
H2020 – FOF – 09 – 2015

Innovation Action

Smart integrated immersive and symbiotic human-robot collaboration system
controlled by Internet of Things based dynamic manufacturing processes with

emphasis on worker safety

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 680734

D4.5 User Handbook

Report Identifier: D4.5

Work-package, Task: WP4, Task 4.2 Status – Version: 1.0

Distribution Security: PU Deliverable Type: R

Editor: Venelin Arnaudov (PROS)

Contributors: Tuncher Shefkaev (PROS)

Reviewers: TUM, ED

Quality Reviewer: ED

Keywords:

Project website: www.horse-project.eu

http://www.horse-project.eu/

D4.5 User Handbook

Page 2 of 55

Disclaimer

Use of any knowledge, information or data contained in this document shall be at the user's sole risk.
Neither the HORSE Consortium nor any of its members, their officers, employees or agents accept shall
be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained
by any person as a result of the use, in any manner or form, of any knowledge, information or data
contained in this document, or due to any inaccuracy, omission or error therein contained.

The European Commission shall not in any way be liable or responsible for the use of any such
knowledge, information or data, or of the consequences thereof.

This document does not represent the opinion of the European Union and the European Union is not
responsible for any use that might be made of it.

Copyright notice

© Copyright 2015-2020 by the HORSE Consortium

This document contains information that is protected by copyright. All Rights Reserved. No part of this
work covered by copyright hereon may be reproduced or used in any form or by any means without the
permission of the copyright holders.

D4.5 User Handbook

Page 3 of 55

Table of Contents

ABBREVIATIONS .. 7

EXECUTIVE SUMMARY ... 9

1 INTRODUCTION ... 10

1.1 OBJECTIVES .. 10

1.2 STRUCTURE.. 10

2 HORSE COMPONENTS .. 11

2.1 OVERVIEW ... 11

2.2 MESSAGING MIDDLEWARE ... 13

2.2.1 Short Description ... 13

2.2.2 System Requirements .. 15

2.2.3 Legal Status ... 15

2.2.4 Installation Guide ... 16

2.2.5 Administration and support .. 16

2.3 HORSE-ROS BRIDGE ... 16

2.3.1 Short Description ... 16

2.3.2 System Requirements .. 16

2.3.3 Legal Status ... 16

2.3.4 Installation Guide ... 16

2.3.5 Administration and support .. 16

2.4 MPMS .. 16

2.4.1 Short Description ... 16

2.4.2 System Requirements .. 17

2.4.3 Legal Status ... 20

2.4.4 Installation Guide ... 22

2.4.5 Administration and support .. 22

2.5 SITUATION AWARENESS .. 23

2.5.1 Short Description ... 23

2.5.2 System Requirements .. 23

2.5.2.1 Design and development requirements .. 23

2.5.2.2 Configuration .. 24

2.5.2.3 Runtime platform ... 25

2.5.3 Legal Status ... 26

2.5.4 Installation Guide ... 26

2.5.5 Administration and support .. 26

D4.5 User Handbook

Page 4 of 55

2.6 FLEXBE .. 26

2.6.1 Short Description ... 26

2.6.2 System Requirements .. 26

2.6.3 Legal Status ... 26

2.6.4 Installation Guide ... 27

2.6.5 Administration and support .. 27

2.7 AUGMENTED REALITY ... 27

2.7.1 Short Description ... 27

2.7.2 System Requirements .. 27

2.7.3 Legal Status ... 28

2.7.4 Installation Guide ... 28

2.7.5 Administration and support .. 28

2.8 LOCAL SAFETY GUARD... 28

2.8.1 Short Description ... 28

2.8.2 System Requirements .. 28

2.8.3 Legal Status ... 29

2.8.4 Installation Guide ... 29

2.8.5 Administration and support .. 29

2.9 HUMAN DETECTION AND TRACKING .. 29

2.9.1 Short Description ... 29

2.9.2 System Requirements .. 30

2.9.3 Legal Status ... 30

2.9.4 Installation Guide ... 30

2.9.5 Administration and support .. 30

2.10 DEVIATION MONITOR .. 31

2.10.1 Short Description ... 31

2.10.2 System Requirements .. 31

2.10.3 Legal Status ... 31

2.10.4 Installation Guide ... 31

2.10.5 Administration and support .. 31

2.11 AGENT MANAGER ... 31

2.11.1 Short Description ... 31

2.11.2 System Requirements .. 31

D4.5 User Handbook

Page 5 of 55

2.11.3 Legal Status ... 31

2.11.4 Installation Guide ... 31

2.11.5 Administration and support .. 32

2.12 BOS ADAPTER .. 32

2.12.1 Short Description ... 32

2.12.2 System Requirements .. 33

2.12.3 Legal Status ... 33

2.12.4 Installation Guide ... 33

2.12.5 Administration and support .. 33

2.13 KUKA SUNRISE .. 33

2.13.1 Short Description ... 33

2.13.2 System Requirements .. 34

2.13.3 Legal Status ... 34

2.13.4 Installation Guide ... 35

2.13.4.1 Installing Sunrise.Workbench... 35

2.13.4.2 Starting Sunrise.Workbench ... 35

2.13.5 Administration and support .. 35

2.14 IIWA_STACK ... 36

2.14.1 Short Description ... 36

2.14.2 System Requirements .. 37

2.14.3 Legal status ... 37

2.14.4 Installation guide ... 37

2.14.5 Administration and support .. 37

2.15 DATABASES .. 37

3 REFERENCE ... 38

APPENDIX A .. 40

4 APPENDIX B .. 53

D4.5 User Handbook

Page 6 of 55

List of Figures

FIGURE 1: DEPLOYMENT EXAMPLE .. 11

FIGURE 2: HORSE EXEC GLOBAL DEPLOYMENT ... 12

FIGURE 3: HORSE EXEC LOCAL DEPLOYMENT ... 13

FIGURE 4: HORSE MESSAGING TOPOLOGY... 14

FIGURE 5: EXECUTION ENVIRONMENT FOR PRO MODULES .. 15

FIGURE 6: CAMUNDA BPM OVERVIEW... 17

FIGURE 7: SHARED, CONTAINER-MANAGED PROCESS ENGINE.. 18

FIGURE 8: SITUATION AWARENESS WITHIN HORSE FRAMEWORK ... 23

FIGURE 9: USE CASE SCENE ... 24

FIGURE 10: BOS ADAPTER ARCHITECTURE ... 32

FIGURE 11: SEPARATION OF OPERATOR CONTROL AND PROGRAMMING ... 34

FIGURE 12: FILE STRUCTURE OF HORSE MESSAGING MIDDLEWARE ... 41

FIGURE 13: WEBADMIN CONSOLE LOGIN ... 42

FIGURE 14: ACCESS TO THE SHELL CONSOLE .. 43

FIGURE 15: CONFIGURATIONS LIST .. 44

FIGURE 16: WEBSOCKETS SERVER CONFIGURATION .. 45

FIGURE 17: KITMAN SCRIPTS .. 46

FIGURE 18: HORSE BROKER CONFIGURATION .. 47

FIGURE 19: HORSE DISPATCHER CONFIGURATION .. 47

FIGURE 20: TEST WEB CLIENT ... 51

FIGURE 21: CONFIGURATION OF THE HORSE BOS ADAPTER - COORDINATOR.. 54

FIGURE 22: CONFIGURATION OF HORSE BOS ADAPTER - ETHERCAT INTERFACE ... 54

FIGURE 23: CONFIGURATION OF HORSE BOS ADAPTER - PLC INTERFACE ... 55

FIGURE 24: CONFIGURATION OF HORSE BOS ADAPTER - OPC-UA INTERFACE .. 55

D4.5 User Handbook

Page 7 of 55

Abbreviations

API Application Programming Interface

BPMN Business Process Management Notation

BPMS Business Process Management Systems

BSD Berkeley Software Distribution (Unix distribution)

CEA Commissariat à l'Énergie atomique et aux Énergies alternatives (French
Alternative Energies and Atomic Energy Commission)

CMMN Case Management Model and Notation

D2.2 HORSE Deliverable D2.2 - Complete System Design

D3.6 HORSE Deliverable D3.6 - Early version of situation awareness software for
human and non-human agents in a manufacturing work cell(*)

D3.11 HORSE Deliverable D3.11 - Final Version of HORSE Cross-Domain
Messaging(*)

D3.13 HORSE Deliverable D3.13 - Final Version of the Middleware for HORSE
Execution Domains(*)

DB Database

DDL Device Definition Language

DMN Decision Model and Notation

ED European Dynamics

FZI Forschungszentrum Informatik

HEG HORSE Exec Global (design component)

HEL HORSE Exec Local (design component)

HM HORSE Messaging

HMI Human Machine Interface

JDBC Java Database Connectivity

D4.5 User Handbook

Page 8 of 55

JSON JavaScript Object Notation

MPMS Manufacturing Process Management System

OPC-UA OPC Unified Architecture

PLC Programmable logic controller

POJO Plain Old Java Object

PROS ProSyst Software GmbH (since 2016, acquired by Bosch Software
Innovations GmbH)

REST Representational State Transfer

ROS Robot Operating System

SME Small and medium-sized enterprises

SOAP Simple Object Access Protocol

TNO Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk
Onderzoek (Netherlands Organisation for Applied Scientific Research)

TUE Technical University of Eindhoven

TUM Technical University of Munich

URDF Unified Robot Description Format

(*) This HORSE deliverable is not public. A copy could be granted upon the discretion of the project’s
Coordination Board.

D4.5 User Handbook

Page 9 of 55

Executive Summary

This deliverable provides a guideline for installation of the HORSE components and supporting
infrastructure. The most of these components are developed as extensions or on top of existing
products and implement state of the art technologies. The contact data of the component developers
or product support is provided as a reference for further information and assistance.

D4.5 User Handbook

Page 10 of 55

1 Introduction

1.1 Objectives

The key objective of the HORSE project is to inform and enable SMEs to adopt robotic technologies
and collaborative solutions. For this purpose, the HORSE consortium designed and implemented a
flexible framework (a collection of components) that can be easily tailored to the needs of the
entrepreneurs.

The resulted distributed solution is based on the state of the art technologies and products in the
domain of Industry 4.0, Internet of Things robotics and business processes. This document should
help the prospective users to evaluate the cost of procuring of equipment and estimation of the efforts
for setup and maintenance of the desired constellation of HORSE components.

1.2 Structure

The key part of the document is the section containing description of the installation specifics for each
component and the requirements towards the IT infrastructure and equipment (machines, sensors.
Some more detailed setup and operation instructions have been provided as appendices.

D4.5 User Handbook

Page 11 of 55

2 HORSE Components

2.1 Overview

This chapter provides a short introduction of the modules implementing the building blocks identified
in the HORSE system design (HORSE Deliverable 2.21). The presented modules should be configured
and customised in order to be able to realise the specific scenarios of the end users.

Figure 1 the two major types of functional domains of grouping the HORSE modules.

Figure 1: Deployment Example

Each deployment of the HORSE framework should feature one Global Execution domain, comprising
of the components responsible for the global process management and global situation awareness.
The detailed view of the modules in this group is given in Figure 2.

1 A public version of the deliverable is available at http://www.horse-project.eu/Publications

D4.5 User Handbook

Page 12 of 55

Figure 2: HORSE Exec Global Deployment

The components interacting with the agents (human and automated), local equipment and sensors
could be deployed in one or more groups in the relevant work cells. Figure 3 gives a more detailed
view of a typical deployment of the Local Execution functional domain.

The main interface for communication between the components is the exchange of messages over the
HORSE Messaging Middleware. These connections are marked with “HM”.

The HORSE Broker (one for each functional domain) is responsible for forwarding the messages to
the designated recipients. The communication between the domains is realised through the HORSE
Dispatcher (one for the entire system) who is mediating between the brokers.

Another protocol used for communication between the components dealing with robots and other
time sensitive equipment is ROS. The conversion of the messages exchanged over the HORSE
Messaging Middleware and the ROS messages is done by the HORSE-ROS Bridge.

The connection to the local DB server (usually residing in Global Execution domain) is done over JDBC
protocol. For a better readability of Figure 3, the JDBC connections of the single components are not
displayed. Instead, there is one collective connection between the Local Execution domain and the DB
server.

D4.5 User Handbook

Page 13 of 55

Figure 3: HORSE Exec Local Deployment

The next sections provide more details on the installation and configuration specifics of each HORSE
module.

2.2 Messaging Middleware

2.2.1 Short Description

The HORSE Messaging Middleware is responsible for communication between the HORSE
components. It consists of:

• Broker, deployed in each functional domain and enabling the com
• Dispatcher, one instance, mediating between the brokers
• Client specification and a reference implementation
• Agent Manager, providing information about the connection status of the messaging

clients
• Lifecycle management of the connections to the agents
• Format of the JSON based message

D4.5 User Handbook

Page 14 of 55

Each HORSE component willing to communicate over the HORSE Messaging Middleware should
implement a WebSockets Client and register it to the local Broker (implementing WebSockets Server).

Figure 4: HORSE Messaging Topology

Figure 4 shows the topology of the HORSE Messaging components. It is well seen that the same
approach is applied to all functional domains and the titles HEG (HORSE Exec Global) and HEL (HORSE
Exec Local) are serving organisational purposes.

The key components of the HORSE Messaging Middleware (Broker, Dispatcher and Agent Manager)
are implemented as OSGi bundles operating in the Bosch IoT Gateway Software (former ProSyst mBS).
The same approach is applied for the BOS Adapter (the interface to the industrial equipment at Bosch
Pilot Test site).

Figure 5 presents the components of the HORSE Messaging Middleware in their execution
environment.

D4.5 User Handbook

Page 15 of 55

Figure 5: Execution Environment for PRO modules

The HORSE Messaging Middleware has been described in HORSE deliverables D3.11 Final Version of
HORSE Cross-Domain Messaging and D3.13 Final Version of the Middleware for HORSE Execution
Domains.

2.2.2 System Requirements

CPU: x86, ARM

OS: Windows, Linux, MacOS

RAM: at least 4 GB

Disk Space: at least 2 GB for storing the log files

Java VM: Oracle 1.8, Open JDK 1.8

DB: postgreSQL (local or remote)

OSGi implementation: Bosch IoT Gateway Software (former ProSyst mBS), version 8.1.4 or higher

2.2.3 Legal Status

The HORSE Messaging Middleware components and the underlying Bosch IoT Gateway Software are
provided free of charge to the consortium members and Open Calls partners for the duration of the
project. For a further use, please contact the vendor Bosch Software Innovations GmbH.

D4.5 User Handbook

Page 16 of 55

2.2.4 Installation Guide

 See Appendix A.

2.2.5 Administration and support

• See the usage guide in Appendix A
• For further assistance contact:

Bosch Software Innovations GmbH,
Venelin Arnaudov (Venelin.Arnaudov@bosch-si.com)

2.3 HORSE-ROS Bridge

2.3.1 Short Description

The HORSE-ROS Bridge is a component that allows the communication between native ROS nodes
(the Open-Source framework "Robot Operating System") and nodes using the HORSE middleware. It
enables the middleware clients to use the full ROS functionalities available to native ROS nodes. In
order to allow the forwarding of HORSE events originating at native ROS nodes to middleware nodes,
it offers a ROS service interface to forward arbitrarily complex messages.

2.3.2 System Requirements

The HORSE-ROS Bridge requires Ubuntu Linux 16.04 with the ROS Kinetic framework.

2.3.3 Legal Status

The HORSE-ROS Bridge is distributed under the BSD license.

2.3.4 Installation Guide

The software and the installation guidelines are available at the HORSE website, under the menu
“About HORSE -> Publications”.

2.3.5 Administration and support

For help and support contact FZI:

 Gabriele Bolano, bolano@fzi.de
 Christian Jülg, juelg@fzi.de

2.4 MPMS

2.4.1 Short Description

The HORSE Design Global and the Global Execution modules of HORSE Exec Global of HORSE Software
Architecture are the so called “Manufacturing Process Management System” (MPMS), the information
system components which enable the design and execution of a manufacturing process which
contains two or more tasks. In this Chapter we describe the technical details of MPMS.

The MPMS is the collection of subsystems responsible to orchestrate the tasks of agents in the
manufacturing processes. Orchestration is dependent on the design of the processes and agents. The

mailto:Venelin.Arnaudov@bosch-si.com

D4.5 User Handbook

Page 17 of 55

MPMS includes the functionality to design processes and describe agents, and execute the processes
by assigning activities to agents. It is built on traditional Business Process Management Systems
(BPMS), with adaptations to fit the manufacturing domain. A Process Modeller is available for
designing processes and a Process Engine undertakes the enactment of those.

MPMS communicates, through the Middleware, with the Local modules which eventually trigger the
agents.

The management of the high level tasks is handled by the MPMS. Its user interface is executed by a
web server like WildFly or Apache.

2.4.2 System Requirements

MPMS is built on an open-source BPMS called Camunda BPM, which we have adapted and extended
to the HORSE needs. Camunda is a Java-based framework natively supporting BPMN for workflow
and process automation, DMN for Business Decision Management and CMMN for Case Management.
It has both modelling tools and execution environment as a complete platform. In Figure 6 we present
its main software components and the overall architecture.

Figure 6: Camunda BPM overview

Modeller

The standalone application for modelling processes is available on Camunda Modeler -
https://camunda.org/download/modeler/.

Engine

Camunda BPM platform is a flexible framework which can be deployed in different scenarios:

- Embedded Process Engine

- Shared, Container-Managed Process Engine

D4.5 User Handbook

Page 18 of 55

- Standalone (Remote) Process Engine Server

In HORSE framework, we use the Shared, Container-Managed Engine (Figure 7):

Figure 7: Shared, Container-Managed Process Engine

Web applications (Tasklist, Cockpit, Admin)

The Camunda BPM web applications are based on a RESTful architecture.

Frameworks used:

- JAX-RS based Rest API
- AngularJS
- RequireJS
- jQuery
- Twitter Bootstrap

Supported Environments

Camunda BPM platform runs in every Java-runnable environment. Depending on the version of
Camunda BPM, the following environments can be supported:

Container/Application Server for Runtime Components

- Apache Tomcat 6.0 / 7.0 / 8.0
- JBoss Application Server 7.2 and JBoss EAP 6.1 / 6.2 / 6.3 / 6.4 / 7.0

- Wildfly Application Server 8.2 / 10.1

Databases

- MySQL 5.6 / 5.7

- MariaDB 10.0

- Oracle 10g / 11g / 12c

- IBM DB2 9.7 / 10.1 / 10.5 / 11.1 (excluding IBM z/OS for all versions)

- PostgreSQL 9.1 / 9.3 / 9.4 / 9.6

D4.5 User Handbook

Page 19 of 55

- Microsoft SQL Server 2008 R2 / 2012 / 2014

- H2 1.4

Web Browser

- Google Chrome latest

- Mozilla Firefox latest

- Internet Explorer 9 / 10 / 11

Java

- Java 6 / 7

- Java 8 (if supported by your application server/container)

Java Runtime

- Sun/Oracle Hot Spot 6 / 7 / 8

- IBM® J9 virtual machine (JVM) 6 / 7 / 8

- OpenJDK 7 / 8

- Oracle JRockit 6 - R28.2.7

Camunda Modeler

- Windows 7 / 10

- Mac OS X 10.11

- Linux

Camunda BPM is available as a full distribution, available on Camunda Download -
https://camunda.org/download/.

It bundles:

- Process Engine configured as shared process engine
- Runtime Web Applications (Tasklist, Cockpit, Admin)

- Rest API

- Container / Application Server itself

For HORSE we use Camunda BPM 7.7.0 – WildFly 10 Distribution, using all above components.

TUE implemented the application processes that interact with the engine.

D4.5 User Handbook

Page 20 of 55

For registering the MPMS as a Websocket Agent in the Message Bus, we use Java API for WebSocket
JSR 356, which defines a standard API for creating websocket applications. We implement a
@ClientEndpoint POJO, which is responsible to open/close a websocket connection (we only need the
IP address and the port number of the Message Bus server to register MPMS as a client node) and
send/receive messages.

For DB integration, in the default configuration of the Camunda BPM distribution, the database
schema and all required tables are automatically created in an H2 database when the engine starts up
for the first time. These are internal engine data.

For “business/application” data, like for example the Product DB or Agent Def. DB., we use a
PostgreSQL JDBC driver to connect to the PostgreSQL DB Server. We implement a “horse” DB, with all
the right datatables.

PC Requirements

For deploying MPMS in a local desktop PC, not any special requirements are needed. A powerful
processor, a lot of RAM memory and a decent graphics card is sufficient. The following specs are
recommended:

 Processor: Intel Core i7-7700 @ 3.60GHz / Intel Core i7-6700K @ 4.00GHz / Intel Core i7-
7700K @ 4.20GHz / Intel Core i7-8700K @ 3.70GHz

 Storage: SATA 2.5 SSD (e.g. 256 GB)
 RAM: 32GB DDR4-2133 DIMM (2x16GB)
 Graphics Card: Any standard modern graphics card

Monitor, keyboard and mouse are essential.

A laptop could also work:

Processor: Intel Core i7-7700HQ @ 2.80GHz / Intel Core i7-6770HQ @ 2.60GHz.

2.4.3 Legal Status

The Camunda Community Platform is licensed under the Apache License 2.0 -
http://www.apache.org/licenses/LICENSE-2.0.html. Third-party libraries or application servers
included are distributed under their respective licenses. We present below a list of the required
dependencies we use in MPMS (to provide core functionality). Full list including optional
dependencies can be found on Camunda - Third party libraries -
https://docs.camunda.org/manual/7.7/introduction/third-party-libraries/.

Third party libraries

The process engine depends on the following third-party libraries:

 MyBatis mapping framework, (Apache License 2.0) for object-relational mapping

 Joda Time, (Apache License 2.0) for parsing date formats

 Java Uuid Generator (JUG), (Apache License 2.0) Id Generator

 SLF4J, (MIT License) Logging Façade

 Apache Commons Email, (Apache License 2.0) for mail task support

 Groovy, (Apache License 2.0) for groovy script task support

D4.5 User Handbook

Page 21 of 55

The REST API depends on the following third-party libraries:
 Jackson JAX-RS, (Apache License 2.0) provider for JSON content type
 Apache Commons FileUpload, (Apache License 2.0)

Camunda Spin depends on the following third-party libraries:

 Jackson Json, (Apache License 2.0) for Json Dataformat Support

Camunda Connect depends on the following third-party libraries:
 Apache Http Components, (Apache License 2.0) for REST and SOAP support

The Camunda Webapps (Cockpit, Tasklist, Admin) include the following third-party libraries:
 AngularJS, (MIT License)
 AngularUI, (MIT License)
 bpmn-js, (bpmn-js Custom license)
 domReady, (MIT License or new BSD License)
 heatmap.js, (MIT License)
 Placeholder.js, (MIT License)
 prism.js, (MIT License)
 jQuery, (MIT License)
 jQuery UI, (MIT License)
 RequireJS, (MIT License)
 Snap.svg, (Apache License 2.0)
 Twitter Bootstrap, (Apache License 2.0)
 Mousetrap, (Apache License 2.0)

Most of these libraries are used in the Camunda commons UI library which is aimed at easing
development of browser based user interfaces.

The Camunda Javascript SDK (including the Forms SDK) integrates with the following third-party
libraries:

 Super Agent, (MIT License)
 jQuery, (MIT License)
 AngularJS, (MIT License)
 AngularUI, (MIT License)

The Camunda Modeler includes the following third-party libraries:

 Electron, (MIT License)
 Chromium, (Chromium License Details)
 Node.js, (Node.js License Details)
 CodeMirror, (MIT License)
 Twitter Bootstrap, (MIT License)
 virtual-dom, (MIT License)

Regarding connection to DB server, PostgreSQL is released under the PostgreSQL License, a liberal
Open Source license, similar to the BSD or MIT licenses.

D4.5 User Handbook

Page 22 of 55

2.4.4 Installation Guide

In short, installing MPMS includes the following steps:

Prerequisites

- Before downloading Camunda, make sure you have a JRE (Java Runtime Environment), or
better, a JDK (Java Development Kit) installed. It is recommended to use Java 8 unless your
container/application server does not support Java 8 (like JBoss Application Server 7). We
installed Java 8 (after Java is installed, make sure that “JAVA_HOME” and/or “JRE_HOME”
environment variables are set in your system).

- Apache Maven (optional, if not installed you can use embedded Maven e.g. inside Eclipse IDE)

Installation

- Download and install Camunda BPM 7.7.0 – WildFly 10 Distribution
- Download PostgreSQL JDBC Driver for DB integration and put it on a specific folder of

Camunda distribution (details below)
- Modify configuration file of Camunda engine (“standalone.xml” file of application server)
- Run db scripts to create the “horse” DB and populate initial data (e.g. task definitions, agent

definitions, product info, etc.)
- Configure the connection to the Message Bus server in the application process that is

implemented by TUE
- Deploy the application process which is responsible to make the process models executable

by Camunda engine. This deployment will generate a .war file which needs to be dropped to
the deployments folder of the application server (in the downloaded Camunda distribution).

- Run Camunda engine (“start” script file in the downloaded Camunda distribution
- Create any users in Camunda Admin web application and give authorizations (optional)
- Start a process in Camunda Tasklist web application
- Monitor a process in Camunda Cockpit web application

The software, along with configuration scripts, deployment scripts and scripts for inserting data to
the DB, as well as supporting documentation (like setting up users of Camunda, and detailed steps for
installation) should be requested by TUE (dr.ir. Irene Vanderfeesten at I.T.P.Vanderfeesten@tue.nl).

2.4.5 Administration and support

TUE is responsible for modelling manufacturing processes and making them executable by the MPMS.
For more information please contact dr.ir. Irene Vanderfeesten at I.T.P.Vanderfeesten@tue.nl.

mailto:I.T.P.Vanderfeesten@tue.nl
mailto:I.T.P.Vanderfeesten@tue.nl

D4.5 User Handbook

Page 23 of 55

2.5 Situation Awareness

2.5.1 Short Description

Figure 8: Situation Awareness within HORSE framework

The situation awareness module (Figure 8) is able to detect critical events based on contextual data.
This module relies on a reasoning system and a planner in order to generate a new action plan for
the appropriate agents.

Situation Awareness functionality is ensured through different levels of the HORSE framework: local
and global. In the local level, when a critical event is raised locally, the event is received and handled
by the Local Safety Guard which interacts with the agents (human or automated) operating in the
current work cell or location. Copies of the local safety alerts are sent to the Global Safety Guard. This
module processes contextual data originating in the local work cells and can trigger safety or process
related operations onto agents operating in other work cells. CEA provides implementation of these
two modules. A detailed description is provided in HORSE deliverable D3.6.

The component presented in this chapter can be used at both local and global levels.

2.5.2 System Requirements

In the following, we present the requirements for using our system from a developer perspective and
a user perspective.

2.5.2.1 Design and development requirements

Modules and Libraries:

 Eclipse Integrated Development Environment: Eclipse Neon Milestone 6 (4.6.0M6) with the
following plugins:

 JavaSE-1.8

 JRE1.8.0_65

D4.5 User Handbook

Page 24 of 55

 Maven

 Message Pack and MessagePack-RPC libraries2

 Protégé3 ontology editor

 OWL files contain the ontologies including environment and task-specific information

 SWRL files define rules for the reasoner

2.5.2.2 Configuration

The locations ontology has to be populated with geometric data. These data must conform to the
geometric data returned by the different actors (i.e. the mobile base and the Kinect in this use case).
A world frame must be defined in order to express measures with respect to this frame. In the rest of
this section we use O1 (as defined in Figure 9) as the world frame.

Figure 9: Use case scene

The data about the involved individuals must be filled in in the ontology (“Location2DB.owl”):

- “CartesianPositionOfDoorHallSybotRoom”: position of the origin for the door (O2 on the
Figure 9). O2 must be expressed in O1 frame.

o “hasY”: origin position along y axis

o “hasX”: origin position along x axis

- “CartesianPositionOfSybotRoom”: position of the origin for the room where the robot is
located (O3 on the Figure 9). O3 must be expressed in O1 frame.

2 https://msgpack.org/

3 https://protege.stanford.edu/

hasWidth

hasLength

O1

O2

O3

D4.5 User Handbook

Page 25 of 55

o “hasY”: origin position along y axis

o “hasX”: origin position along x axis

- “CartesianPositionOfOriginOfHall”: position of the origin of the room where the operator is
located (O1 on the Figure 9): O2 must be expressed in O1 frame.

o “hasY”: origin position along y axis

o “hasX”: origin position along x axis

- “SpatialPositionOfDoorHallSybotRoom”: dimension of the area in green on the Figure 9 (it
appears bigger than it is on the figure to make it visible)

o “hasWidth” as on the Figure 9

o “hasLength” as the Figure 9

- “SpatialPositionOfSybotRoom”: dimension of the room in pink on the Figure 9

o “hasWidth” as on the Figure 9

o “hasLength” as the Figure 9

- “SpatialPositionOfHall”: dimension of the room in blue on the Figure 9

o “hasWidth” as on the Figure 9

o “hasLength” as the Figure 9

A set of actions are pre-defined in the actions ontology (“Action2DB.owl”). If used robot differs from
the one used for the use case, useful actions must be implemented for the robot (e.g. actions such as
“MoveToPosition” or “Stop” for the mobile base). If unlisted actions are required, they must be
referenced in the ontology and in the source code of the local situation awareness module.

Other parameters such as the distance thresholds that are used in the rules could be modified in the
dedicated xml file. These parameters are:

- “GoalInTheSameRoom” and “GoalNextRoomNearSybot”: cartesian positions of the mobile
base goals

- “Hidden”: cartesian position of the hidden position of the mobile base (safe position to reach
when the agent and the mobile base are about to cross the door at the same time)

- “Home”: cartesian position for the mobile base (i.e. rest position)

- “isHowCloseToThresholds”: distance thresholds that raises different level of warnings

2.5.2.3 Runtime platform

The module is executed as a Java binary. Due to the platform independency of the Java applications,
they could be deployed and operated in multiple operating systems. The module has been successfully
tested on Windows, Linux and MAC-OS.

 CPU – Intel x386
 OS – Windows/Linux/MAC-OS

D4.5 User Handbook

Page 26 of 55

 Memory – at least 4 GB
 Disk Space – at least 100 MB
 Java Runtime Environment 1.8+
 Each device requires an implementation embedding MsgPack_RPC server

2.5.3 Legal Status

CEA is the exclusive owner of the intellectual properties on the components developed by its team.
Upon a written request, CEA can offer a separate license agreement granting access rights on a non-
exclusive basis, without the right to sublicense, and in case of software, in object code. The request for
access rights may be made up to twelve months after the end of the project. It should specify the
intended purpose.

CEA will transmit the specific conditions that will be applied for the specific access right. The rights
will be granted subject to confidentiality obligations. Access Rights shall be granted on a royalty-free
basis for the performance of the own work of a party under the Project for the duration of the Project.
Access rights shall be granted against financial compensation if needed for exploitation of a party's
own results in case of direct or indirect industrial or commercial exploitation.

2.5.4 Installation Guide

The safety guard equipment and software modules are to be requested by CEA. Their installation and
configuration should be performed by a CEA professional.

2.5.5 Administration and support

This component can be operated only after a short training provided by CEA. For more information,
please contact:

- Romain Farel (Romain.FAREL@cea.fr) or
- Selma Kchir (Selma.KCHIR@cea.fr).

2.6 FlexBE

2.6.1 Short Description

FlexBE is the base component of the HORSE intuitive programming sub-system for robots. It serves
as Task Design Interface of the HORSE framework to permit the definition of tasks through a user-
friendly graphical interface. This allows the easy definition or modification of a task without the need
of a software expert.

2.6.2 System Requirements

FlexBE requires Ubuntu Linux 16.04 with the ROS Kinetic framework.

2.6.3 Legal Status

The flexbe_behavior_engine and the flexbe_app are distributed under the BSD license.

The behaviours and messages packages are distributed under:

D4.5 User Handbook

Page 27 of 55

(c) Copyright 2015-2018 FZI Forschungszentrum Informatik, Karlsruhe, Germany

All rights reserved.

2.6.4 Installation Guide

The software and the installation guidelines, as well as an one-click installation script, are available at
the HORSE website, under the menu “About HORSE -> Publications”.

2.6.5 Administration and support

For help and support contact:

 Gabriele Bolano (bolano@fzi.de)
 Christian Jülg (juelg@fzi.de)

2.7 Augmented Reality

2.7.1 Short Description

The Augmented Reality module provided by TNO is a highly sophisticated HMI. It assists the human
operator by performing novel and complex manipulations by projecting step-by-step instructions and
other helpful information. The integrated sensors recognise the motions of the operator identifying
the adherence to or deviation from the designed workflow. The realisation of the customer specific
workflow and operations and the integration of specific instruments require a significant amount of
coding and customisation. That’s why a one-for-all out of the box solution is not available.

2.7.2 System Requirements

The software is developed and tested with the following system requirements.

 OS: Windows 10, 64 bit.
Note that it should also be able to work on other Windows versions

 Memory: 16 GB
 Disk Space: 200 GB

The following software modules are required:

 Python 3 (Anaconda 3.4.3.1 version recommended) including several packages
 OPS 3.5.2 Light Guide System software (http://lightguidesys.com/)
 Kinect SDK
 TNO AR software

The following tables from the HORSE DB are used:

 toolingblock,
 taskdef
 arwi
 arbintasks
 bins
 arbin_location

mailto:bolano@fzi.de
mailto:juelg@fzi.de
http://lightguidesys.com/

D4.5 User Handbook

Page 28 of 55

 arwi_graphics (to be used (or similar) in the future)
 arworkstation (to be used (or similar) in the future)

2.7.3 Legal Status

The system modules are distributed under the following licenses:

 OPS (http://lightguidesys.com/)
 Python, anaconda distribution: free software licence

2.7.4 Installation Guide

The AR software itself will be provided as a stand-alone distribution, which will include the python
interpreter and all the necessary packages.

The AR software and installers developed for the TRI pilot site can be requested from TNO.

TNO can provide the needed teaching and support for the setup. An overview of the installation steps:

 Install OPS (ver3.5.2), using the provided installer.
 If necessary, install Microsoft XNA Game Studio 3.1
 Install Kinect for Windows SDK 2.0.
 Deploy the AR software and connection to the HORSE framework

2.7.5 Administration and support

The system should be operated only by qualified personnel. For help and support contact:

 Jasper Winters, Technical lead (jasper.winter@tno.nl)
 Sandra Koster, Software engineer (sandra.koster@tno.nl)
 Tim Bosch, OPS/AR work instructions (tim.bosch@tno.nl)

2.8 Local Safety Guard

2.8.1 Short Description

The Local Safety Guard implementation of FZI is based on the Collision Prediction and Prevention
modules of the HORSE framework, in order to allow human-robot collaboration in a shared
workspace.

This component can be used in every use-case that involves the need of a human operator into the
robot workspace, in order to avoid collisions and guarantee better efficiency fostering the robot to
work in areas away from obstacles.

2.8.2 System Requirements

The software has been tested with the following system configuration:

 Ubuntu Linux 16.04
 CUDA 7.5, 8.0, 9.1 Toolkit
 ROS Kinetic framework

Cuda 8.0: using Cuda 8.0 code needed to be compiled with older GPU drivers such as 375.66, since
there are compatibility issues with driver 384.111 and newer.

http://lightguidesys.com/
mailto:jasper.winter@tno.nl
mailto:sandra.koster@tno.nl
mailto:tim.bosch@tno.nl

D4.5 User Handbook

Page 29 of 55

The main software component of the system is the GPU-Voxels library.

To permit a correct collision detection with the live environment, the sub-system requires a ROS
URDF description of the environment and of the robot collision model. This model is used to compute
the swept volumes of any robot trajectory. These volumes can then be used for online collision
checking.

The hardware requirements are a CUDA-compatible GPU and any ROS-compatible 3D camera. The
cameras need to be calibrated to have the correct pose of the live environment data in the reference
frame in relation to the robot.

2.8.3 Legal Status

The GPU-Voxels library is distributed under the CDDL license.

The Local Safety Guard component consists also of packages distributed under:

(c) Copyright 2015-2018 FZI Forschungszentrum Informatik, Karlsruhe, Germany

All rights reserved.

2.8.4 Installation Guide

The software and the installation guidelines are available at the HORSE website, under the menu
“About HORSE -> Publications”.

2.8.5 Administration and support

For help and support contact:

 Gabriele Bolano (bolano@fzi.de)
 Christian Jülg (juelg@fzi.de)

2.9 Human Detection and Tracking

2.9.1 Short Description

The Human Detection and Tracking software aggregates data from multiple sensor data processing
modules and verifies if any of them detected a human intrusion to the robots workspace. It allows the
definition of three types of areas: safe (a human is allowed to be here), danger (robot slows down
when entered) and stop.

So far, modules for connecting three different types of sensors are provided:

• Depth Cameras
• Pressure Sensitive Floor
• 2d laser range finders

mailto:bolano@fzi.de
mailto:juelg@fzi.de

D4.5 User Handbook

Page 30 of 55

2.9.2 System Requirements

OS: Linux (reconmended Ubuntu 16.04)

Memory: Depends on the used sensor modules

Disk Space: around 3GB for a full ROS installation

2.9.3 Legal Status

The component is provided free of charge for use in the time frame of the HORSE project by the HORSE
partners and participants of HORSE Open Calls.

For use after the project end, please contact TU Munich (see the contact in Section 2.9.5
Administration and support)

2.9.4 Installation Guide

Please note: all steps below are supposed to be executed by an operator / programmer experienced
in using ROS.

Preparation

If not already installed, ROS could be installed as described in the ROS Wiki (use Desktop-Full Install).

Run apt to install other missing dependencies:

sudo apt install ros-kinetic-moveit ros-kinetic-libfreenect ros-

kinetic-realtime-tools ros-kinetic-controller-interface ros-

kinetic-control-toolbox ros-kinetic-controller-manager ros-kinetic-

joint-limits-interface libfreenect-dev libceres-dev

For using a Kinect v2 sensor it is necessary to build and install libfreenect2 from source. See the
Libfreenect-Wiki for instructions.

Set up a URDF description of your (physical) workspace with your sensor positions and orientations.

Setup

Add the files you received from TUM to your catkin workspace and run catkin_make

Adjust the config files according to your sensor calibration data.

Run the launch file provided by TUM.

2.9.5 Administration and support

For help and support contact:

• Arne Peters (arne.peters@tum.de)
• Michael Zechmair (michael.zechmair@in.tum.de)

mailto:arne.peters@tum.de
mailto:michael.zechmair@in.tum.de

D4.5 User Handbook

Page 31 of 55

2.10 Deviation Monitor

2.10.1 Short Description

The Deviation Monitor component is responsible to monitor the low level signals related to the work-
cell. These signals could be the joint position of the robot or the distance data acquired from a range
laser sensor. The component allows to detect anomalies based on thresholds obtained through a
learning phase or specified by the user.

2.10.2 System Requirements

The system requirements are the following:

 Ubuntu Linux 16.04
 ROS Kinetic framework

2.10.3 Legal Status

The Deviation Monitor component is distributed under:

(c) Copyright 2015-2018 FZI Forschungszentrum Informatik, Karlsruhe, Germany

All rights reserved.

2.10.4 Installation Guide

The software and the installation guidelines are available at the HORSE website, under the menu
“About HORSE -> Publications”.

2.10.5 Administration and support

For help and support contact:

 Gabriele Bolano (bolano@fzi.de)
 Christian Jülg (juelg@fzi.de)

2.11 Agent Manager

2.11.1 Short Description

The HORSE Agent Manager is a functional module that is distributed as part of the HORSE Broker. It
is started automatically when the Broker is started.

2.11.2 System Requirements

As for the HORSE Broker

2.11.3 Legal Status

As for the HORSE Broker

2.11.4 Installation Guide

As for the HORSE Broker

mailto:bolano@fzi.de
mailto:juelg@fzi.de

D4.5 User Handbook

Page 32 of 55

2.11.5 Administration and support

As for the HORSE Broker

2.12 BOS Adapter

2.12.1 Short Description

The BOS Adapter is a group of bundles enabling the communication of the HORSE components (over
HORSE Messaging Middleware) and the industrial equipment in the factory of Bosch Castellet, Spain.

The BOS adapter sub-modules provide (partial, only what is needed for the project) support for
several industrial protocols and interact with diverse types of equipment. This module is provided as
a blueprint of automated agent interface.

Figure 10 depicts the architecture of this component and the integrated industrial equipment:

 EtherCAT Interface for interaction with the ATMO2 VisualControl system – triggering taking
of snapshots of the checked products and obtaining the inspection results and images ;

 PLC/DDL Interface processing notification events coming from the conveyor belt;
 OPC-UA Interface for switching of a notification beacon (visual signal) when assistance is

needed;
 Messaging Agent providing the integration with the HORSE Messaging Middleware;
 Coordinator processing the HORSE messages into invocation of operations through the

industrial interfaces and sharing the alerts received through these interfaces as HORSE
messages (with main counterpart FlexBe as implementation of the Hybrid Task Supervisor).

Figure 10: BOS Adapter Architecture

D4.5 User Handbook

Page 33 of 55

2.12.2 System Requirements

Desktop PC with Beckhoff F9002 etherCAT master card

Linux OS (e.g. Ubuntu 16.04) for the native EtherCAT libraries

2.12.3 Legal Status

The following open source libraries have been used in the module:

 org.eclipse.jetty-io-9.3.0 under Apache 2.0 license
 org.eclipse.jetty-util-9.3.0 under Apache 2.0 license
 org.eclipse.jetty.websocket-api-9.3.0 under Apache 2.0 license
 org.eclipse.jetty.websocket-client-9.3.0 under Apache 2.0 license
 org.eclipse.jetty.websocket-common-9.3.0 under Apache 2.0 license
 gnu.io under LGPL v 2.1 license
 us.ihmc under Apache 2.0 license
 org.postgis under LGPL 2.1 license
 org.postgresql under BSD 2-clause

2.12.4 Installation Guide

 Check Appendix B

2.12.5 Administration and support

The configuration of sub-components is visualised in Appendix B. After the establishment of
communication with the external components (HORSE Broker) and systems (PLC, EtherCAT), no
additional administration is needed.

For further assistance contact:
Bosch Software Innovations GmbH,
Venelin Arnaudov (Venelin.Arnaudov@bosch-si.com)

2.13 KUKA Sunrise

2.13.1 Short Description

KUKA Sunrise.OS is the system software for the KUKA LBR iiwa robot and other KUKA mobility
products like the KMR iiwa . It provides all the functions required for the operation of lightweight
robots. Based on Java, Sunrise.Workbench is the programming interface for the robots and mobility
products.

For the needs of HORSE project the KUKA Sunrise has been extended with two adapters for handling
ROS and HORSE Messaging Middleware messages.

mailto:Venelin.Arnaudov@bosch-si.com

D4.5 User Handbook

Page 34 of 55

Figure 11: Separation of operator control and programming

1. Development computer with KUKA Sunrise.Workbench (connection via the KLI of the robot
controller)

2. KUKA Sunrise Cabinet robot controller
3. Manipulator
4. KUKA smartPAD control panel

2.13.2 System Requirements

For Sunrise.Workbench v1.13

OS: Windows 7

Memory: 2GB RAM

Disk Space: 1GB

Additional software: KUKA Workvisual 4.0 for bus configuration.

2.13.3 Legal Status

KUKA Sunrise.OS uses open-source software. The license terms are stored in the licenses folder in
the installation directory of KUKA Sunrise.Workbench.
Further information about open-source licenses can be requested from the following address:
opensource@kuka.com

© Copyright 2017
KUKA Roboter GmbH
Zugspitzstraße 140
D-86165 Augsburg

Germany

mailto:opensource@kuka.com

D4.5 User Handbook

Page 35 of 55

2.13.4 Installation Guide

2.13.4.1 Installing Sunrise.Workbench

Preparation
If an older version of Sunrise.Workbench is already installed:
Uninstall the old version first.

Precondition
Local administrator rights

Procedure

1. Start the program SunriseWorkbench-[…]-Setup.exe. A window opens.
2. Select the language for the installation procedure and confirm with OK. The language selection

only applies to the installation and not to Sunrise.Workbench itself. The default user interface
language for Sunrise.Workbench is German.

3. An installation wizard opens. Follow the instructions in the wizard.

2.13.4.2 Starting Sunrise.Workbench

Procedure
1. Double-click on the Sunrise.Workbench icon on the desktop.

Alternative:
In the Windows Start menu, open the installation directory and doubleclick on Sunrise
Workbench. The Workspace Launcher window opens.

2. In the Workspace box, specify the directory for the workspace in which projects are to be
saved.

• A default directory is suggested. The directory can be changed by clicking on the
Browse… button.

• If the workspace should not be queried the next time Sunrise.Workbench is
started, activate the option Use this as the default value[…] (set check mark).
Confirm the settings with OK.

3. A welcome screen opens the first time Sunrise.Workbench is started. There are different
options here.

4. Click on Workbench to open the user interface of Sunrise.Workbench

2.13.5 Administration and support

For further assistance, please contact your local KUKA subsidiary:

Germany:
KUKA Roboter GmbH
Zugspitzstr. 140
86165 Augsburg
Germany
Tel. +49 821 797-1926
Fax +49 821 797-41 1926
Hotline.robotics.de@kuka.com
www.kuka-roboter.de

http://www.kuka-roboter.de/

D4.5 User Handbook

Page 36 of 55

France:
KUKA Automatisme + Robotique SAS
Techvallée
6, Avenue du Parc
91140 Villebon S/Yvette
France
Tel. +33 1 6931660-0
Fax +33 1 6931660-1
commercial@kuka.fr
www.kuka.fr

Poland :
KUKA Roboter CEE GmbH Poland
Spółka z ograniczoną odpowiedzialnością
Oddział w Polsce
Ul. Porcelanowa 10
40-246 Katowice
Poland
Tel. +48 327 30 32 13 or -14
Fax +48 327 30 32 26
ServicePL@kuka-roboter.de

Spain :
KUKA Robots IBÉRICA, S.A.
Pol. Industrial
Torrent de la Pastera
Carrer del Bages s/n
08800 Vilanova i la Geltrú (Barcelona)
Spain
Tel. +34 93 8142-353
Fax +34 93 8142-950
comercial@kukarob.es
www.kuka.es

2.14 iiwa_stack

2.14.1 Short Description

iiwa_stack is a compilation of ROS modules that intgrate KUKA Sunrise with ROS. It provides URDF
models for KUKA iiwa LBR 7 and 14 with standard media flange and media flange touch models and
is fully integrated with MoveIt!.

Heart of this software is a RosJava node, running directly on the Sunrise Cabinet. In addition to the
exiting MoveIt! Interface, we extended RosJava with support of ROS actions and TF to provide an ROS
API for common robot motions (Cartesian and joint motions) so that we can program the robot with
industrial grade speed and safety settings.

Last but not least we implemented FlexBe states for both MoveIt! and Sunrise based motions..

http://www.kuka.fr/
mailto:ServicePL@kuka-roboter.de
http://www.kuka.es/

D4.5 User Handbook

Page 37 of 55

2.14.2 System Requirements

KUKA LBR iiwa with Sunrise 1.13. Other versions from 1.11 might work as well but have not been
tested.

PC with Ubuntu 16.04 and ROS Kinetic.

2.14.3 Legal status

Our contributions to RosJava have been merged to official RosJava packages.

rosjava_tf package is open source and can be found at https://github.com/exo-core/rosjava_tf

iiwa_stack is based on the previous works of Salvatore Virga (TUM) and Marco Esposito (TUM):
https://github.com/IFL-CAMP/iiwa_stack. Our extensions can be found at https://github.com/exo-
core/iiwa_stack. It is available under BSD license.

2.14.4 Installation guide

See https://github.com/IFL-CAMP/iiwa_stack/wiki for installation instructions.

2.14.5 Administration and support

For help and support contact:

 Arne Peters (arne.peters@tum.de)
 iiwa_stack development page: https://github.com/IFL-CAMP/iiwa_stack/issues and

https://github.com/exo-core/iiwa_stack/issues

2.15 Databases

The persistent data used by the HORSE modules is stored in a postgreSQL RDBMS.

The setup of database server is done through a script.

The database configuration and data are stored in a clone of an internal HORSE DB repository. This
allows easy maintenance of backups (in the cloud repository). The cloning of the backup data on a
new platform acts as creation and population of the tables and data.

For further information and access to the scripts contact:

European Dynamics

Kostas Vasilakis (Kostas.Vasilakis@eurodyn.com)

https://github.com/exo-core/rosjava_tf
https://github.com/IFL-CAMP/iiwa_stack
https://github.com/exo-core/iiwa_stack
https://github.com/exo-core/iiwa_stack
https://github.com/IFL-CAMP/iiwa_stack/wiki
mailto:Kostas.Vasilakis@eurodyn.com

D4.5 User Handbook

Page 38 of 55

3 Reference

AngularJS http://angularjs.org/

AngularUI http://angular-ui.github.io/

Apache 2.0 License https://www.apache.org/licenses/LICENSE-2.0

Apache Commons Email http://commons.apache.org/proper/commons-email/

Apache Commons FileUpload http://commons.apache.org/proper/commons-fileupload/

Apache Http Components http://wiki.fasterxml.com/JacksonHome

bpmn-js License https://raw.githubusercontent.com/bpmn-io/bower-bpmn-js/v0.5.1/LICENSE

bpmn-js http://bpmn.io/

BSD 2-clause https://opensource.org/licenses/BSD-2-Clause

Camunda commons UI http://camunda.github.io/camunda-commons-ui/

CDDL License https://opensource.org/licenses/CDDL-1.0

Chromium License https://www.chromium.org/chromium-os/licenses

Chromium https://www.chromium.org/

CodeMirror https://codemirror.net/

domReady License https://raw.githubusercontent.com/requirejs/domReady/master/LICENSE

domReady https://github.com/requirejs/domReady

Electron http://electron.atom.io/

Groovy http://groovy.codehaus.org/

heatmap.js https://github.com/pa7/heatmap.js

HORSE D2.2. http://www.horse-project.eu/sites/default/files/publications/HORSE-
D2.2%20(Public%20Version).pdf

Jackson JAX-RS http://wiki.fasterxml.com/JacksonHome

Jackson Json http://wiki.fasterxml.com/JacksonHome

Java Uuid Generator http://wiki.fasterxml.com/JugHome

Joda Time http://www.joda.org/joda-time/

jQuery UI https://jqueryui.com/

jQuery http://jquery.com/

JSR 356 https://www.oracle.com/technetwork/articles/java/jsr356-1937161.html

LGPL v2.1 https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html

Libfreenect-Wiki http://wiki.ros.org/libfreenect

MIT License https://opensource.org/licenses/MIT

Mousetrap https://github.com/ccampbell/mousetrap

http://angularjs.org/
http://angular-ui.github.io/
https://www.apache.org/licenses/LICENSE-2.0
http://commons.apache.org/proper/commons-email/
http://commons.apache.org/proper/commons-fileupload/
http://wiki.fasterxml.com/JacksonHome
https://raw.githubusercontent.com/bpmn-io/bower-bpmn-js/v0.5.1/LICENSE
http://bpmn.io/
https://opensource.org/licenses/BSD-2-Clause
http://camunda.github.io/camunda-commons-ui/
https://opensource.org/licenses/CDDL-1.0
https://www.chromium.org/chromium-os/licenses
https://codemirror.net/
https://raw.githubusercontent.com/requirejs/domReady/master/LICENSE
https://github.com/requirejs/domReady
http://groovy.codehaus.org/
https://github.com/pa7/heatmap.js
http://www.horse-project.eu/sites/default/files/publications/HORSE-D2.2%20(Public%20Version).pdf
http://www.horse-project.eu/sites/default/files/publications/HORSE-D2.2%20(Public%20Version).pdf
http://wiki.fasterxml.com/JacksonHome
http://wiki.fasterxml.com/JugHome
http://www.joda.org/joda-time/
http://www.joda.org/joda-time/
https://www.oracle.com/technetwork/articles/java/jsr356-1937161.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
http://wiki.ros.org/libfreenect
https://opensource.org/licenses/MIT

D4.5 User Handbook

Page 39 of 55

MyBatis mapping framework http://www.mybatis.org/mybatis-3/

Node.js License https://github.com/nodejs/node/blob/master/LICENSE

Node.js https://nodejs.org/en/

OSGi https://www.osgi.org/

Placeholder.js https://github.com/jamesallardice/Placeholders.js

PostgreSQL https://www.postgresql.org/

PostgreSQL JDBC Driver https://jdbc.postgresql.org/download.html

PostgreSQL License https://www.opensource.org/licenses/postgresql

prism.js https://github.com/PrismJS/prism

RequireJS http://requirejs.org/

ROS Wiki http://wiki.ros.org/

SLF4J https://www.slf4j.org/

Snap.svg http://snapsvg.io/

Super Agent https://github.com/visionmedia/superagent

Twitter Bootstrap http://getbootstrap.com/

Twitter Bootstrap http://getbootstrap.com/

virtual-dom https://github.com/Matt-Esch/virtual-dom

http://www.mybatis.org/mybatis-3/
https://github.com/nodejs/node/blob/master/LICENSE
https://www.osgi.org/
https://www.postgresql.org/
https://www.opensource.org/licenses/postgresql
http://requirejs.org/
http://wiki.ros.org/
https://www.slf4j.org/
http://snapsvg.io/
https://github.com/visionmedia/superagent
http://getbootstrap.com/
https://github.com/Matt-Esch/virtual-dom

D4.5 User Handbook

Page 40 of 55

Appendix A

HORSE Messaging Middleware

Installation and Usage Guide

1. Introduction

The HORSE Message Middleware is meant to deliver messages across clients, using a common

message syntax and a central unit that distributes the messages to the receivers. The terms “clients”

or “messaging clients” will be used to refer to the senders/receivers of the messages as "agents",

while the term “broker” denotes the centralized unit processing the messages and performing their

forwarding..

This article is a guide to how to deploy, configure and operate the message bus on both sides - the

agent (client) and the server (broker).

The components of the messaging middleware (dispatcher, broker and agent) are available as set

of OSGi bundles running on the OSGi Framework implementation, provided by Bosch Software

Innovations GmbH (former ProSyst Software GmbH, abbreviated as PRO in the HORSE project),

the Bosch IoT Gateway Software (former ProSyst mBedded Server or mBS).

2. Setup

a. Download

The binaries of the messaging modules should be requested by Bosch Software Innovations

(Venelin Arnaudov, Venelin.Arnaudov@bosch-si.com)

ZIP files

The binaries of the messaging middleware components are organised in the groups and distributed
as ZIP files as follows:

 horse-mw-core_YYYYMMDD.zip – the mBS image tailored for HORSE. It is necessary in order
to execute the software components developed in the project.

 horse-mw-broker_YYYYMMDD.zip – the Broker binaries and scripts implemented in the scope
of the project.

 horse-mw-dispatcher_YYYYMMDD.zip - the Dispatcher binaries and scripts implemented in
the scope of the project.

 horse-mw-agent_YYYYMMDD.zip - the binaries and scripts of the reference implementation
of the HORSE Messaging Client.

The latest version of the binaries can be requested by Bosch Software Innovations (Venelin

Arnaudov, Venelin.Arnaudov@bosch-si.com)

Extract the core package and the needed component packages (broker, dispatcher or agent).

Blend the content of the “horse-mw” directory in one. The recommended destination of the HORSE

binaries in Linux environment is /opt directory. The following directory structure will be produced:

mailto:Venelin.Arnaudov@bosch-si.com
mailto:Venelin.Arnaudov@bosch-si.com

D4.5 User Handbook

Page 41 of 55

/opt/horse-mw

├───bin

│ ├───pscripts

│ └───vms

│ └───jdk

├───bundles

│ └───horse

├───configs

├───docs

├───lib

│ ├───framework

│ │ └───runtimes

│ │ ├───linux-x86-generic

│ │ ├───linux-x86_64-generic

│ │ ├───win-x86

│ │ └───win-x86_64

│ └───mbprofiler-agent

│ └───runtimes

│ ├───linux-x86-generic

│ ├───linux-x86_64-generic

│ ├───win-x86

│ └───win-x86_64

└───www

Figure 12: File Structure of HORSE Messaging Middleware

The above listed files and Info on the Python Messagebus Client should be requested by Bosch

Software Innovations (Venelin Arnaudov, Venelin.Arnaudov@bosch-si.com)

b. Starting the mBS image

After obtaining the binaries, start server.bat (Windows) or server.sh (Linux) from /opt/horse-
mw/bin/vms/jdk/ folder. Make sure to make the Linux script executable. (In order to start the

mailto:Venelin.Arnaudov@bosch-si.com

D4.5 User Handbook

Page 42 of 55

mBS in background mode in Linux, start bg_server.sh instead.) The mBS command console will

be open.

c. Administration tools

The mBS could be managed over the command console or the web console. The latter should be

accessible at:

http://<host>:10281/system/console/

Important note!

The given port number of the plain HTTP service is specifically set for HORSE project. The

parameters determining the values of the HTTP ports could be changed before the mBS start. This

is done by updating the ./configs/ mbs.http.plain.xml file. Deleting or renaming this file will cause

the mBS to try to use default ports (primary 80 and secondary 8080). If these ports are not available,

no administration over WebAdmin Console will be possible!

The default user name and password for the web console are „admin“ & „admin“.

Figure 13: WebAdmin Console login

The shell console of the mBS is available through the WebAdmin Console too (via System menu).

The commands are to be given at the bottom field. The output will be given on the upper part of

the screen under the menu bar.

D4.5 User Handbook

Page 43 of 55

Figure 14: Access to the shell console

When the mBS is started as a background process (Linux), there is no terminal console. In this case
the command console is available only via the WebAdmin.

d. Configuration of the Websockets server

To set the correct port of the websockets server open the Configurations page from OSGi menu of

the WebAdmin console.

D4.5 User Handbook

Page 44 of 55

Figure 15: Configurations list

Navigate to „Prosyst Websockets Server :: Core“ and click to open the configuration.

D4.5 User Handbook

Page 45 of 55

Figure 16: Websockets server configuration

Provide the correct port (the agreed port for HORSE broker is 10282) and save the configuration.

e. Installation of the needed components

As mentioned above, the ZIP archive contains the components (OSGi bundles) for several HORSE

applications. The installation of the needed set of bundles is managed by script commands.

Execute the console command “kitman.ls” to get the list of available scripts.

Execute the console command “kitman.i “ plus the number of the script in order to install its

components.

D4.5 User Handbook

Page 46 of 55

Figure 17: Kitman scripts

The same commands can be executed via the WebAdmin console shell (Figure 14).

Once the HORSE Message Broker is installed, it could be accessed on the following URI:

ws:\\<host>:<port>,

where the “host” is the IP or name of the host machine and “port” is the selected websockets server

port (e.g. 10282).

f. Configuring the Broker

The proper operation of the Broker requires the correct configuration of the connection to the history
database. The configuration panel is accessbilbe from the OSGi/Configuration submenu of the Web
Admin Console (see Figure 15)

Upon starting the module, it creates (if not existing) the table “MESSAGE” for storing copies of all
received messages.

D4.5 User Handbook

Page 47 of 55

Figure 18: HORSE Broker Configuration

g. Configuration of the Dispatcher

As the Dispatcher is mediating multiple Brokers, it should register itself to each of them as a
messaging agent. The parameters of these registrations are provided as configurations as shown in
Figure 19.

Figure 19: HORSE Dispatcher Configuration

D4.5 User Handbook

Page 48 of 55

h. Stop of the mBS

Recommended. Via console command (terminal or web console shell)

 Execute “exit” to gracefully stop all running services and ultimately stop the Java process.

In case the graceful shutdown is not possible it is possible to kill the Java process. There is a risk

of losing data.

i. Restart the mBS

The standard way to restart the server is to perform a start after the graceful shutdown. The mBS

will reload all components and configurations from the previous session (the connections to the

websockets clients could be lost).

In case of problems by start or out of some other reasons It is possible to reset the mBS and perform

a “clean” start as follows:

- Delete the local storage (./bin/vms/jdk/storage folder). A backup is recommended.

- Also recommended is to back up the previous log files (./bin/vms/jdk/logs folder).

- Start and configure the mBS and its components.

j. Retrieving the log files

The mBS creates and maintains local log files. They are located in the ./bin/vms/jdk/logs folder. They
could be retrieved from the file system (scp, ssh…) or via the WebAdmin console (OSGi -> Log files)

3. Working with the Broker

In order to be able to exchange messages between your agent and the Broker, the following steps

need to be executed:

 Initiate a connection

 Send a control message to register your agent

 Start sending and receiving payload messages

a. Initiating a connection

You have to open a websocket connection from your websocket client to the websocket server

running on the Broker’s mBS

ws:\\<host>:<port>, as stated above

The alias for the connection is "/horse/message" (this can be changed and/or discussed)

The ZIP archive contains an image of a HORSE Message Agent. It could be installed using the

Kitman scripts on the same or remote host. We have provided a Jetty-based websocket client.

D4.5 User Handbook

Page 49 of 55

b. Registering the agent

The registration of an agent is done by sending a special type of message to the Broker, the Control

message. It is a Json message with the following format

• ___CONTROL___ It is obligatory that the message is prefixed by this special string!

• It is followed by a JSON Object with two mandatory fields:

 "ID" bearing the unique name of the agent.

 "Operation" with two possible values: "connect" and "disconnect" in order to add or remove

the agent from the Broker’s list of agents;

 A number of other parameters could be provided, if needed.

Example: ___CONTROL___{"ID":"test1","a":"15","b":"something","Operation":"connect"}

c. Exchanging payload messages

Once the agent is registered by the Broker it can send and receive Json-based payload messages

with the following format:

• Topic (can be any String) - default value is empty string ("")

• Priority (from 1 - Lowest to 5 - Highest) - default value is 1 (Lowest)

• Receivers (a comma-separated list of IDs, if a star is included all receivers will get this

message) - default value is * (all recipients)

• Type (1 for Debug, 2 for Event, 3 for System, 4 for Custom) - default value is 4 (Custom)

• Timestamp - The timestamp of the initial sending of the message. Long data type;

automatically set by first broker the message passes through.

• Subtype (fully customizable, can be any string).

• SenderID - the ID of the sending client. Should be automatically set by all implementations

to the sending client.

• MessageID - a timestamp in milliseconds corresponding to a message which wants to be

answered back to. Default value is "" (empty string).

• ResponseMessageID - The timestamp of the message of the sender to which we are sending

a reply message. This is meant to say that the message we are sending is an answer to a previous

message with a specific senderID and messageID. Default value is "" (empty string).

• Internal – if set, this flag sends the message to the agents of the broker which is directly

connected (i.e. without connecting to the dispatcher) to the sending client

• ExternalBrokers – If a message is to be sent over the dispatcher, this shows which dispatcher

broker this should get sent to. This is a comma-separated list. It corresponds to the ID of the web

socket connection between the dispatcher and the corresponding message bus.An asterrisk ("*")

sends to all brokers.

D4.5 User Handbook

Page 50 of 55

• SenderBroker – If a message is to be relayed using the dispatcher, this field is normally set

by the dispatcher to note the sending message broker. It is also used to protect against looping of a

message between the broker and dispatcher.

• The body (payload) can be any JSON Object with proper syntax - default value is empty

JSON Object "{}.

Example:

{"Topic":"test_domain/topic/something",

"Priority":"1",

"ResponseMessageID":"1234567",

"Receivers":"Test_client_2,something,*",

"SenderID":"dummy_component",

"MessageID":"1484816109871",

"Type":"3",

"Timestamp":"123413412"

"Subtype":"GETAGENTLIST",

"Internal":"true",

"ExternalBrokers":"test_broker_2",

"SenderBroker":"test_broker_1",

"Body":{}}

4. Useful tools

We have provided several useful options to simulate and test the HORSE messaging, as well as

access the information of the Broker:

a. Web based interface

A test.html file is available at http://<host>:<port>/root/test.html, where the “host” is the host name

or ip of the machine running the HORSE messaging component (agent or broker) and “port” is the

port of the HTTP server on that machine (e.g. 10281). It has a hard-coded alias of "/horse/message"

which can be changed in the HTML file.

D4.5 User Handbook

Page 51 of 55

Figure 20: Test web client

Provide the IP address and websocket port of the Broker and click “Update” in order to establish

the websockets connection.

An instance of a running Broker is available at the HORSE integration server

(vmknoll33.informatik.tu-muenchen.de IP: 131.159.61.234) on port 10282!

Provide the needed topic (for Control messages, not relevant) and message text, and press “Send”

b. Jetty-based interface

The Jetty-based client operates with the following console commands to open and run connections:

 horse.create-client (alias: cc) - creates a WebSocket connection with the following

parameters:

 Hostname of the messageBus running machine

 port of the WebSocket

 alias, normally this should be always set to the value of "/horse/message"

D4.5 User Handbook

Page 52 of 55

 newly requested ID (can be any string value)

 a map with all the other parameters of the client, such as {param_1=value_1,

param_2=value_2, ….}

 horse.list (alias: ls) - lists all active clients <on the side of the client mBS!>

 horse.send-message (alias: sm) - sends a message ot the messageBus to

redistribute; note that the active client has to have sent a control message to register

(i.e. the create-client command has to have had been executed) before this operation

can be completed successfully; the parameters are as follows:

 id of the active client to send with (seen with ls command)

 topic of the message

 priority of the message (1-5)

 type of the message (1-4)

 subtype of the message (any string)

 internal flag - if set, sends the message to the internal message broker agents.

 recipients (comma-separated string of values, * for all clients)

 externalBrokers (comma-separated string of values, default value is empty

string)

 return flag - if true, the message is sent with an additional JSON Field

(MessageID) to denote that it wants to be answered back to

 response message ID of the message

 body (valid JSONObject string)

 horse.stop-client (alias : sc) - stops a web socket client with the given ID as

argument.

c. Monitoring the connection

There are two ways to monitor which clients have connected (and registered) to the

message bus:

 via console commands

 horseserver.ls will print information about all clients (server-side!)

 horseserver.reset in case the thread to send messages stops working, normally

this isn't needed and is for debugging purposes only

 horseserver.stop-client (alias : sc) - stops a web socket client with the given ID

as argument.

 via REST at http://<host>:<port>/restdoc/swagger-ui/index.html

 the /horse/ids method is a simple listing mechanism for the used registered IDs

of clients (server-side!)

 The /horse/details/{id} method is meant to provide additional information for

a specific ID.

D4.5 User Handbook

Page 53 of 55

4 Appendix B

HORSE BOS Adapter
Installation and Usage Guide

1. Introduction

Since similarly to the HORSE Messaging Middleware components, the BOS Adapter components are
distributed as OSGi bundle and executed in the same environment (Bosch IoT Gateway Software,
former mBS), this guide will cover only the specific operations.

2. Setup

The BOS Adapter binaries should be requested by Bosch Software Innovations (Venelin Arnaudov,
Venelin.Arnaudov@bosch-si.com):

 horse-bos-adapter_YYYYMMDD.zip - the binaries and scripts of the BOS Adapter modules.

Since the BOS Adapter components are executed in the mBS, the horse-mw-core package, providing
the mBS is required.

The latest version of the BOS Adapter binaries can be requested by Bosch Software Innovations

(Venelin Arnaudov, Venelin.Arnaudov@bosch-si.com)

The installation, configuration and start of the mBS is explained in Appendix A.

The installation of the BOS Adapter modules is done by executing kitman commands as shown
Section 2.e Installation of the needed components of Appendix A (Figure 17).

3. Configuration of the BOS Adapter modules

The BOS Adapter features the following modules:

1. org.horseproject.boschadapter.api
2. org.horseproject.boschadapter.plc
3. org.horseproject.boschadapter.ethercat
4. org.horseproject.boschadapter.opc-ua
5. org.horseproject.boschadapter.coordinator

Components 2, 3 and 4 provide interfaces to the industrial protocols PLC, EtherCAT and OPC-UA,
while the coordinator (#5) is mediating between the protocol interfaces and the HORSE Messaging
Middleware.

The next figures show the configuration forms for each components.

mailto:Venelin.Arnaudov@bosch-si.com
mailto:Venelin.Arnaudov@bosch-si.com

D4.5 User Handbook

Page 54 of 55

Figure 21: Configuration of the HORSE BOS Adapter - Coordinator

Figure 22: Configuration of HORSE BOS Adapter - EtherCAT Interface

D4.5 User Handbook

Page 55 of 55

Figure 23: Configuration of HORSE BOS Adapter - PLC Interface

Figure 24: Configuration of HORSE BOS Adapter - OPC-UA Interface

	Abbreviations
	Executive Summary
	1 Introduction
	1.1 Objectives
	1.2 Structure

	2 HORSE Components
	2.1 Overview
	2.2 Messaging Middleware
	2.2.1 Short Description
	2.2.2 System Requirements
	2.2.3 Legal Status
	2.2.4 Installation Guide
	2.2.5 Administration and support

	2.3 HORSE-ROS Bridge
	2.3.1 Short Description
	2.3.2 System Requirements
	2.3.3 Legal Status
	2.3.4 Installation Guide
	2.3.5 Administration and support

	2.4 MPMS
	2.4.1 Short Description
	2.4.2 System Requirements
	Supported Environments
	2.4.3 Legal Status
	2.4.4 Installation Guide
	2.4.5 Administration and support

	2.5 Situation Awareness
	2.5.1 Short Description
	2.5.2 System Requirements
	2.5.2.1 Design and development requirements
	2.5.2.2 Configuration
	2.5.2.3 Runtime platform

	2.5.3 Legal Status
	2.5.4 Installation Guide
	2.5.5 Administration and support

	2.6 FlexBE
	2.6.1 Short Description
	2.6.2 System Requirements
	2.6.3 Legal Status
	2.6.4 Installation Guide
	2.6.5 Administration and support

	2.7 Augmented Reality
	2.7.1 Short Description
	2.7.2 System Requirements
	2.7.3 Legal Status
	2.7.4 Installation Guide
	2.7.5 Administration and support

	2.8 Local Safety Guard
	2.8.1 Short Description
	2.8.2 System Requirements
	2.8.3 Legal Status
	2.8.4 Installation Guide
	2.8.5 Administration and support

	2.9 Human Detection and Tracking
	2.9.1 Short Description
	2.9.2 System Requirements
	2.9.3 Legal Status
	2.9.4 Installation Guide
	2.9.5 Administration and support

	2.10 Deviation Monitor
	2.10.1 Short Description
	2.10.2 System Requirements
	2.10.3 Legal Status
	2.10.4 Installation Guide
	2.10.5 Administration and support

	2.11 Agent Manager
	2.11.1 Short Description
	2.11.2 System Requirements
	2.11.3 Legal Status
	2.11.4 Installation Guide
	2.11.5 Administration and support

	2.12 BOS Adapter
	2.12.1 Short Description
	2.12.2 System Requirements
	2.12.3 Legal Status
	2.12.4 Installation Guide
	2.12.5 Administration and support

	2.13 KUKA Sunrise
	2.13.1 Short Description
	2.13.2 System Requirements
	2.13.3 Legal Status
	2.13.4 Installation Guide
	2.13.4.1 Installing Sunrise.Workbench
	2.13.4.2 Starting Sunrise.Workbench

	2.13.5 Administration and support

	2.14 iiwa_stack
	2.14.1 Short Description
	2.14.2 System Requirements
	2.14.3 Legal status
	2.14.4 Installation guide
	2.14.5 Administration and support

	2.15 Databases

	3 Reference
	Appendix A
	1. Introduction
	2. Setup
	a. Download
	b. Starting the mBS image
	c. Administration tools
	d. Configuration of the Websockets server
	e. Installation of the needed components
	f. Configuring the Broker
	g. Configuration of the Dispatcher
	h. Stop of the mBS
	i. Restart the mBS
	j. Retrieving the log files
	3. Working with the Broker
	a. Initiating a connection
	b. Registering the agent
	c. Exchanging payload messages
	4. Useful tools
	a. Web based interface
	b. Jetty-based interface
	c. Monitoring the connection

	4 Appendix B
	1. Introduction
	2. Setup
	3. Configuration of the BOS Adapter modules

