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Abstract

The vision of advanced information technologies to provide intelligent driving assistance and automation is
currently being reconciled with humans operating these technologies in complex, real-time environments where
sometimes unpredicted situations need to be mastered under time pressure. Could automation technologies be
designed such thathumans can collaborate with themmore quickly and effectively to solve the Unpredicted? We
investigatethe utility of computational Human Mental Models for Engineering (HMMEs) toward developing
automationsystems that are more similar to human behavior. Wevalidate and compare an HMME with a control
model for a basic steering task and compare them both with driving data from 16 human drivers in a driving
simulator. We report on the observed characteristics of the HMME to support multi-tasking, graceful
degradation, and multi-sensory driver state integration.
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1. Introduction

Two views aboutthe future of advanced automotive research and developments currently often contradict each
other. On one hand, technological leaders focus on technological advances in computing power and machine-
learning to expand automation to new markets and business opportunities. In the automotive domain, unsafe
human driving is viewed as an argument for pushing toward intelligent driving automation. Similar discussions
occur in aviation where highly automated drones should be flying in civil airspace and industrial information
automation intends to change theroles of humanworkers. On the other side are human operational researchers
who are confronted with the operational reality that humans not only cause accidents but also prevent an
estimated 50to 60 times more accidents thanthey produce (Zimmer, 2017). Also,thathigh levelautomation not
only improves but also deteriorate operational performance (see e.g. Abbott, McKenney, & Railsback, 2013;
Strauch, 2016). They also point to the fact that currently available automation often only addresses relatively
predictable and controlled situations such as parking, lane keeping, or emergency braking but leave risky
situations suchas left turns in cities or complexintersections to the human driver outside (Bengler, Winner, &
Wachenfeld, 2017).

The polarity of discussions resembles a schism between stakeholders with different perspectives, values,
experiences and objectives. Technological solutions can be marketed and sold whereas the real operational
problems may not be the ones that promise the largest profit margin. Also professional segregation contributes to
the differences where engineers and human factors are often on differentteams thatare separated by education,
job profile, and professional career models or where one discipline is hierarchically placed under another.

The figure below depicts several aspects of the schism between technological and human operational views.
While automated systems are often intended to provide outputs that are similar to human behavior such as when
steering avehicle orplaying chess, they achieve their performance in rather different ways. Also, automation
processes are not usually visible to thehuman operator and are also difficult to predict. The consequence is the
difficulty for the human to interactwith the automation when the environment requires sudden transitions or
when the automated systemfails. It takes time for the human to reengage when the side markings disappear or
when automation miscategorizes a white truck as billooard. This leads to the so called automation conundrum:
the better automation gets, the harder it is for the human to reengage in case he is needed (Endsley, 2016;
Eriksson & Stanton, 2016).

To ultimately bring these different perspectives together, we explore in this paper a human-centered approach
that explores the use of human mental models for engineering (HMME) to make algorithmic solutions and
humans more transparentto each other and therefore facilitate faster transition interactions between them. Also
automationshould be betterable to adjustto thehuman if it knew its stateand could offer adaptive functionality
(see Parasuraman, Sheridan, & Wickens, 2000; Reinhart et al., 2017). Even if the automation fails, human
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operators and automationshould be able to better collaborate when they are transparent (see e.g. Boy, 2013).
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In the next sectionwe introduce a cognitivearchitecture and model modeling approach thatwe compare with the
performance of a control based steeringmodel that is notbased onpsychological principles. We compare their
performance and report on the main differences.

2. Psychological Steering Model
2.1.Human Processing Architecture

We selected a cognitive modeling architecture thatwe describe in more detail in (Moertl, Wimmer, & Rudigier,
2017) where we adopteda human cognitive architecture that is similar to the Model Human Processor (MHP)
(Card, Moran, & Newell, 1986). The MHP was originally developed for human interface designs to summarize
and combine psychological knowledge and principles and make themapplicable for interface designs. Because
of the similarity in purpose we adopted this approach to model specific driving tasks.

In the context of the driving task, the architecture consists of three types of processes that are interlinked with
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Figure 2 Adopted Elements for the MHP

basic constraints and limitations of human workingand long termmemory. The three process classes consist of
perceptual, motoric, and cognitive processes. The cognitive processor updates information in discrete process
cycles either frommemory or fromthe perceptual processes about the external world and forwards themto the
motoric processes that control (here only “steer”) the vehicle. Each cycle takes a certain amount of time which
determines theoveralltask duration andtiming of interactions with the components. Parallel task performance of
certain perceptual and motoric tasks is of coursepossible but was not implemented in our first steering model.
That current model only considers steering but is not limited to that, also accelerating, braking, and other
multitasking could beincorporated. The primary cognitive taskis a kind of scheduling task that determines the
next driving action (“Determine Driving A ction”). While such scheduler canbe theoretically quite complex and
could dynamically adjust based on present and past conditions, we use only a very basic scheduler for our
steering model. Once initiated, eachactual driving (here only “steering” task) draws information either from the
environmentor fromthe long termor working memory, performs a cognitive process to process the information
and then forwards the informationto the next process, in our case always a motor process. For our task at hand,
the transfer of information into memory is minimal because most of the information is visually available in the
environment and just needs to be looked at so that explicit memory storage would be unnecessary.

2.2.Psychological Steering Model

Our psychological steering model is based on the ACT-R model by Salvucci (Salvucci, 2006; Salvucci & Gray,
2004) and is described in more detail there. The steeringmodel is supported by empirical evidence gained from
visualexclusion experiments where human drivers drove in a driving simulator and some areas of the visual
scenerywere obscured (Land & Lee, 1994). This psychological steering model utilizes both a far point and a
near point for steering, both points are ahead of the driver’s own vehicle. The near point is constant distance
ahead andis located in the middle ofthe driving lane. The far point is further ahead and consists of the tangent
point ofany upcoming curve orthevanishing line of the road ahead on straight road segments. The far point
could also be avehicle ahead, butthis situation was not modeled in our study described here. The far point is
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intendedto steerthe vehicle into and out of curves whereas the near point helps to center the vehicle on the
driven lane. The point selections are to some extent psychologically validated in that they deteriorate driving
significantly when covered, see e.g. (Land & Horwood, 1995; Land & Lee, 1994). Furthermore, they are based
on information that is available to human drivers when negotiating a road.

We implemented this steering model in our cognitivearchitectureby only considering three cognitive processes
that are executed in turn:a perception, a cognitive, and a motoric process. As initial condition, each process was
assumedto take 50 ms see e.g. (Card et al., 1986), so that one full cycle of steering update would take 150 ms.
We also updated the main parameters of the model. In (Salvucci, 2006), the three parameters were givenas Ky, =
16, Kqear = 4.0, and k; was 3.0. These parameters did not work at all in our model and we had to use different
parameters, we found following parameters to work significantly better s, = 1.6, Kyear = 0.4, and k; was 0.09 (the
last factor being much weaker in our model than in Salvucchi’s parametrization).

2.3. Control Based Steering Model

The lateral controller of the control based steeringmodel is a preview controller, see (Rudigier & Horn, 2010). It
does notminimize the current error ofasignalin our case the position, but tries to reach a point in front of the
vehicle, which means it minimizes the future error. The Controller has thestructureofa cascade. The outer loop
follows a given line, the track. In our case the middle of the lane is used, but it is possible to use an ideal line,
computed by an appropriate optimization. The outer loop compares the positions and computes a demanded
curvature. Theinnerlooptakesademanded curvature and controls the steering wheel angle. The inner loop
consists of a feedforward control, which uses vehicle dynamic knowledge (Ackermann steering angle) (Rill,
2012), and a compensational feedback control (P1-Controller)
Thefirst step ofthe position control is to estimate the reference position of the vehicle on the track xef. For
that matteris s1the distance travelled along thetrackand s2 is the lateral offset tothe track. The second step is
to determine the preview point xpre. This pointis a preview distance spre in front the vehicle reference point on
the track. The main part of the preview distance is a velocity depend part. It is the vehicle speed vxtimes the
preview time tpreview. The minor parts are a constant distant sO and the current lateral offset s2.

Spre = Vilpre 750 15,
Then the idea is thatthe vehicle should reach the preview pointon a circle with constant radius r respectively a
constant curvature k. The circle is computed with 3 features, the 2 points xveh and xpre and the direction of the
vehicle movement vxas tangentto thecircle. This curvature is the demand curvature kdemand the inner loop
takes as control variable.

Figure 3 Schematic of Control Based Steering Model
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3. Method

Sixteen human drivers drovein a fix-based driving simulator along a curvy road of 10 km length with two 4 m
wide lanes. They drove at a preset speed of 90 knvh to isolate the steering component from other driving tasks.
Since speedselectionwould have strong impact on the steering this would not have allowed us to assess steering
per se.

All participants were between 20to 60 years in age, 12 were male and 4 female. All had driver licensesand most
drove between 5,000 and 20,000 km per year.

Participants were encouraged to drive how they would drive in the real world, avoiding oncoming traffic and
stayingas much asthey really would onthe right side ofthe road. To strengthentheir desire to stay on the right
lane, oncoming traffic was simulated as well. The constant speed of 90 knvh was perceived as fast and resulted
in all drivers to laterally leave their lane at least once. However, all drivers were able to complete this scenario in
their first trial without losing control.

4. Results

The figures belowshowthe lateral deviation of the various drivers on the center of their lane. All drivers were
driving at a constant speed of 90 km/h, the blue lines depicts their 90 percentile corridor (from5% to 95 %). This
servesto comparethe two steeringmodels. Positive numbers indicate deviations fromthe lane center to the left.
The solid red line (PBSM50) depicts theresults ofthe psychological based steering model based on a 150 ms
cycle rate and the black dashed line depicts the control based steering model (CBSM). It can be seen that the
controlbased steering model was almostalways positioned within the human driving corridor whereas the red
line shows several outliers. The variable width ofthe corridor indicates that human drivers varied considerably in
their steering behavior from each other (e.g. at 1,500 m) but also converged (e.g. at 5,250 m).

To getabetterunderstanding, the figure below shows a more detailed view of the steering behavior. There a
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Figure 4 Lateral Deviations over the complete Distance (make bigger labels)

combination of a right curve (at 1,450 m), a left curve (at 1,540 m), and a subsequent right curve (at 1,600 m)
resulted in the largest lateral deviationacross the whole track. This was the case for human participants as well
as forthe two steeringmodels. The combination of curves thereby increased the build -up of lateral deviations. It
shouldbe notedthatthe last right curve was initiated slightly earlier by the CBSM than most humans, and that
the PBSM50 overshot significantly more than most humans.
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Figure 5 Lateral Deviations for a strong curve

The table below describes several metrics of the lateral vehicle movements. The correlations of the lateral
deviations among all 16 drivers was r=0.5 (due to number of data points this and all following correlations are
highly significant). The psychological steering models at higher update rate (3 to 150 ms) correlated slightly
lower with the human drivers (btwr=0.36 to 0.42). The control based model correlated with the humans at r =
0.12. This indicates that first, the correlations of the lateral deviations indicate a useful measure (i.e. it is
strongest among humans) and second, that it differentiates to some extent human steerin g from computer
modeled steering andthird that the psychological based model showed clearly more similarity to human driving
than the control based model.

In terms of overlap with the 5to 95 % human steering corridor, the control based model showed the highest
overlap (87.4 % of its steering overlapped) whereas the psychological steering model overlapped slightly less
with 79.4% to 80.2%). This indicates that the control based steering model was a “smoother” driver than most of
the human participants and resulted in the least extreme deviations (following column).

Table 1 Summary of Lateral Deviation Metrics between Humans and Models

Mean correlation | Within Max Steering Sum of abs.
() of lateral | Human Deviation Wheel Steering Wheel
vehicle Steering (better than | Reversals Angle Changes
movement with | Corridor % of human | (count)
human drivers drivers)

16 Human Drivers 0.5 - 8.4m Mean=521 88 (std=22)

(std=115)

Psych. Model, 3 ms cycle | 0.42 80.2% 7.1m (44%) | 5036 98

(PBSM3)

Psych. Model, 75 ms [ 0.42 80.9% 7.4m (32%) | 2333 110

cycle (PBSM75)

Psych. Model, 150 ms | 0.36 79.4% 9.7m (0%) | 473 166

cycle (PBSM150)

Psych. Model, 210 ms | 0.20 56.7% 12.6 m (0 %) | 344 422

cycle (PBSM210)

Psych. Model, 225 ms | 0.19 50.1% 16.4m (0 %) | 338 469

cycle (PBSM225)

Control Model (CBSM) 0.12 87.4% 54m (88%) | 1664 102

The last two columnsin the table describe thesteering performance itself. The count of steering wheel reversals
represents theamount of opposing steering control movements. A higher count there may representa “nervous”
driver. Such “nervousness” turned out to be directly determined by the length of the cycle time within the
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psychological model: the longerthecycle time, the less nervous the steering behavior (i.e. the fewer reversals).
Atcycle times of 50 ms and higher, the “nervousness” of the psychological model appeared to approach the
human nervousness. The control based model exhibited a “nervousness” that was significantly above the one of
human drivers. Finally, the overallsumofsteeringwheelangle changes showed that the human drivers generally
steered less thanallthe models butthatthe psychological model at the highestupdate rate as well as the control
based model came close to human performance.

The results lead us to conclude that drivers clearly use additional information when steering than what we
capturedin our psychological model. However, it was not our purpose to providea detailed and accurate steering
model. Ratherwe wanted to explore to what extenta relatively simple psychological model was able to capture
human performanceattributes that a control based steering model (without psychological assumptions) would
notbe able to capture. We were able to achieve a relative human-like driving behavior as well as human-like
controlinputbehavior (measured as steering wheel reversals) by simply adjustingthesingle parameter of cycle
update time. The control based model was able to provide a very good overall steering behavior in terms of
lateral deviations but was not able to capture human-like driving or steering input control behavior.

The findings haveimportant positive effects concerning multi-task performance and graceful degradation. By
changingthe duration of the steering cycle, we could effectively insert additional processes. Also, because
steering remained still functional even at slower cycle times, we see an effect that resembles graceful
degradation.

5. Conclusions

A relatively simple HMME not only matched human performance remarkably well, it also in principle would
allow for graceful degradation whereas the control based model did not. The control model would stop working
if the input variables would degrade. While there are of course work-arounds to this but it represents an inherent
advantage of the psychological model.

Anotherimportant aspectthat theinvestigated psychological model captured was the one of multi-tasking: it
would be easy tomodify the psychological model to perform additional tasks (such as braking or looking for
signs, see e.g. (Deml, Neumann, Mller, & Wiinsche, 2008). We would only needto insert additional cycles for
such tasksandobserve that at some point the addition of additional tasks would deteriorate the main task of
steering, similar to how drivers driving with cell-phones deteriorate their steering skills. However, the most
important aspect of psychological driving models is that overallhuman parameters such as fatigue, distraction, or
drowsiness could bemodeled to impact all of the component processes at the same time. A fatigued driver for
example, may show prolonged steering cycles but alsoslowed detectioncycles forsigndetection or braking. To
capture suchmodels, acommon architecture needs tohold the various component models. Transfer effects could
not be depicted in such models.

This is only ourfirst study investigating HMME’s for the use in the development of automotive automation.
Much remains to be done to establish psychological driver modeling as a standard tool for human -centered
automotiveassistance developments. First we will need to confirmthat our HMMEare not only valid for data in
simulation studies but also for real world driving. Then we need to test how the psychological model can be
adaptedto capture individual driver styles and states, such as, for example, driving distraction. Finally, we will
extend our modeling to other driving aspects, specifically braking, distance keeping, and speed selections.
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