OpenRiskNet

Deliverable Report D3.2

First documentation of the core
e-infrastructure

* X %
* *
* *
* *

* gk

This project is funded by

the European Union

OpenRiskNet: Open e-Infrastructure to Support Data Sharing, Knowledge
Integration and in silico Analysis and Modelling in Risk Assessment

Project Number 731075

www.openrisknet.org

Project identification

Grant Agreement

731075

Project Name

OpenRiskNet: Open e-Infrastructure to Support Data Sharing,
Knowledge Integration and in silico Analysis and Modelling in
Risk Assessment

Project Acronym

OpenRiskNet

Project Coordinator

Douglas Connect GmbH

Start date 1 December 2016
End date 30 November 2019
Duration 36 Months

Project Partners

P1 Douglas Connect GmbH Switzerland (DC)

P2 Johannes Gutenberg-Universitat Mainz, Germany (JGU)

P3 Fundacio Centre De Regulacio Genomica, Spain (CRG)

P4 Universiteit Maastricht, Netherlands (UM)

P5 The University Of Birmingham, United Kingdom (UoB)

P6 National Technical University Of Athens, Greece (NTUA)

P7 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten
Forschung E.V., Germany (Fraunhofer)

P8 Uppsala Universitet, Sweden (UU)

P9 Medizinische Universitat Innsbruck, Austria (MUI)

P10 Informatics Matters Limited, United Kingdom (IM)

P11 Institut National De L’environnement Et Des Risques,
France (INERIS)

P12 Vrije Universiteit Amsterdam, Netherlands (VU)

OpenRiskNet

m Page 2

http://openrisknet.org/

Deliverable Report
identification

Document ID and title

Deliverable 3.2 First documentation of the core
e-infrastructure

Deliverable Type Report
Dissemination Level Public (PU)
Work Package WP3
Task(s) Task 3.1
Deliverable lead partner IM

Author(s) Tim Dudgeon (IM), Alan Christie (IM), Daniel Bachler (DC),
Lucian Farcal (DC), Harry Sarimveis (NTUA), Philip Doganis
(NTUA), Pantelis Karatzas (NTUA), Ola Spjuth (UU)
Reviewed by Iseult Lynch (UoB) and Barry Hardy (DC)

Status Final

Version V1.0

Document history

2017-11-16 Draft version
2017-12-06 Final version

OpenRiskNet

- Page 3

Table of Contents

SUMMARY 6
INTRODUCTION 7
CORE E-INFRASTRUCTURE 8
Objectives 8
OpenShift Architecture 8
Background 8
Overview of OpenShift 9
Description of deployment types 9
All-in-one 9

Standard Availability 9

High Availability 10
Autoscaling 10

Persistent Storage 10

Core OpenRiskNet Infrastructure Components 1
Single Sign On 1
Metrics and Logging 1
Certificate management 12
Jenkins and CI/CD 12
OpenRiskNet End User applications 13
Squonk 13
Planned applications 13
Interoperability 14
Deployment procedures 14
Create or locate container image(s) 14
Generate deployment templates 15

Deploy using those templates 15
Recipes 15
Uppsala workshop 16
Environments 17
Deployments 17
OpenRisknet Reference site 18
Compute infrastructure 19

HPC2N 19

UPPMAX 19

Current Implementation 19
OpenRiskNet 5] Page 4

Access control 21

Future plans 22
Documentation 22
CONCLUSION 23
GLOSSARY 23
REFERENCES 24
ANNEXES 26
Annex 1. APl Objects and templates 26

OpenRiskNet m Page 5

SUMMARY

This report describes the first documentation of the core OpenRisknet e-infrastructure
with examples of an initial development status implementation. This report forms part of
this documentation, along with other parts located in the OpenRiskNet GitHub repository.
This documentation describes the creation of the e-infrastructure and the deployment of
the first partner application to the e-infrastructure.

This documentation will be updated throughout the project.

The work described in this report addresses Task 3.1 Documentation of Core Infrastructure
and Deployment in WP3, but also covers the following tasks in WP2 from the description
of work:

Task 2.1 Creation of development environment and D2.1 Creation of development
environment - An initial development environment was described at Month 6. The
work described here extends this by moving the Jenkins CI/CD environment from a
standalone system to one running in the OpenRiskNet development reference site,
and by providing more advanced CI/CD capabilities available through OpenShift;
Task 2.3 Establish security environment - This work describes the security
environment that has been set up for the development reference site, including
access control for both administrators and developers in the reference site, and a
separate system (based on Keycloak) for end users accessing the applications
deployed to the development reference site;

Task 2.4 Services discovery - The development reference site provides some
underpinnings for service discovery by means of the built-in capabilities of
OpenShift. Creating services with the appropriate labels and annotations should
allow them to be discovered by end Users and the broader research communities;
Task 2.5 Deployment of virtual infrastructures and container orchestration
frameworks - This has essentially been achieved (at least in an initial form) by the
creation of the development reference site which runs on a virtual infrastructure
(OpenStack) and allows orchestration of containerised applications through
Openshift. The deployment of the Squonk Computational Notebook to this
infrastructure illustrates this;

Task 2.6 Establishment and maintenance of OpenRiskNet reference instance - The
development reference site is the first instigation of the OpenRiskNet reference
instance. A production site will follow later in the project.

OpenRiskNet m Page 6

INTRODUCTION

This report follows on from the report for deliverable D2.1 “Development infrastructure
online” which described an initial setup for development of the OpenRiskNet
e-infrastructure. This report describes the setup of a more complete e-infrastructure that
supports deployment and operation of applications for safety and risk assessment as well
as their development. The environment is at a preliminary stage but already supports the
ability to provision to physical servers and cloud environments, an ability to scale across
multiple servers, provisioning of core infrastructure needed by applications and the
deployment of an initial OpenRiskNet partner application.

This new environment replaces the standalone Jenkins environment described in the D2.1
report.

Most documents that are described in this report can be found in the ‘home’ GitHub
repository of the OpenRiskNet project [1] and are publicly accessible.

OpenRiskNet 5] Page 7

https://github.com/OpenRiskNet/home
https://github.com/OpenRiskNet/home
https://paperpile.com/c/4HBNE2/sG3V

CORE E-INFRASTRUCTURE

Objectives

As an e-infrastructure project, OpenRiskNet aims to create computational infrastructure
and software tooling to support the processes of chemical risk assessment. One key
aspect of this is providing tools that facilitate the ability to create a computational
environment in which this scientific work can be performed. OpenRiskNet not only aims to
provide such an environment as its reference site, but also to allow third parties to create
their own environments (referred to as a Virtual Research Environment, or VRE) on their
own internal or cloud infrastructures using the OpenRiskNet platform.

Creating such a VRE should be relatively straightforward for a skilled IT administrator, and
full guidance notes are provided (via the OpenRiskNet Wiki - see also D3.3). It should be
possible to deploy this environment to a range of hardware, both physical and
cloud-based, ranging from single server installations to powerful multi-server distributed
environments providing substantial computational power.

OpenShift Architecture

Background

After researching several suitable technologies, we chose to base the infrastructure on
Docker, Kubernetes and OpenShift technologies.

Docker [2] is the leading containerisation technology available today. Containerisation
allows packaging software tools and services, and all their dependencies, into units
(containers) that can be readily started, stopped and interconnected. Containers can be
considered similar in some ways to Virtual Machines, but are much more lightweight and
efficient. Most modern software deployment approaches are converging on containers and
Docker, and as such this technology not only provides us with an effective mechanism for
deployment, but also future-proofs the work as, even if other tiers of the framework
might change, it is very likely that Docker containers will still be at the heart of most
approaches over the coming years. We also note that several other European
e-infrastructure projects including INDIGO-Datacloud [3], PhenoMeNal [4], and the
recently-formed EOSC Hub have container technology as a core component of their
software architecture.

Whilst Docker allows containers to be deployed to an individual computer (server), high
performance environments that are needed to support complex scientific workflows or
larger number of users require workloads to be distributed across multiple servers. Thus
there is the need to orchestrate the deployment and inter-connectivity of containers
across multiple servers (often in the range of 10 - 100 servers, but potentially in the
1000s). Thus, a distributed container orchestration platform is needed. This can be thought
of as a distributed operating system. The two leading solutions for this are Docker’s
Swarm, and Google’s Kubernetes (see [5] for a comparison of these two technologies).
Investigations led us to choose Kubernetes as it is more capable and has larger traction in
the marketplace, and some partners already had experience with using it.

Whilst Kubernetes can provide this distributed operating system, various additional
components are needed for a fully functional system. Red Hat’s OpenShift [6] is a

OpenRiskNet m Page 8

https://www.docker.com/
https://paperpile.com/c/4HBNE2/r8qI
https://www.indigo-datacloud.eu/
https://paperpile.com/c/4HBNE2/dMrd
http://phenomenal-h2020.eu/home/
https://paperpile.com/c/4HBNE2/g3nC
https://docs.docker.com/swarm/overview/
https://kubernetes.io/
https://paperpile.com/c/4HBNE2/qB3d
https://www.openshift.com/
https://paperpile.com/c/4HBNE2/8AtM

distribution of Kubernetes that adds many of these additional aspects, such as Continuous
Integration and Continuous Deployment (CI/CD), a strong emphasis on security, and the
option of a commercial support model. Consequently we have chosen to base the
OpenRiskNet Virtual research Environment around Red Hat’s OpenShift, and Red Hat have
joined the OpenRiskNet Associated partner program (see Deliverable D1.2) as a technology
partner to assist us with delivering this platform.

Overview of OpenShift

As mentioned, OpenShift is a distribution of Kubernetes with additional components
added so can be thought of as an extension of Kubernetes, with the core “engine” being
Kubernetes but with some OpenShift specific add-ons.

An OpenShift cluster comprises one or more nodes (servers) providing the following:

e Master node(s) that controls and monitors the cluster and provides a REST API and
web console that the developer or administrator interacts with;

e Etcd node(s) that records system state that is manipulated by, and used by, the
master node(s);

e Infrastructure node(s) to which the core OpenShift infrastructure components are
deployed;

e Worker node(s) to which the OpenRiskNet software tools are deployed.

An OpenShift environment executes software as containers (typically Docker containers)
running in a “Pod”, which is the fundamental execution unit in Kubernetes. A pod is
scheduled to run on a particular node, and can be configured to restart if it fails, and
multiple pods can be run in parallel to allow the application to scale.

Pods do not normally exist in isolation, but are managed by a Replication Controller. Pods
are normally accessed through a Service that allows access to the pods from within the
OpensShift cluster. Access from outside the cluster (e.g. from your web browser) is
provided by a Route which acts as a proxy for the service. Pods, Replication Controllers,
Services and Routes are just a small number of types of component (knows as API
objects) that can be present in an OpenShift cluster. A full description can be found in the
OpensShift architecture documentation [7].

Description of deployment types

The master, etcd, infrastructure and worker functions mentioned above can be deployed
in a variety of ways. OpenRiskNet aims to support several of these.

All-in-one

All functions deployed to a single server. This provides a very simple environment that is
suitable for getting started, for testing or for some simple studies, but not suitable for
long term production environments or computationally demanding workflows.

A special case is Minishift, a shrink-wrapped distribution of OpenShift that is suitable for
deployment to a standard laptop.

Standard Availability

OpenRiskNet m Page 9

https://docs.openshift.org/latest/architecture/core_concepts/index.html#architecture-core-concepts-index
https://paperpile.com/c/4HBNE2/fDLw

Here the functions are deployed to multiple servers (nodes) providing some scalability
(including multiple worker nodes for performing computationally demanding work), but
most functions only have a single instance so there are multiple potential points of failure.
It does however allow a moderately capable environment to be created whilst being
economical with computing resources. While there are several variants of this, a typical
environment is as follows:

1. One node running the master and etcd
2. One node running the infrastructure components
3. One or more worker nodes running the OpenRiskNet software tools.

If resources are particularly limited the master, etcd and infrastructure components could
be run on a single node, or the infrastructure components could be run on worker nodes.

The OpenRiskNet environment plans to support basic standard availability scenarios.

High Availability

Production environments should aim to minimise the amount of downtime needed for
maintenance or caused by hardware or software failure. Such high availability (HA)
environments need redundancy of components so that if one fails or is taken down for
maintenance other(s) are still present to allow operations to continue. A general rule is
that there should be three of each component (where HA is imperative this can be
extended to five of each component). As such, an ideal HA environment would have 3
masters, 3 etcd, 3 infrastructure and any number of worker nodes. In addition, a load
balancer is needed to distribute requests (e.g. to the master) across the nodes.

Whilst this provides much improved robustness it comes with a significant extra cost of
resources.

The OpenRiskNet environment plans to support a basic high availability scenario that an
administrator can use to create a VRE for their organisation.

Autoscaling

Scientific workflows are slightly unusual in that there are typically relatively few end
users, but they can run very computationally demanding jobs. Contrast this to typical
consumer applications where there may be a very large number of concurrent users, but
the computational demand from each user is relatively modest. This results in scientific
workflows often being much more “lumpy” in their resource needs, often requiring lots of
computational power for a short period, followed by periods of relative inactivity. Keeping
sufficient resources permanently available is costly and inefficient. Instead it is better if
the underlying computational resources can be scaled in and out on demand. This is
particularly appropriate for cloud based environments where you only pay for the
resources that are being used.

The OpenRiskNet environment plans to support basic auto-scaling capabilities allowing
compute intensive jobs to be run over multiple servers. The extent of this auto-scaling will
be configurable by the administrator of the VRE.

Persistent Storage

Most applications need to store data in some way, and this involves writing to permanent
storage (files or a database) that will ultimately be backed by disk storage. In a distributed

OpenRiskNet m Page 10

computing environment this can be tricky to achieve as services can potentially be
deployed to any node in the cluster, and can move between different nodes over time.
Either the service has to be deployed to where the storage is available or the storage has
to be able to “follow” the service and be accessible from wherever the service is
deployed.

OpenShift supports a number of persistent storage options. We are investigating 3 of
these:

1. NFS where a single file server provides storage to other servers across the
network.

2. GlusterFS where a series of storage servers provides storage to other servers
across the network. This scales better than NFS but requires significantly more
resources.

3. Cloud native storage where the native storage mechanism (e.g. Cinder for
OpenStack, EBS for Amazon Web Services) is use to mount volumes to the node on
which the particular service that needs it is located. This is ideal for services such
as a database that needs fast locally attached storage, but can only be attached to
a single node at any time.

Further information can be found in the OpenShift persistent storage documentation [8].

NFS is generally most suited for small, standard availability environments, GlusterFS for
high availability and large clusters, and Cloud native storage for any cloud based
environment, but only for certain purposes.

Core OpenRiskNet Infrastructure Components

An OpenRiskNet VRE will comprise a number of core components that provide the basic
infrastructure and support to other components (typically applications) that provide the
scientific content. These core infrastructure components will include:

Single Sign On

Most components that an end user interacts with will require some form of authentication
and authorisation. The user experience is greatly improved (and the effort needed to
manage it) if the system supports Single Sign On (SSO) so that the user logs into a single
centrally managed system (e.g. by specifying their username and password). That login is
used to control access to the multiple systems available. Logging in once logs the user
into all applications, though the level of access (e.g. read or write access) can differ for
each application.

OpenRiskNet will provide a SSO environment through the Keycloak project [9] from Red
Hat. Keycloak is an open source “upstream” project that forms the basis of their Red Hat
SSO [10] commercially supported product. Keycloak is already provisioned as part of the
initial OpenRiskNet reference site.

Metrics and Logging

When administering a complex deployment like a VRE, it is important to be able to track
and monitor what is happening within the system. When the system is distributed across

OpenRiskNet 5] Page 11

https://docs.openshift.org/latest/install_config/persistent_storage/index.html
https://paperpile.com/c/4HBNE2/MaFy
http://www.keycloak.org/
https://paperpile.com/c/4HBNE2/Xbr7
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/
https://paperpile.com/c/4HBNE2/ywkC

multiple servers this can become tricky, with log file and usage metrics being distributed
across the servers in different places.

Consolidated logging provides a mechanism to consolidate logs from the nodes and the
pods running the software into a single searchable database. OpenShift provides an
implementation for consolidated logging based on Elasticsearch (as the searchable
database for the logs), Fluentd (for consolidating the logs from the different sources into
the database), and Kibana (as a query tool and dashboard for examining the logs). More
information can be found in the Openshift aggregated logging documentation [11].

Consolidated metrics provides a mechanism to consolidate runtime metrics such as
memory usage, CPU utilisation and network usage into a single place so that resource
utilisation can be monitored and assessed. Services can be auto-scaled based on these
metrics (e.g. to scale out the pods or the nodes to support higher computational loads as
needed). OpenShift provides an implementation for consolidated metrics based on a
Cassandra database, Heapster and Hawkular. More information can be found in the
OpenShift cluster metrics documentation [12].

Consolidated logging and metrics are already provisioned as part of the initial OpenRiskNet
reference site.

Certificate management

Providing secure web sites using encryption of the data in transit using HTTPS as opposed
to unencrypted using plain HTTP is considered good practice, and is now expected to be
the norm for web based applications. HTTPS (actually usually TLS) encrypts the pages
using public/private key pairs that form part of a certificate that a web browser can
inspect to determine if it should trust that site. Certificates can include a chain of trust
back to a trusted root certificate authority (CA) that web browsers are preconfigured to
treat as trusted sources (this is achieved by signing a certificate with another certificate
forming a chain of trust that extends up to a trusted root CA). Self signed certificates
allow encryption but do not provide this chain of trust, so browsers typically provide
warnings to the user that the web site is not trusted, which most users find disturbing.

To prevent users being warned about the OpenRiskNet reference site (and any VRE that a
third party deploys) not being trusted we need to ensure that trusted certificates are
obtained and deployed for all public facing services (typically those exposed as OpenShift
routes) and also that they are updated before they expire. This is a non-trivial exercise.

Historically, trusted certificates are obtained from an organisation such as Verisign that
charges for this service. Typically this process is partly manual (e.g. involving sending
emails). This process is neither suitable for a VRE where we want a high degree of
automation, nor cost effective for academic groups or groups with low budgets.

More recently Let’'s Encrypt [13] was set up with support from many mainstream IT
companies to provide a public, free and transparent mechanism for generating trusted
certificates, with the processes for generating and renewing certificates being completely
automatable. As such it is ideally suited for the needs of the OpenRiskNet VRE.

OpenRiskNet aims to provide a mechanism to generate Let’s Encrypt certificates for all its
public facing services. This has partly been done for the initial reference site.

OpenRiskNet m Page 12

https://docs.openshift.org/latest/install_config/aggregate_logging.html
https://paperpile.com/c/4HBNE2/oduB
https://docs.openshift.org/latest/install_config/cluster_metrics.html
https://paperpile.com/c/4HBNE2/7gwZ
https://letsencrypt.org/
https://paperpile.com/c/4HBNE2/IILx

Jenkins and CI/CD

Continuous Integration and Continuous Deployment (CI/CD) have become a key part of
modern software development practices. OpenRiskNet wants to allow provision of CI/CD
within a VRE, and will include this in the OpenRiskNet reference site. This will allow the
VRE to be used not only for deploying working software but also for building and testing it
in the first place (e.g. building and testing a deployable version of a piece of software
every time the source code or any dependencies are updated).

It is expected that a typical VRE will not utilise the full CI/CD capabilities, but will just
deploy software that has been built and tested by another VRE (primarily the OpenRiskNet
reference site), but where this is wanted it should be possible to provide.

One of the key additions that OpenShift provides over plain Kubernetes is CI/CD
capabilities. This comes in multiple flavours, of which 2 are the most important.

1. Source2lmage (s2i) that uses Docker containers as a “build machine” that
generates the resulting Docker images containing the packaged software, and to
deploy to a Docker image repository (either within the OpenShift cluster or to a
public repository such as Docker Hub)

2. Jenkins [14] that provides a mechanism for defining and running more complex
Cl/CD pipelines, but achieving similar goals.

Source2lmage is built into OpenShift so is automatically available, and will be suitable for
many build processes. As many OpenRiskNet partners already use Jenkins pipelines we
also want to provision Jenkins to a OpenRiskNet VRE to make it simple for partners and
3rd parties to migrate their built CI/CD process to an OpenRiskNet VRE.

The initial OpenRiskNet reference site has Jenkins provisioned, and also provides full s2i
capabilities.

OpenRiskNet End User applications

The prime purpose of an OpenRiskNet VRE is to provide access to applications that an end
user (e.g. chemist or safety assessor) can use for chemical risk assessment. As such the
most important components will be these end user applications provided by the
OpenRiskNet partners and third parties.

As the state of development of the infrastructure is at a very early stage, work in the
deployment of end user applications has only just started and is currently very limited in
scope. However, many of the requirements necessary for this and the procedures needed
have been identified.

Key to this is the need to provide applications in the form of Docker images, and to define
OpenShift templates and/or Kubernetes Helm charts that describe how the container
image will be deployed to the OpenRiskNet VRE and what resources it requires.

Squonk

The Squonk Computational Notebook is a product from IM that was chosen as the
prototype application to deploy. It was chosen as it was already fully containerised and
designed for environments like Kubernetes and OpenShift. Nonetheless, some significant
work was needed to allow the Squonk Computational Notebook to be deployed to

OpenRiskNet m Page 13

https://jenkins.io/
https://paperpile.com/c/4HBNE2/iVWN

Openshift, and some further work is still required to complete the process.

Planned applications

Applications from other OpenRiskNet partners that are expected to be incorporated into
the OpenRiskNet VRE environment include:

e NTUA Jagpot modelling platform [15]. A collection of RESTful webservices for QSAR
modelling, read-across, dose-response modelling, biokinetics modelling, optimal
experimental design and interlaboratory comparison.

e JGU WEKA REST Service. RESTful APl webservice to WEKA Machine Learning
Algorithms.

e lazar (nano-lazar) (Lazy Structure- Activity Relationships) a modular framework for
predictive toxicology.

ToxCast and ToxRefDB data APIs with more to be added in the future.
Conformal Prediction toolkits and web GUI for QSAR modeling.

In addition we plan to incorporate third party applications. Some of these will come from
members of the associated partner program, where the core OpenRiskNet partners will
assist those associates to incorporate their tools, and some may be third party tools from
organisations with no formal association to OpenRiskNet. We anticipate that these
additional applications might include:

e Jupyter Notebooks

The ultimate aim is that a third party can provide what is necessary to deploy their
application to an OpenRiskNet VRE (by means of providing the container images and
deployment templates) purely from the documentation and examples that OpenRiskNet
provides.

Interoperability

A key objective of the OpenRiskNet project is to provide interoperability between
applications within a VRE, so that, for instance, a service from one application can be
consumed by a client from another application without either application needing to know
of the other’s existence.

Work is ongoing to address interoperability, such as activities described in report D2.2
“Initial APl version provided to providers of services”, and the work of the Ontologies Task
Force. These are not described in this report as they will be covered elsewhere (e.g. D2.3,
D4.2, D4.3). However they are a key objective of the overall project, and can be considered
an implicit part of the work in this report.

Deployment procedures

The mechanism for deployment into a running VRE, in simple terms, is the same for
infrastructure components and end user applications that run on top of that
infrastructure:

1. Create or locate container image(s) for the specific application(s) to be
incorporated;

OpenRiskNet 5] Page 14

http://app.jaqpot.org:8080/jaqpot/swagger/
https://paperpile.com/c/4HBNE2/64mP

2. Generate deployment templates;
3. Deploy using those templates.

Create or locate container image(s)

The process of generating the container images is outside the scope of the OpenRiskNet
project as most organisations will have their own development procedures and we do not
wish to change these. However a VRE may offer the ability to run the build process that
will create container images. The OpenRiskNet reference site will provide such facilities.

Whatever the mechanism, the end result of step 1 will be container image(s) accessible
from a registry such as Docker Hub or the OpenShift container registry, running within a
VRE.

Generate deployment templates

Kubernetes and OpenShift work on the basis of “APl objects”. These are objects that
defined the working parts of an application. Examples include the Pods which run the
actual containers, the Services that provide access to those Pods from other Pods in the
systems, and Routes that provide external access to those services. There are many other
types of APl objects that are relevant. See [7] for more details.

These APl objects are typically defined in files in JSON or YAML format and can be created
directly using the CLI (the oc tool), the web console or the REST API. However it is usually
more flexible to create API objects by using templates that allow easy parameterisation of
the process e.g. for generating passwords or configuration options.

This process of generating templates that describe how the application (e.g. its container
images) should be deployed is a critical part of the overall process. Complete examples
are described in the Recipes and Deployments sections. A simple example is outlined in
Annex 1.

Deploy using those templates

As indicated above, templates are deployed to the OpenShift environment, typically using
the CLI, but deployment can also be done using the web console or the REST API.

The person doing the deployment is not necessarily the same person as the person who
creates the container images and templates, especially where elevated privileges are
required.

Typically applications are deployed into separate “Projects” (equivalent to a Kubernetes
Namespace) allowing isolation of application and security aspects. OpenShift provides a
comprehensive security and privileges infrastructure, but describing this is out of scope
for this document.

Recipes

As described above, generating the deployment templates is one of the most critical
aspects and will be a process that is new to most developers. These templates can range
from very simple to quite complex. To aid the process of learning how to generate these

OpenRiskNet m Page 15

https://paperpile.com/c/4HBNE2/fDLw

templates and to disseminate this knowledge to partners, Associated partners and
ultimately to third parties (Virtual Access Users) we have taken the approach of creating
‘recipes’ for deploying applications to an OpenRiskNet VRE (based on OpenShift). These
describe the templates needed and the steps needed to deploy. As such they provide
streamlined (e.g. partly automated) examples that can be followed. They allow a user to
run through the whole process and to get a good understanding of what is involved. As
such they are expected to be primarily learning exercises. Contrast this with the
Deployments section below.

In addition, we have generated recipes for deploying OpenShift environments of different
types into which these applications can be deployed. Different types of environment are
covered. Again these are primarily aimed as learning exercises, and should be contrasted
with the Environments section below which provide more concrete examples.

Both types of recipes will continue to be created and enhanced during the lifetime of the
OpenRiskNet project.

Both types of recipe are contained in the OpenRiskNet GitHub repository
(https://github.com/OpenRiskNet/home/tree/master/openshift), and are publicly
accessible. See the README document [1] for current details, though at the time of writing
some (not all) of the recipes include:

OpenShift deployment:

e Creating a Minishift environment
e Creating a single server “All-in-one” environment
e Creating a multi server environment.

Application deployment:

Deploying a PostgreSQL database

Example deployment of Wordpress and MySQL
Deploying the 3rd party CDK Depict application
Deploying Keycloak for SSO

Deploying example servlet application using SSO
Deploying Django application using SSO
Securing routes with TLS using ACME controller.

Uppsala workshop

A workshop was held at Uppsala University on 25-26 September 2017 for partners to gain
experience with aspects covered in this document. The principles of Docker and
Kubernetes were explained, and the recipes described above were used for hands-on
sessions where the participants tried these out in practice. The workshop was attended
by participants from partners IM, DC, UU, UM, NTUA, JGU and CRG.

Other aspects that were covered were:

e [M outlined a plan of what would be needed for adapting the Squonk
Computational Notebook for deployment to an OpenRiskNet VRE.

e CRG provided an overview of Nextflow and how it can be used to orchestrate
complex multi-step workflows to an environment like an OpenRiskNet VRE.

e DC led a discussion on providing common APIs and a service for discovering those
APls.

e UU presented KubeNow developed in the PhenoMeNal H2020 consortium for

OpenRiskNet m Page 16

https://github.com/OpenRiskNet/home/tree/master/openshift
https://github.com/OpenRiskNet/home/blob/master/openshift/README.md
https://paperpile.com/c/4HBNE2/sG3V
https://pharmb.io/blog/orn-workshop-2017/

cloud-agnostic instantiation of on-demand Kubernetes clusters.

OpenRiskNet - 5] Page 17

Environments

Whilst the recipes described above aim to provide training materials for how to create an
OpenShift environment, more concrete examples are needed to provide real instances that
can be used to deploy real test or production environments. To achieve this we have
created an “Environments” section that will provide concrete examples of how to deploy
environments of particular types. Currently, there is only a description for creating a
standard availability (no redundancy) environment to an OpenStack cloud platform, but we
plan to create recipes for high availability environments and to handle other cloud
platforms like AWS.

The overall process of setting up an environment in OpenRiskNet is similar for all
environments. The differences mostly relate to the number and types of nodes being
installed and specific details of the deployment. The general process is as follows:

1. Create the necessary networking environment so that the hostnames of all servers
that will be part of the cluster can be resolved from each server.

2. Create a bastion server in the network. This is a machine that the administrator
can connect to using SSH and from where they can manage the cluster.

3. Provision the necessary servers (either physical or virtual) that will form the
cluster. Centos7 is used as the base operating system, though Red Hat Enterprise
Linux can also be used with a paid for subscription.

4. Deploy the additional RPM packages required by OpenShift.

5. Create an Ansible inventory file that defines the details of the cluster. This is the
key configuration of the cluster.

6. Run the Ansible playbook provided by OpenShift that provisions the cluster using
the inventory file. This deploys the necessary software to different nodes (e.g.
master node, infrastructure node etc.), configures the servers and starts all the
necessary services.

7. Optionally run a set of diagnostics provided by OpenShift to check that the cluster
is functioning correctly.

Full details are present in each of the Environment definitions in GitHub. The expectation
is that these can be run by any person who is experienced in system administration.

Currently, many of these steps are somewhat manual in nature, but work is ongoing to
provide more improvements in terms of:

e Using the TerraShift project created by UU to better automate and standardise the
provision of the underlying servers onto which OpenShift will be deployed.

Further automation most likely in the form of Ansible Playbooks.

Establishing processes for backup and disaster recovery.

Establishing processes for managing and scaling the cluster.

Better establishing procedures for providing persistent storage.

Details of these environments can be found in the GitHub repository. They will be updated
and added to during the project.

Deployments

As Environments provided concrete examples of creating an OpenShift environment, we
have created “Deployments” that provide concrete examples of how to provision end user
applications to such an OpenShift environment as well as how to provision the necessary

OpenRiskNet m Page 18

https://github.com/andersla/TerraShift
https://github.com/OpenRiskNet/home/tree/master/openshift/environments

infrastructure components that those applications need. Their purpose, when combined
with creating an OpenShift environment, is to provide a relatively straight forward
mechanism for setting up an OpenRiskNet VRE.

These deployments follow similar principles to the ‘recipes’ described earlier, but are
more opinionated in terms of the nature of the deployments (e.g. naming conventions) and
provide better automation. Currently that automation is in the form of bash scripts,
though we may provide further automation in the form of Ansible Playbooks, and these
should also be deployable to the OpenShift web console allowing self provisioning of the
components in the VRE from a web browser.

These deployments can be found in the GitHub repository and are in a preliminary form.
They will change and be extended considerably over the duration of the project. The
deployments present at the time of writing are:

e openrisknet-infra project containing core infrastructure components that will be
required by OpenRiskNet applications (currently a PostgreSQL database and the
Keycloak SSO)

e acme-controller project providing the ACME controller that can be used to
generate and update certificates for HTTPS on publicly exposed routes.

e jenkins project providing the Jenkins CI/CD system that replaces the initial
stand-alone Jenkins environment described in the D2.1 report.

e Squonk project providing an initial deployment of the Squonk Computational
Notebook.

As a simple example that provides an overview of the general approach, the Jenkins
deployment consists primarily of:

1. An OpenShift template describing the APl objects that need to be created. This is
based on one provided by OpenShift, but adapted slightly for OpenRiskNet;

2. An example of how to prepare a persistent volume for use by Jenkins, and how to
deploy this (exact details will differ depending on the particular environment to
which this is deployed);

3. A bash script for how to deploy an environment / tool from the template;

4. A bash script for how to undeploy that environment / tool if it is no longer needed.

Other deployments follow similar patterns, though some involve more steps.

These deployments have been used to create the current OpenRiskNet reference site
described in the next section.

OpenRisknet Reference site

This section describes the current OpenRiskNet reference site.

We label this site as a development site (hence the ‘dev’ prefix on the domain name). As
the project progresses, we will create a more stable production site.

This reference site was created using the standard availability environment on an
OpenStack cloud platform that was described in the Environments section and the
multiple deployments were described in the Deployments section.

OpenRiskNet m Page 19

https://github.com/OpenRiskNet/home/tree/master/openshift/deployments
https://github.com/tnozicka/openshift-acme

Compute infrastructure

The reference site is running off the Swedish national resource SNIC Science Cloud (SSC)
[16] to which OpenRiskNet has been given access through the UU partner. SSC has joined
the OpenRiskNet project as a technology partner through the associated partner program.
It would also be possible to run the reference site on other cloud platforms like AWS. SSC
provides us with access to the following regions (see [17]):

HPC2N

This has limited resources (the 64GB RAM limit is the primary limitation) so we have been
able to use this for basic installations, but it is not suitable for larger scale deployments
or for high availability environments as we cannot deploy sufficient numbers of servers.
However it has sufficient resources for a simple standard availability environment, and the
development reference site is currently running in this region.

UPPMAX

This is a new region that is not yet fully accessible. It has significantly more resources, so
we plan to use this for experimenting with setting up high availability clusters and for
running a production cluster with moderate computational power.

Current Implementation

To summarise the above, the current reference site is:

In development status, not yet ready for real workloads;
Running on the HPC2N region Swedish Science Cloud;
Cloud provisioning is based on OpenStack which is part of the SNIC Science Cloud
deployment;
e Standard availability deployed using the recipe described in the Environment
section comprising:
o one master node also running etcd
o one infrastructure node
o two worker nodes;
e Nodes are based on the Centos7 operating system with additional packages
required by OpenShift installed;
OpenShift was deployed using the Ansible Advanced installer;
Current OpenShift version used is 3.6;
Aggregated logging and metrics have been deployed;
It comprises the following deployments:
o PostgresSQL for database storage
Keycloak for SSO
ACME controller for generation and renewal of TLS certificates
Jenkins for running CI/CD pipelines
Squonk Computational Notebook as an example end user application.

O O O O

The current reference site for the OpenRiskNet e-infrastructure can be accessed at:

e Admin console: https://dev.openrisknet.org:8443/ (a login is required)
e End user access: https://home.dev.openrisknet.org/

OpenRiskNet m Page 20

https://cloud.snic.se/
https://paperpile.com/c/4HBNE2/Kp9g
https://paperpile.com/c/4HBNE2/rb5I
https://www.openstack.org/
https://dev.openrisknet.org:8443/
https://home.dev.openrisknet.org/

As this is a development site, is currently not expected to be stable and will likely be
destroyed and re-created continually. A more stable production site will become available
at a later stage in the project.

Instance Image Availability Power Time since

O Naime N6 IP Address Size Key Pair Status Zone Task State created Actions

0O worker-2 = + 192.168.0.5 ssc.xlarge shic Active nova None Running 1 week, 1 day Create Snapshot = ~

0 worker-1 = ¢ 192.168.0.15 ssc.xlarge snic Active nova None Running 1 week, 1 day Create Snapshot =~
* 192.168.0.8

0 infra-1 - Floating IPs: ssc.medium snic Active nova None Running 1 week, 1 day Create Snapshot = v
» 130.239.81.162
¢ 192.168.0.13

0O master-1 - Floating IPs: ssc.medium snic Active nova None Running 1 week, 1 day Create Snapshot =~
¢ 130.239.81.165
« 192.168.0.20

(@] bastion - Floating IPs: ssc.small snic Active nova None Running 1 week, 1 day Create Snapshot =~

« 130.239.81.208

Figure 1. OpenStack console showing the current development servers running in the
HPC2N region of the Swedish Science Cloud

ICATION
squonk-app http://portal-squonk.dev.openrisknet.org/portal

DERLOYMEN 350 <0.01 0.02
4 cellexecutor, #1 3 Memc CoresCPU KiB O 1pod

’ (‘h‘e;'r1‘sie.r.vwces—baswc, #1 222 <OOW B 052. & O 1pod

? é;r-e;e‘r-v‘ices, #1 G ‘1'4: v ODW B Z'Q O 1 pod

> portal #1 14 003 13 o
s‘(‘:;uomk“mfra

> postgres, #1 T O e

> rabbitma, #1 ey e B O e

Figure 2. OpenShift console showing the Squonk project that contains the components of
the Squonk Computational Notebook

OpenRiskNet - 5] Page 21

+ Newnotebook sdfsdfsd - 1) Create savepoint

% o
2 H
g
5 Q SdfUpload1 &
2 RDKitButinaClustering1
SDFile
Name Owner Threshold
dhfr_standardized.sdf.gz -
jon a7 sdfsdfsd 1 0.70 =
g itlad veer Ghoose fie | o chosen [Upioad |) &
4 F it method
Name field name btk s
hac
(& Outputfragment
Descriptor
L rdkit
Metric
tanimoto
m 5 .
Lipinski (RDKit)1 L 4
Filter mode
INCLUDE_PASS A
Number of violations | =ROKitMaxMinPickersimple1 b .*
Q 1
Number to pick
Mol weight 100
2% = [, 00 - 5000 Threshold
- = Pl
LogP
ChemblActivitiesFetcher CsvUpload SdfUpioad
_| 50 Fragment method
hac
p > HBD count Output fragment
H =
Pl N s =5 Descriptor
SmilsStructures MolfleUpload PabUpload BN Gt morgan2
o -[10
i/ s i

K& = b/,
g v

Mol2Upload ZipileUpload ConvertToMolecules

Figure 3. Squonk computational Notebook application running in the OpenRiskNet
reference site

Access control
The current reference site has access control in place.

Two authentication mechanisms are in place:

1. OAuth authentication against GitHub, restricted to members of the ‘developers’
team in the OpenRiskNet partner organisations. That allows any of the partners
who is a member of this team to log in through this mechanism.

2. Additional usernames and passwords specified in a htpasswd file. This is just used
for creating special administrator accounts.

When first connecting to the web console, one is prompted to log in using one of these
mechanisms as shown below:

OPENSHIFT ORIGIN

Log in with...

End users will not use this mechanism. They will by directed to the Keycloak SSO login.
Keycloak provides various ways to manage logins, and it is yet to be decided which we will
use. One possibility is to federate out to a social login such as LinkedIn so that
OpenRiskNet does not need to manage user passwords. Each VRE administrator can

OpenRiskNet m Page 22

choose whatever approach is best for their needs. A common option would be to federate
to an Active Directory or LDAP directory managed by their organisation.

Future plans

At some stage during the first half of 2018 we expect to be in a position to create a stable
production reference site to which we can start to grant access to project and associated
partners, and, eventually, third parties (i.e. virtual access Users). This site will have limited
high availability capabilities and moderate computation power, sufficient for most of the
workflows relevant to the project.

Before we are ready for this, the development site will continue to be used to establish
what is needed for a stable production site. This will include:

Better automation of provisioning of server infrastructure
Providing high availability capabilities such as multiple masters
Providing distributed persistent storage (probably though GlusterFS) and cloud
native storage
e Providing additional infrastructure components that are required by the end user
applications
Generation and renewal of trusted TLS certificates for all public facing services
Providing auto-scaling capabilities
Implementing backup and disaster recovery procedures
Provision of additional end user applications from partners and third parties
Use of SSO for all deployed end user applications.

We anticipate having this ready for internal use by the middle of 2018 (Month 18 of the 36
month project) and ready for external use by the end of 2018.

Over this period the various partner and third party applications listed in the “Planned
applications” section will be adapted so that they can be deployed via the OpenRiskNet
VRE using the approaches described in this document.

Documentation

The documentation is managed in the OpenRiskNet GitHub repository and OpenRiskNet
wiki (https://github.com/OpenRiskNet/home/wiki). Currently this is mostly technial
information primarily for administrators and developers, and is contained in the openshift
directory of the home repository (see
https://github.com/OpenRiskNet/home/tree/master/openshift). As we proceed we will also
generate end user documentation that we expect will also be stored in GitHub but would
be deployed to the reference site and be directly accessible from there as well as from
the main OpenRiskNet site.

OpenRiskNet m Page 23

https://github.com/OpenRiskNet/home/wiki
https://github.com/OpenRiskNet/home/tree/master/openshift

CONCLUSION

This report describes the initial setup of the development reference site for the
OpenRiskNet e-infrastructure, and the accompanying documentation. The report has been
written in a manner to provide an overview of the reference site, and as such forms part
of the complete set documentation.

Detailed instructions for creating the reference site, or a separate VRE similar to the
reference site are contained in the OpenRiskNet GitHub “home” repository
(https://github.com/OpenRiskNet/). These documents should provide sufficient
information for a reasonably skilled IT administrator to set up such a site. Detailed User
guidance notes are also in preparation via the OpenRiskNet Wiki.

The documentation will continue to be enhanced during the project, most notably
describing additional types of environment (e.g. High Availability environments) and the
deployment of additional applications.

GLOSSARY

The list of terms or abbreviations with the definitions, used in the context of OpenRiskNet
project and the e-infrastructure development is available at:

https://github.com/OpenRiskNet/home/wiki/Glossary

OpenRiskNet 5] Page 24

https://github.com/OpenRiskNet/
https://github.com/OpenRiskNet/home/wiki/Glossary

REFERENCES

10.

1.

12.

13.

14.

OpenRiskNet. OpenRiskNet/home. In: GitHub [Internet]. [cited 1 Dec 2017].
Available: https://github.com/OpenRiskNet/home

Docker. In: Docker [Internet]. [cited 1 Dec 2017]. Available:
https://www.docker.com/

Home | INDIGO DataCloud [Internet]. [cited 1 Dec 2017]. Available:
https://www.indigo-datacloud.eu

PhenoMeNal - Large-scale Computing for Medical Metabolomics [Internet].
[cited 1 Dec 2017]. Available: http://phenomenal-h2020.eu

Kubernetes vs. Docker Swarm | Platform9. In: Platform9 [Internet]. [cited 1 Dec
2017]. Available:
https://platform9.com/blog/kubernetes-docker-swarm-compared/

OpenShift: Container Application Platform by Red Hat, Built on Docker and
Kubernetes [Internet]. [cited 1 Dec 2017]. Available:
https://www.openshift.com/

Overview - Core Concepts | Architecture | OpenShift Origin Latest [Internet].
[cited 1 Dec 2017]. Available:
https://docs.openshift.org/latest/architecture/core_concepts/index.html#archi
tecture-core-concepts-index

Overview - Configuring Persistent Storage | Installation and Configuration |
OpenShift Origin Latest [Internet]. [cited 1 Dec 2017]. Available:
https://docs.openshift.org/latest/install_config/persistent_storage/index.html

Keycloak Team. Keycloak [Internet]. [cited 1 Dec 2017]. Available:
http://www.keycloak.org/

Product Documentation for Red Hat Single Sign-On - Red Hat Customer Portal
[Internet]. [cited 1 Dec 2017]. Available:
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/

Aggregating Container Logs | Installation and Configuration | OpenShift Origin
Latest [Internet]. [cited 1 Dec 2017]. Available:
https://docs.openshift.org/latest/install_config/aggregate_logging.html

Enabling Cluster Metrics | Installation and Configuration | OpenShift Origin
Latest [Internet]. [cited 1 Dec 2017]. Available:
https://docs.openshift.org/latest/install_config/cluster_metrics.html

Let’s Encrypt - Free SSL/TLS Certificates [Internet]. [cited 1 Dec 2017].
Available: https://letsencrypt.org/

Jenkins. In: Jenkins [Internet]. [cited 1 Dec 2017]. Available:

OpenRiskNet m Page 25

http://paperpile.com/b/4HBNE2/sG3V
http://paperpile.com/b/4HBNE2/sG3V
https://github.com/OpenRiskNet/home
http://paperpile.com/b/4HBNE2/r8qI
https://www.docker.com/
http://paperpile.com/b/4HBNE2/dMrd
https://www.indigo-datacloud.eu/
http://paperpile.com/b/4HBNE2/g3nC
http://paperpile.com/b/4HBNE2/g3nC
http://phenomenal-h2020.eu/
http://paperpile.com/b/4HBNE2/qB3d
http://paperpile.com/b/4HBNE2/qB3d
https://platform9.com/blog/kubernetes-docker-swarm-compared/
http://paperpile.com/b/4HBNE2/8AtM
http://paperpile.com/b/4HBNE2/8AtM
https://www.openshift.com/
http://paperpile.com/b/4HBNE2/fDLw
http://paperpile.com/b/4HBNE2/fDLw
https://docs.openshift.org/latest/architecture/core_concepts/index.html#architecture-core-concepts-index
https://docs.openshift.org/latest/architecture/core_concepts/index.html#architecture-core-concepts-index
http://paperpile.com/b/4HBNE2/MaFy
http://paperpile.com/b/4HBNE2/MaFy
https://docs.openshift.org/latest/install_config/persistent_storage/index.html
http://paperpile.com/b/4HBNE2/Xbr7
http://www.keycloak.org/
http://paperpile.com/b/4HBNE2/ywkC
http://paperpile.com/b/4HBNE2/ywkC
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/
http://paperpile.com/b/4HBNE2/oduB
http://paperpile.com/b/4HBNE2/oduB
https://docs.openshift.org/latest/install_config/aggregate_logging.html
http://paperpile.com/b/4HBNE2/7gwZ
http://paperpile.com/b/4HBNE2/7gwZ
https://docs.openshift.org/latest/install_config/cluster_metrics.html
http://paperpile.com/b/4HBNE2/IILx
http://paperpile.com/b/4HBNE2/IILx
https://letsencrypt.org/
http://paperpile.com/b/4HBNE2/iVWN

https://jenkins.io/index.html

15. Jagpot Quattro Documentation [Internet]. [cited 1 Dec 2017]. Available:
http://app.jagpot.org:8080/jaqpot/swagger/

16. SNIC Science Cloud. In: SNIC Science Cloud [Internet]. [cited 1 Dec 2017].
Available: https://cloud.snic.se/

17. System status. In: SNIC Science Cloud [Internet]. 16 Mar 2017 [cited 1 Dec
2017]. Available: https://cloud.snic.se/index.php/status/

OpenRiskNet m Page 26

https://jenkins.io/index.html
http://paperpile.com/b/4HBNE2/64mP
http://app.jaqpot.org:8080/jaqpot/swagger/
http://paperpile.com/b/4HBNE2/Kp9g
http://paperpile.com/b/4HBNE2/Kp9g
https://cloud.snic.se/
http://paperpile.com/b/4HBNE2/rb5I
http://paperpile.com/b/4HBNE2/rb5I
https://cloud.snic.se/index.php/status/

ANNEXES

Annex 1. APl Objects and templates

These APl objects are typically defined in files in JSON or YAML format. A simple example
of a definition of a Pod is:

apiVersion: vi1
kind: Pod
metadata:
name: postgresql-1
spec:
containers:
- env:
- name: POSTGRESQL_ADMIN_USER
value: secret
- name: POSTGRESQL_USER
value: useril23
- name: POSTGRESQL_PASSWORD
value: secret
- name: POSTGRESQL_DATABASE
value: mydatabase
image: centos/postgresql-95-centos7:9.5
name: postgresql
ports:
- containerPort: 5432
protocol: TCP
volumeMounts:
- mountPath: /var/lib/pgsql/data
name: postgresql-pvol
volumes:
- name: postgresql-pvol
emptyDir: {}

pod.yaml: example definition of a Pod API object

These definitions can be introduced into an OpenShift environment by several means,
most commonly using the command line interface (CLI). For instance the above definition
can be created as follows:

oc create -f pod.yaml
The result would be that pod running the PostgreSQL database within the system.

Whilst this works for a simple case, it does not provide much flexibility (notice how
usernames and passwords are hard coded into the pod definition). To address this,
Kubernetes and OpenShift provide a mechanism of templates that allow the user to
customise parameters and to easily group together the multiple APl object definitions that
are usually required to deploy a complete application. For instance the above Pod example
can better be defined as a template:

kind: Template
apiVersion: vi1
metadata:

name: postgresql

OpenRiskNet m Page 27

labels:
template: postgresql-template

objects:

- apiVersion: vl
kind: Pod
metadata:
name: postgresql-1
spec:
containers:
- env:
- name: POSTGRESQL_ADMIN_PASSWORD
value: ${POSTGRESQL_ADMIN PASSWORD}
- name: POSTGRESQL_USER
value: ${POSTGRESQL_USER}
- name: POSTGRESQL_PASSWORD
value: ${POSTGRESQL_ PASSWORD}
- name: POSTGRESQL_DATABASE
value: ${POSTGRESQL_DATABASE}
image: centos/postgresql-95-centos7:9.5
name: postgresql
ports:
- containerPort: 5432
protocol: TCP
volumeMounts:
- mountPath: /var/lib/pgsql/data
name: postgresql-pvol
volumes:
- name: postgresql-pvol
emptyDir: {}

parameters:

- displayName: Database Admin Password
description: Database postgres user password
name: POSTGRESQL_ADMIN_PASSWORD
from: "[a-zA-Z0-9]{8}"
generate: expression

- displayName: Database Username
description: Database username
name: POSTGRESQL_USER
value: useril23
required: true

- displayName: Database User Password
description: Database user password
name: POSTGRESQL_PASSWORD
from: "[a-zA-Z0-9]{8}"
generate: expression

- displayName: Database name
description: Database name
name: POSTGRESQL_DATABASE
value: mydatabase
required: true

pod-template.yaml: example of specifying a Pod definition using a template

In this example the password for the database is not hard-coded into the pod definition
but is parameterised so that it can either be defined by the person deploying the
application or can be randomly generated (note: this is not a complete example as for
instance you would need to notify the deployer what password was generated, though

OpenRiskNet m Page 28

there are mechanisms to do this).

To deploy this template you would process the template to generate the actual API object
definition e.g. using:

oc process -f pod-template.yaml > pod-definition.json
and then create the API objects e.g. using:

oc create -f pod-definition.json
or do both as one step e.g. using:

oc process -f pod-template.yaml | oc create -f -

NOTE: this example is for illustrative purposes only. A real world example would be more
complex.

OpenRiskNet m Page 29

