change-in-the-2015-2017-drought-in-the-western-cape-of-south-africa/ 53,Heat and Precipitation,1960-2010,Global,"Fischer, E. M., and R. Knutti (2014), Detection of spatially aggregated changes in temperature and precipitation extremes, Geophys. Res. Lett., 41, 547–554, doi:10.1002/2013GL058499.",https://doi.org/10.1002/2013GL058499 54,Heat,1950-1999,Northern hemisphere and Australia,"Christidis, N., P. A. Stott, S. Brown, G. C. Hegerl, and J. Caesar (2005), Detection of changes in temperature extremes during the second half of the 20th century, Geophys. Res. Lett., 32, L20716, doi:10.1029/2005GL023885.",https://doi.org/10.1029/2005GL023885 55,Heat,1951-2018,Global,Ting Hu et al 2020 Environ. Res. Lett. 15 064014,https://iopscience.iop.org/article/10.1088/1748-9326/ab8497 56a,Storm,1975-2010,Global,"Holland, G., Bruyère, C.L. Recent intense hurricane response to global climate change. Clim Dyn 42, 617–627 (2014). https://doi.org/10.1007/s00382-013-1713-0",https://doi.org/10.1007/s00382-013-1713-0 56b,Storm,1975-2010,Global (Cat 1/2 and 4/5 Hurricanes),"Holland, G., Bruyère, C.L. Recent intense hurricane response to global climate change. Clim Dyn 42, 617–627 (2014). https://doi.org/10.1007/s00382-013-1713-0",https://doi.org/10.1007/s00382-013-1713-0 57,Heat,1951-2010,Global (regional effectiveness),"Wang, Z., Jiang, Y., Wan, H., Yan, J., & Zhang, X. (2020). Toward Optimal Fingerprinting in Detection and Attribution of Changes in Climate Extremes. Journal of the American Statistical Association, 116(533), 1–13. https://doi.org/10.1080/01621459.2020.1730852",https://doi.org/10.1080/01621459.2020.1730852 58,Heat,1850-2014,Global,Noah S Diffenbaugh and Frances V Davenport 2021 Environ. Res. Lett. 16 115014,https://iopscience.iop.org/article/10.1088/1748-9326/ac2f1a 59,Heat,1951-2015,Global,"Seong, M., S. Min, Y. Kim, X. Zhang, and Y. Sun, 2021: Anthropogenic Greenhouse Gas and Aerosol Contributions to Extreme Temperature Changes during 1951–2015. J. Climate, 34, 857–870, https://doi.org/10.1175/JCLI-D-19-1023.1.",https://doi.org/10.1175/JCLI-D-19-1023.1 60,Storm,1978-2017,Pacific/Indian Ocean (Tropical Cyclones),"Yuri A. Katz, Alain Biem, Growing cumulative activity of major tropical cyclones: Detection, attribution, and projections, Communications in Nonlinear Science and Numerical Simulation, Volume 108, 2022, 106202, ISSN 1007-5704, https://doi.org/10.1016/j.cnsns.2021.106202",https://doi.org/10.1016/j.cnsns.2021.106202 61,Heat and Drought,1931-2016,Global,"Diffenbaugh, N. et al., (2017) PNAS, 114 (19), 4881-4886.",https://doi.org/10.1073/pnas.1618082114 62,Precipitation,1901-2018,Europe,"Christidis, N., and P. A. Stott, 2022: Human Influence on Seasonal Precipitation in Europe. J. Climate, 35, 5215–5231, https://doi.org/10.1175/JCLI-D-21-0637.1.",https://doi.org/10.1175/JCLI-D-21-0637.1 63,Precipitation,2023 (May),Italy,"Barnes, C; Faranda, D; Coppola, E; Grazzini, F; Zachariah, M; Lu, C; Kimutai, J; Pinto, I; Pereira, CM; Sengupta, S; Vahlberg, M; Singh, R; Heinrich, D; Otto, FEL (2023). Limited net role for climate change in heavy spring rainfall in Emilia-Romagna. ",https://doi.org/10.25561/104550 64,Precipitation,2024 (May),East Africa,"Kimutai, J., Barnes, C., Masambaya, F., Pinto, I., Mwai, Z., Wangari, H., Ogega, O.M., Kilavi, M., Vahlberg, M., Arrighi, J., Raju, E., Baumgart, N., Otto, F., Zachariah, M., Philip, S., Singh, R., Jjemba, E., Mawanda, S. (23 May 2024). Urban planning at the heart of increasingly severe East African flood impacts in a warming world. ",https://doi.org/10.25561/111671 65,Wildfire,2023,Canada,"Jain, P., Barber, Q.E., Taylor, S.W. et al. Drivers and Impacts of the Record-Breaking 2023 Wildfire Season in Canada. Nat Commun 15, 6764 (2024). https://doi.org/10.1038/s41467-024-51154-7",https://doi.org/10.1038/s41467-024-51154-7 66,Storm,2024,Typhoon Shanshan,Imperial College London. Typhoon Shanshan IRIS attribution analysis.,https://www.imperial.ac.uk/grantham/research/climate-science/modelling-tropical-cyclones/typhoon-shanshan-iris-attribution-analysis/ 67,Heat,2024 (June/July),Canada,Government of Canada. Extreme Weather Event Attribution.,https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/extreme-weather-event-attribution.html 68,Precipitation,2024 (Sept),Central Europe,"Kimutai, J., Vautard, R., Zachariah, M.,Tolasz, R., Šustková, V.,Cassou, C., Skalák, P., Clarke, B., Haslinger, K., Vahlberg, M., Singh, R., Stephens, E., Cloke, H., Raju, E., Baumgart, N., Thalheimer, L., Chojnicki, B., Otto, F., Koren, G., Philip, S., Kew, S., Haro, P., Vibert, J., Von Weissenberg, A. (25 Sept 2024). Climate change and high exposure increased costs and disruption to lives and livelihoods from flooding associated with exceptionally heavy rainfall in Central Europe.",http://hdl.handle.net/10044/1/114694 69,Storm,2024 (Sept),"Hurricane Helene: Georgia and the Carolinas, USA","Risser, M., North, J., & Wehner, M. (n.d.). Climate change may have caused as much as 50% more rainfall during Hurricane Helene in some parts of Georgia and the Carolinas.",https://drive.google.com/file/d/14oq65lavZ7ho3-gdxE-tutDEcsxSHfUj/edit?pli=1 70,Storm,2024 (Sept),Hurricane Helene,"Faranda, D., Alvarez-Castro, C., Pons, F., Alberti, T. & Coppola, E. (30 Sept 2024). Heavy precipitation and strong winds in Hurricane Helene mostly strengthened by human-driven climate change.",https://www.climameter.org/20240926-27-hurricane-helene 71,Storm,2024 (Sept),Hurricane Helene,"Clarke, B., Barnes, C., Sparks, N., Toumi, R., Yang, W., Giguere, J., Woods Placky, B., Gilford, D., Pershing, A., Winkley, S., Vecchi, G,A., Arrighi, J., Roy, M., Poole-Selters, L., Van Sant, C., Grieco, M., Singh, R., Vahlberg, M., Kew, S., Pinto, I., Otto, F., Hess, V., Gorham, E., Rodgers, S., Philip, S., Kimutai, J. (9 Oct., 2024) Climate change key driver of catastrophic impacts of Hurricane Helene that devastated both coastal and inland communities.",https://spiral.imperial.ac.uk/handle/10044/1/115024 72,Storm,2024 (Oct),Hurricane Milton,World Weather Attribution (11 October 2024),https://www.worldweatherattribution.org/yet-another-hurricane-wetter-windier-and-more-destructive-because-of-climate-change/ 73,Storm,2024 (Oct),Hurricane Milton,Climate Central (6 October 2024),https://www.climatecentral.org/climate-shift-index-alert/hurricane-milton-october-2024 74,Storm,2024 (Aug),Typhoon Gaemi,"Clarke, B., Zachariah, M., Barnes, C., Sparks, N., Toumi, R., Yang, W., Vahlberg, M., Lagmay, A,M., Ybañez, R., Delmendo, P.A.,.Malaiba, C., Vrkic, D., Otto, F., Basconcillo, J., Kimutai, J., Philip, S., Blomendaal, N., Singh, R., Arrighi, J., Rodriguez, L.C., Rances, A. (29 August 2024). Climate change increased Typhoon Gaemi's wind speeds and rainfall, with devastating impacts across the western Pacific region",https://www.worldweatherattribution.org/climate-change-increased-typhoon-gaemis-wind-speeds-and-rainfall/ 75,Storm,2022 (Sept),Hurricane Ian - Florida,Kevin A Reed and Michael F Wehner 2023 Environ. Res.: Climate 2 043001,https://iopscience.iop.org/article/10.1088/2752-5295/acfd4e 76,Hazards,2000-2022,Global,Ben Clarke et al 2022 Environ. Res.: Climate 1 012001,https://iopscience.iop.org/article/10.1088/2752-5295/ac6e7d 77,Heat,May 2023-2024,Global,"Julie Arrighi, Friederike E. L Otto, Carolina Pereira Marghidan, Sjoukje Philip, Roop Singh, Maja Vahlberg, Joseph Giguere, Andrew J. Pershing, Arielle Tannenbaum, Abbie Veitch (28 May 2024). Climate Change and the Escalation of Global Extreme Heat: Assessing and Addressing the Risks.",https://www.worldweatherattribution.org/heat-action-day-report-climate-change-and-the-escalation-of-global-extreme-heat/ 78,Hazards,Before 2024,Australia,"T.P. Lane, A.D. King, S.E. Perkins-Kirkpatrick, A.J. Pitman, L.V. Alexander, J.M. Arblaster, N.L. Bindoff, C.H. Bishop, M.T. Black, R.A. Bradstock, H.G. Clarke, A.J.E. Gallant, M.R. Grose, N.J. Holbrook, G.J. Holland, P.K. Hope, D.J. Karoly, T.H. Raupach, A.M. Ukkola, Attribution of extreme events to climate change in the Australian region – A review, Weather and Climate Extremes, Volume 42, 2023, 100622, ISSN 2212-0947, https://doi.org/10.1016/j.wace.2023.100622.",https://www.sciencedirect.com/science/article/pii/S2212094723000750 79,Storm,2022,Hurricane Fiona - Nova Scotia,"Malinina, Elizaveta ; Gillett, Nathan. EGU23, the 25th EGU General Assembly, held 23-28 April, 2023 in Vienna, Austria and Online. Online at https://egu23.eu/, id. EGU-10176",https://ui.adsabs.harvard.edu/abs/2023EGUGA..2510176M/abstract 80,Storm,2023,Storm Daniel - Greece,"Zachariah, M., Kotroni, V., Kostas, L., Barnes, C., Kimutai, J., Kew, S., Pinto, I., Yang, W., Vahlberg, M., Singh, R., Thalheimer, D., Marghidan Pereira, C., Otto, F., Philip, S., El Hajj, R., El Khoury, C., Walsh, S., Spyratou, D., Tezapsidou, E., Salmela-Eckstein, S., Arrighi, J., Bloemendaal, N., (18 September 2023). Interplay of climate change-exacerbated rainfall, exposure and vulnerability led to widespread impacts in the Mediterranean region",https://www.worldweatherattribution.org/interplay-of-climate-change-exacerbated-rainfall-exposure-and-vulnerability-led-to-widespread-impacts-in-the-mediterranean-region/ 81,Storm,2013,Typhoon Haiyan,"Sparks, Nathan and Toumi, Ralf (n.d.) Climate Change Attribution of Typhoon Haiyan with the IRIS model .",https://www.imperial.ac.uk/media/imperial-college/grantham-institute/public/website/Haiyan.pdf 82,Precipitation,2024,"Spain, November 2024",World Weather Attribution (4 Nov),https://www.worldweatherattribution.org/extreme-downpours-increasing-in-southern-spain-as-fossil-fuel-emissions-heat-the-climate/ 83,Heat,2014-2023 (Dec-Feb),Global,Climate Central,https://www.climatecentral.org/report/lost-winter-days-2024 84,Storm,2024 (December),Ireland/France (Darragh),"lberti, T., Ginesta, M., Pons, F. M. E., & Faranda, D. (2024). Heavy precipitation and strong winds in storm Darragh locally strengthened by human-driven climate change. ClimaMeter, Institut Pierre Simon Laplace, CNRS. https://doi.org/10.5281/zenodo.14341702",https://www.climameter.org/20241206-07-storm-darragh 85,Wildfire,2024 (December),Canada,"Kirchmeier-Young, M.C., Malinina, E., Barber, Q.E. et al. Human driven climate change increased the likelihood of the 2023 record area burned in Canada. npj Clim Atmos Sci 7, 316 (2024). https://doi.org/10.1038/s41612-024-00841-9",https://doi.org/10.1038/s41612-024-00841-9