Reproducible big data science: A case study in continuous FAIRness

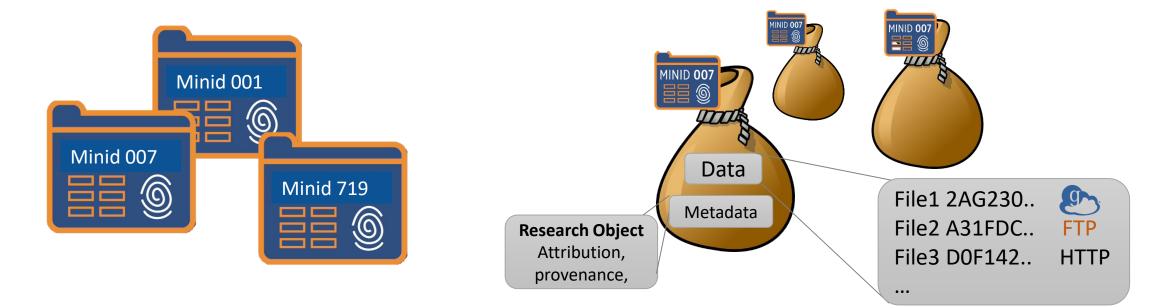
Kyle Chard

University of Chicago and Argonne National Laboratory

Ravi Madduri, Michael D'Arcy, Segun Jung, Alexis Rodriguez, Dinanath Sulakhe, Eric Deutsch, Cory Funk, Ben Heavner, Matthew Richards, Paul Shannon, Gustavo Glusman, Nathan Price, Carl Kesselman and Ian Foster

Reproducibility requires continuous FAIRness

- Make all data findable, accessible, interoperable, reusable at every stage, via pervasive use of simple identifier and exchange format conventions
- Build on proven security, data, identifier, and computation building blocks that have large user communities inside and outside biomedicine
- Leverage industry best practices to meet scalability, interoperability, sustainability, and reliability needs

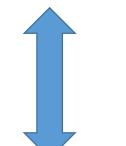

Interoperability: naming and exchange

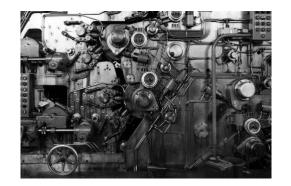
Minid

- Lightweight identifiers for any product at any stage
- Easily created, dereferenced, validated
- Global integrity validate content across the commons

BDBag

- Self-describing and flexible format for exchange
- Extended BagIt Specification
- Standard manifest representation that supports different protocols
- Research Object metadata

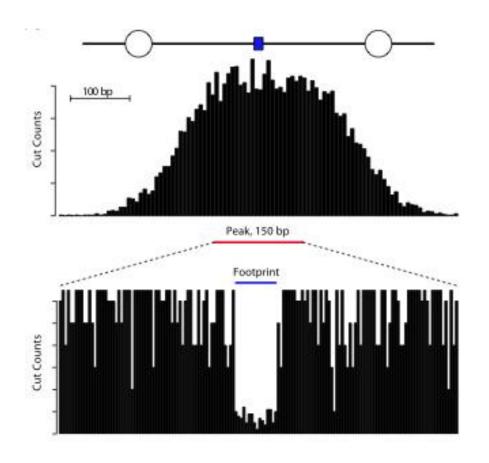




Atlas of Transcription Factor Binding Sites from ENCODE DNase Hypersensitivity Data Across 27 Tissue Types

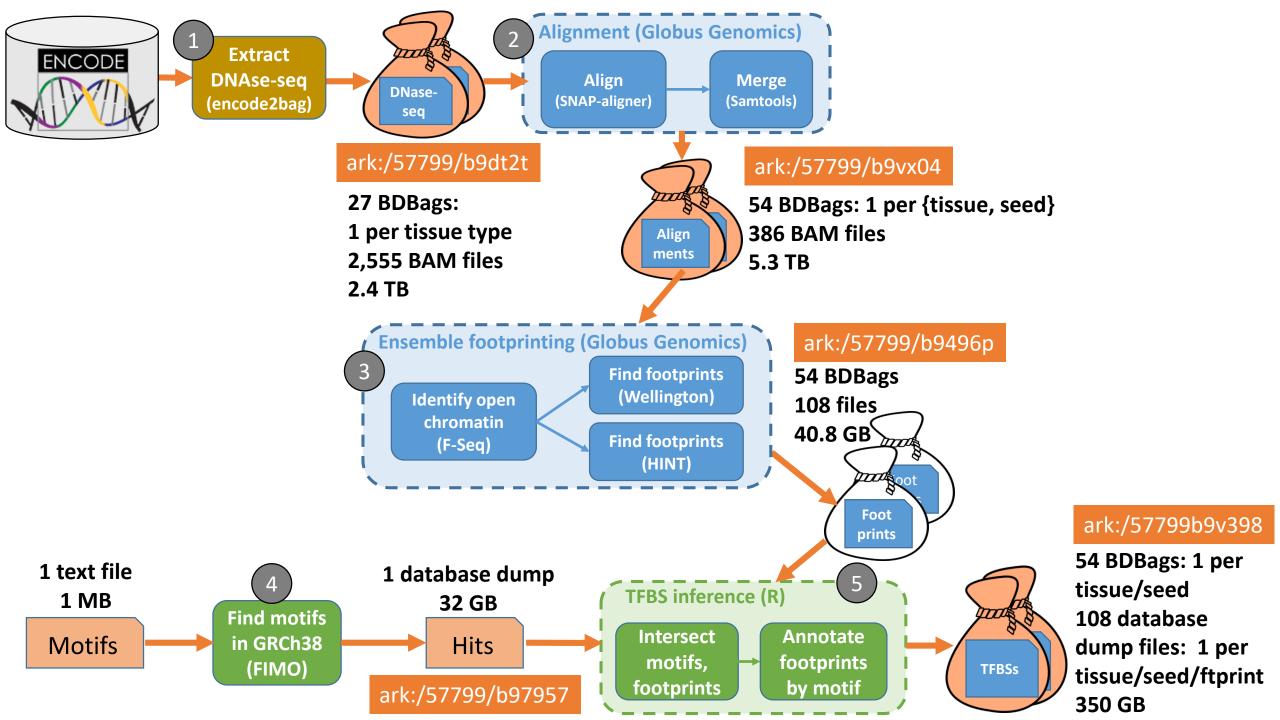
Cory C Funk, Segun Jung, Matthew A Richards, Alex Rodriguez, Paul Shannon, Rory Donovan, Ben Heavner, Kyle Chard, Yukai Xiao, Gustavo Glusman, Nilufer Erteskin-Taner, Todd Golde, Arthur Toga, Leroy Hood, John D Van Horn, Carl Kesselman, Ian Foster, Seth Ament, Ravi Madduri, Nathan D Price

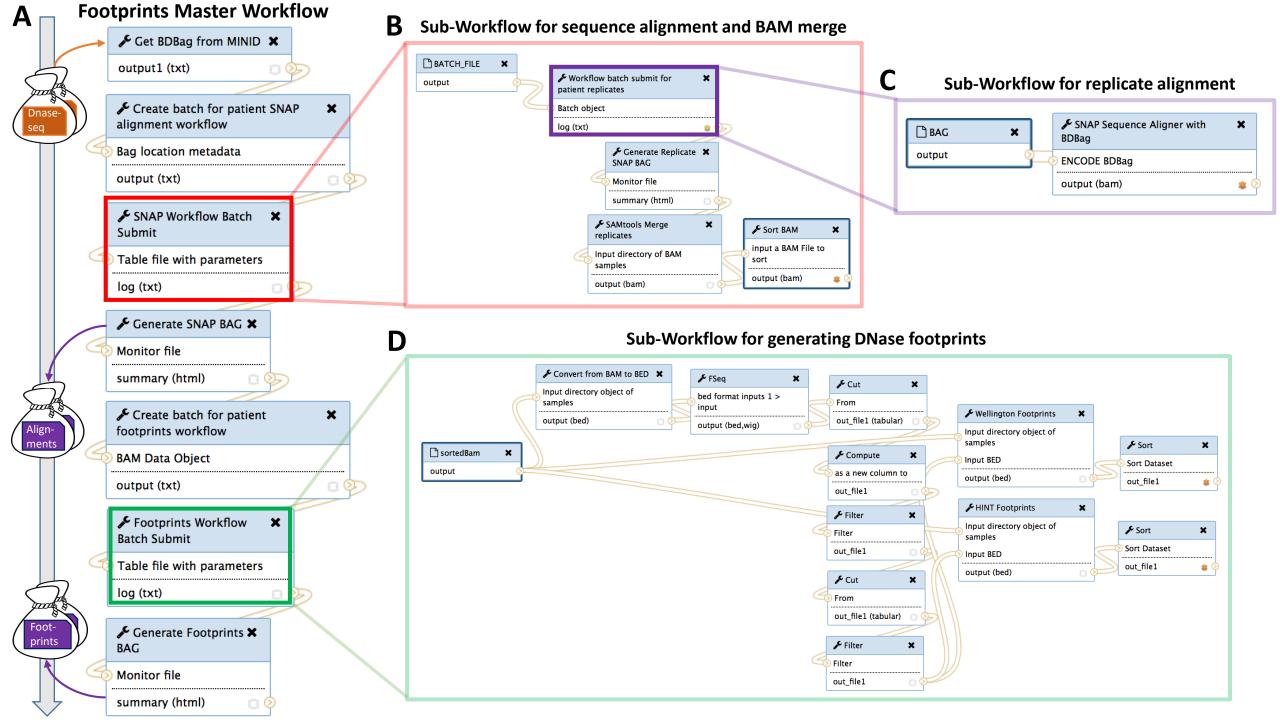
doi: https://doi.org/10.1101/252023



Reproducible big data science: A case study in continuous FAIRness

Ravi K Madduri, Kyle Chard, Mike D'Arcy, Segun C Jung, Alexis Rodriguez, Dinanath Sulakhe,
 Eric W Deutsch, Cory Funk, Ben Heavner, Matthew Richards, Paul Shannon, Gustavo Glusman, Nathan Price,
 Carl Kesselman,
 Ian Foster


doi: https://doi.org/10.1101/268755


Generation of TFBS Atlas

Vernot et al. doi: 10.1101/gr.134890.111

- Uniform processing of next generation sequencing data
 - Align to reference genome
 - Identify DNase hypersensitve regions
 - Apply multiple footprinting algorithms to locate putative transcription factor binding sites (TFBSs)
- Evaluate confidence in putative TFBSs
- Use TFBSs as features for machine learning approaches applied to disease-specific research

Reproducibility

1) Datasets

	NT	T1 CC	D I		<u></u>
#	Name	Identifier	Role	Description	Size
D1	DNase-seq	minid:b9dt2t	In	BDBag of 27 BDBags extracted from ENCODE by 1 , one per tissue: 1,591 FASTQ files in all.	$2.40 \ \mathrm{TB}$
D2	Alignment	minid:b9vx04	Out	BDBag of 54 BDBags produced by 2 , 1 per {tissue, seed}: 386 BAM files in all.	$5.30 \ { m TB}$
D3	Footprints	minid:b9496p	Out	BDBag of 54 BDBags containing footprints com- puted by ③, one per {tissue, seed}. Each BDBag contains two BED files per biosample, one per foot- printing method.	0.04 TB
D4	Motifs	minid:b97957	In	Database dump file containing the non-redundant motifs provided by Funk et al. [13].	31.5 GB
D5	Hits	minid:b9p09p	Out	Database dump file containing the hits produced by 4 .	0.04 TB
D6	TFBSs	minid:b9v398	Out	BDBag of 54 BDBags containing candidate TF-BSs produced by (5), one per {tissue, seed}. Each BDBag contains two database dump files, one per footprinting method.	0.35 TB

1) Tools

-	-			
#	Name	Identifiers for software		
0	Extract	encode2bag service: https://github.com/ini-bdds/encode2bag-service		
	DNase-Seq	encode2bag client: https://github.com/ini-bdds/encode2bag		
2 , 3	Alignment, Footprints	Galaxy pipeline: minid:b93m4q Dockerfile: minid:b9jd6f Docker image: minid:b97x0j		
4	Hits	R script: minid:b9zh5t		
5	TFBSs	R scripts: minid:b9fx1s		

Summary

- Complexity and level of effort increases with size of the data, computation, analysis team
 - TFBS example: big data (~10 TB), parallel computing (70K core hours), distributed data and processing, handful of researchers ...
- Continuous FAIRness requires various tools & services
 - Identifiers, BDBags, ROs, Containers,
 - Globus, Globus Genomics, GitHub
- User Study
 - 10/11 students and researchers were able to reproduce this study without assistance