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Abstract

The final objective of the INFRALERT system is to provide Infrastructure Managers/Owners and Maintenance

Operators/Contractors with intelligent software tools to support the decision-making process when planning main-

tenance activities and interventions. We focus on the application of INFRALERT for tactical planning in the road

pilot in Portugal, where the maintenance department has to allocate major interventions over a 5-year time hori-

zon. The tactical planning has to optimise simultaneously the maintenance intervention costs, the quality index

and the availability of the network. The allocation and selection of interventions in the tactical plan is based on the

maintenance alerts generated by the INFRALERT Alert Management toolkit, which is based on predicted future

conditions coming from the Asset Condition toolkit. The corresponding mathematical optimisation model which

reflects the uncertainty in the problem description has been developed as foundation for the decision support tool.

The handling of uncertain information in the decision support tool is done by applying a scenario approach.
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1. Introduction

The increasing demand and utilisation of linear infrastructure especially railway systems and road networks requires

innovative methodologies to optimise the performance of the existing infrastructure. Therefore, the INFRALERT

project will develop, deploy and exploit solutions to enhance the performance of linear infrastructure and adapt its

capacity to meet growing needs. INFRALERT aims to develop an expert-based information system – the eIMS –

to support and automate infrastructure management from measurement to maintenance. One of the final objectives

is the usage of the eIMS for the decision making process in maintenance interventions planning.

In this paper we investigate the decision support on the basis of a use case regarding a road network operated and

maintained by Infraestruturas de Portugal (IP), where the following issues are addressed:

• Planning requirements on the road network by the infrastructure manager

• Tactical planning for surface maintenance of the road network. Using degradation, recovery and optimisation

models to support intervention plans for geometry maintenance.

• Integration of the capacity utilisation of the road network into the tactical maintenance planning

• Integration of external dependencies (i.e. weather)

• Integration of probabilistic information from uncertainties in predictions of infrastructure condition and as-

sociated model parameters.

The presented models and solution methodologies are based on previous work on maintenance planning of infras-

tructure systems in long, mid and short-term scenarios, see e.g. (Baldi et al., 2015, 2016; Heinicke et al., 2012,

2013, 2015; Heinicke and Simroth, 2013).

2. Problem description

For the use case of the Portuguese road network, the task of the maintenance decision-makers can be described in

the following way: On a tactical planning level, which is considered as the mid-term planning, the maintenance

department has to allocate major interventions over a 5-year time horizon. To avoid multiple traffic interruptions

on the same section only one intervention per year and per road section is allowed. Thus the interventions are

combined and aggregated as single events over 500 m-segments of certain road sections. The allocation of such

intervention events is done on a monthly basis. In detail, the decisions to create a tactical plan include the following

steps:

• The selection of a minimum level of intervention (to keep a certain quality limit) on a section.

• Generation of intervention events.

• The allocation of starting months for intervention events (within the next 5 years).

The inputs for tactical planning are no concrete work orders to be scheduled, but predicted work orders provided

with the corresponding probabilities of occurrence. Moreover, the ending time of each intervention event will be

only known at execution time, because of the uncertainty regarding the real amount of work to be done. The se-

lection and allocation of the intervention events in the tactical plan is based on the maintenance alerts generated

by the INFRALERT Alert Management tool kit. In turn the Alert Management is based on predicted future condi-

tions coming from the INFRALERT Asset Condition tool kit. More information regarding the INFRALERT Asset

Condition and Alert management tool kit can be found in (Morales et al., 2017).

The selected minimum level determines which segments of the respective road section actually have to be main-

tained. We choose the segments whose state would cause an alert with an intervention level equal or higher than

the selected minimum at some time point during the considered time period. These characteristics make the tac-

tical planning to an even more challenging problem with stochastic aspects, which call for specific modelling and

solution techniques to be applied.

The decision-maker has to consider certain restrictions like the given yearly and overall budgets for maintenance

or capacity restrictions of available equipment. The objectives of the tactical planning are to ensure a certain over-

all quality level of the network and to limit influence on traffic due to the closure of road sections for planned

interventions, by consuming minimum costs for maintenance.

In the following we describe a mathematical optimisation model which reflects the uncertainty in the problem

description. It has been developed as foundation for the INFRALERT decision support tool.
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2.1 Variable declaration

We define:

• a ∈ A: Assets (segments)

• b ∈ B: Sections

• qa(t): Expected quality index for asset a at time t

• Q̄a: Minimum quality limit that has to be satisfied by asset a

• T = {1, 2, . . . , tmax}: Planning horizon with tmax months
• v(G, f): Measure of the availability of the network G and the flow f

• Ia = {1, 2, . . . ,K}: List of interventions for asset a associated with degradation levels k = 1, 2, . . . ,K

– ci: Costs of intervention i

– di(t): Duration of intervention i in months dependent on the start month t of the intervention l (in the
rain period, pavement works need more time, see Figure 1)

– tsi ∈ {1, 2, . . . , tmax}: Planned starting time of intervention i

• E: List of event interventions for the planning horizon T

• e ∈ E: Event

– ce costs of the event interventione (are computed from the information on asset level)

– de duration of the event intervention e (are computed from the information on asset level)

– tse ∈ {1, 2, . . . , tmax} planned starting month of event intervention e
– Se list of assets (segments) a that are maintained by the event intervention e

– z(e, b) equals 1 if event intervention e ∈ E belongs to the section b ∈ B and 0 otherwise

• R: planning region

• r ∈ R: supervisor district with staff capacity nr

• re: district of event e

• wa: measure of the importance of asset a

• pka(t): probability that asset a is in degradation level k at time t

• Pmax: probability limit that an intervention for asset a is not associated with a degradation level higher than

the expected level k

• C1, C5: annual and 5-year budget with C5 ≥ C1 ≥ C5

5

• ya ∈ Ia ∪ {0}: planned intervention of asset a (0 means “do nothing”)

2.2 Mathematical Model

Assuming that no maintenance is executed, the distinct degradation levels represent the road condition which be-

come worse over time. Each degradation level is linked to a certain intervention, where the different types of

interventions are listened in Table 1. Each intervention l is associated with certain costs cl and a duration dl(t).

Table 1: Maintenance types

Maintenance type Alert Description

TO No No maintenance requested

T1 Yes Do nothing

T2 Yes Microsurfacing, Surface dressing

T3 Yes Thin Hot-Mix Asphalt overlay (thickness ≤ 5cm)

T3.1 Yes Surface milling with Thin Hot-Mix Asphalt overlay (thickness > 5cm)

T4 Yes Thick Hot-Mix Asphalt overlay (thickness > 5cm) combined or not with milling

The duration of the intervention depends on the starting month of the intervention, because pavement works can
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Figure 1: Duration of the invention influenced by the rain period

Figure 2: Example for the allocation of events

by only executed during dry weather conditions. This leads to an extension of the working duration during the rain

period, see Figure 1.

Further, we want to avoid multiple interventions in the same section during the planning interval in order to have

a limited traffic interruption. Therefore, we construct a new planning quantity called events. An event is an aggre-

gation of interventions that belongs to a single section. More precisely, we set a threshold for the intervention level

and investigate for each segment of this section whether the threshold is reached or exceeded during the planning

period. If this is the case the corresponding intervention belongs to the event belonging to this section. An illus-

tration of the allocation of events is provided in Figure 2, where we see the development of the degradation level

of segments corresponding to the sections D099 and D054 for a time horizon of 10 months. Every segment that

reaches the quality threshold of T3.1 belongs to the event of the section. Hence, marked by the blue square we can
aggregate the corresponding events. Note that an event does not have to be connected, as you see in sectionD099.
Depending on the importance of the section we can determine the quality threshold for each section separately.

The limitation of the number of intervention events per district and time interval will reduce traffic interruption

caused by maintenance. Note that an early intervention, i.e., in a low degradation level, is less expensive than later

on in a higher degradation level. In the tactical planing we decide whether an event can be executed or has to be

shifted into the next time slot. The latter case could be caused by budget constraints or restrictions on the number

of interventions per week. Shifting usually implies a higher degradation level and consequently more complex and

expensive intervention.
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Our aim is to find a Pareto-optimal solution that optimises the maintenance costs the overall road condition and

the network availability under certain restrictions. As described above there is a trade of between the costs and the

overall network quality, i.e., the higher the reached degradation level is the higher are the costs and the duration

of the intervention and consequently the worse becomes the network quality. The multi-objective target function,

stated in (1), (2) and (3) minimises the overall costs for the planed interventions corresponding to the assets a ∈ A,
maximises the average road condition and the availability of the network simultaneously.

min
∑
e∈E

∑
a∈Se

cya (1)

max
∑
a∈A

tmax∑
t=1

qa(t)wa (2)

max v(G, f) (3)

In equation (2) the measurewa provides additional information about the importance of asset a. Further, during the
optimisation process several restrictions have to be satisfied. The following two restrictions identify limitations on

the budget. ∑
e∈E

∑
a∈Se

cya ≤ C5 (4)

∑
e∈E

∑
a∈Se:

⌈
tsya
52

⌉
=j

cya
≤ C1 ∀j = 1, . . . , 5 with C1 ≥ C5

5
. (5)

Restriction (4) indicates that the mid-term budget for road major maintenance is not exceeded. Additionally, in (5)

an annual budget limit is introduced. However, this limit is described as a ”smooth” value which means that the

upper bound C1 can be seen as a point of reference rather than a strict upper limit. Thus, as long as we meet the

mid-term budget, a slight exceeding of one fifth of the mid-term budget is allowed, as indicated by C1 ≥ C5

5 .

Further we want to restrict perturbations of the traffic caused by interventions. This is realised by the restriction∑
e∈E

∑
b∈B

z(e, b) ≤ 1, (6)

which ensures that during the planning period only one event intervention is executed per section. Since all inter-

ventions are performed with external contractors there is no limit on the number of workers on the road. However,

we have to consider supervision-related restrictions, i.e.,∑
e∈E:re∈r∧t∈{tse,...,tse+de}

1 ≤ nr ∀r ∈ R, ∀t ∈ T. (7)

The condition ensures that the maximum number of event interventions running in the same month and in the same

district is not exceeded, such that it is possible to supervise all working teams.

Furthermore, we have to ensure a certain quality level of the road network, which is implemented by

qa(t) ≥ Q̄a ∀a ∈ A,∀t ∈ T : t ≤ tsya
. (8)

Restriction (8) ensures that during the duration of the intervention the expected quality index for each asset a does
not fall below a specific threshold Q̄a.

The last restriction

K∑
k=ya+1

pka(t
s
ya
) ≤ Pmax ∀a ∈ A (9)

characterises the robustness of the model. To be more specific, the probability that an intervention for asset a is

associated with a degradation level higher than the expected level k is bounded by Pmax. Thus, the probability that

an intervention will be more expensive than expected is bounded from above.
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2.3 Integration of the traffic

An intervention event does either lead to road closure or to a reduction of the road capacity. In order to optimise the

availability of the road network we investigate in the following the optimal combination of necessary and optional

intervention events. With other words, we analyse which of the intervention events can be done at the same time

such that the interruption of the traffic flow is minimal. The main idea is to evaluate the traffic flow of the road

network under the assumption that certain intervention events are carried out. Therefore, we compute an influence

matrix that indicates the effect on the network availability for each combination of two intervention events. Based

on this matrix we apply a heuristic to decide, which of the optional interventions fit best to the necessary ones.

For more details regarding the modelling and the implementation of the traffic analysis tool see (INFRALERT-

Consortium, 2017).

3. A Simulation-based Solution Method

The planning problem presented above is solved by the Monte-Carlo Rollout method. This method generates a set

different solutions and selects the best alternative based on an evaluation value, which results from simulated future

scenarios. It combines ideas from Rollout algorithms (cf.(Bertsekas and Castañon, 1999; Bertsekas et al., 1997))

and Monte-Carlo tree search (cf. (Brügmann, 1993; Kocsis and Szepesvári, 2006; Chaslot et al., 2008)) to create

robust solutions for optimisation problems under uncertainties.

The main idea is to create a set of different solutions – called alternatives – and to evaluate the behaviour of each

alternative in a set of random future scenarios. Based on the evaluation of the alternatives in future scenarios, the

best alternative is selected. Thereby not only the average costs caused in the random future scenarios are a criterion

for the choice, but also the quality and availability of the alternatives is evaluated and considered when selecting

the best solution.

3.1 The Monte-Carlo Rollout method

Based on Rollout method we evaluate the alternative solutions by solving the problem using a simple and fast base

heuristic. The uncertainties are covered through the random selection of future situations, by means of a random

player as in the Monte-Carlo tree search algorithm.

In more detail the optimisation problem with uncertainties is modelled as a two-player game, where the first player

is the decision maker that decides on the base of a simple heuristic. The second player is the random player that

creates new future situations by random. The game where both players move consecutively is called Monte-Carlo

Rollout. With a set of different Monte-Carlo Rollouts, an alternative solution can be proven and evaluated in a

set of random future scenarios and the long-term behaviour and robustness against uncertainties of the alternative

solution could be analysed. The Monte-Carlo Rollout method is shown schematically in Figure 3.

Figure 3: Schematic representation of Monte-Carlo Rollout method
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3.2 Application of the Monte-Carlo Rollout Method

The generation of a tactical interventions plan using the Monte-Carlo Rollout method, can be divided into two

steps: In the first step we provide a rather rough plan, i.e., we allocate the event interventions to the 5 years of the

planning time horizon. In the second step we schedule the event intervention of each planning year on a monthly

basis.

First Planning Step:

The starting point of this considerations are ns different scenarios which model possible future developments of

the asset conditions. Based on this we have to generate the intervention events for all possible intervention levels,

sections and planning years. Thus, we take each intervention level from T1 to T4 as threshold and investigate

which segments of the corresponding section reach or exceed this threshold if the intervention event is executed at

time step t, where t ∈ {1, . . . , 5} indicates the execution year. This procedure results into 5 intervention events per
section for each time step t ∈ {1, . . . , 5}, i.e., we obtain a list of 5× 5 intervention events per section.
To generate a plan we have to specify in the following for each section which intervention level should be applied

and in which year the resulting intervention event should be executed. This problem is modelled via a bin packing

problem, where each bin symbolises one year of the planning horizon. The packing of the bins is realised using a

First-Fit heuristic, presented in the following section.

3.2.1 The First-Fit Heuristic

The First-Fit heuristic starts with the prioritisation of the event intervention, thus we prioritise a listE that includes

all intervention events of the different sections, intervention levels and time steps, i.e., we prioritise a list of 5×5×nb

elements, where nb is the number of sections. An event intervention should be of higher priority if we assume a

rapid cost increase or a low quality in the next year. Therefore, sorting the intervention events by a non increasing

priority means managing and placing the most urgent intervention events first. The priority measure consists of

two components:

• The increase of the average expected costs over the of year t if the intervention event e is shifted from year

t to t+ 1, which is defined by

∆ce(t) :=

ns∑
i=1

(
12∑

m=1

E(ce(12t+m, i))

12
−

12∑
m=1

E(ce(12(t− 1) +m, i))

12

)
/ns

∀t ∈ {0, . . . , 4}.

Note that the first variable of the function ce represents the month of the corresponding planning year, i.e.,
the first year t contains month 1 to 12, the second month 13 to 24 and so one. Moreover, the second variable

s of the function ce reflects the different cost evaluation for different future developments/scenarios. Note

that the cost arise from the LCC analysis and are stochastic variables itself, i.e., they result from a previously

executed Monte-Carlo simulation.

• The average quality if the intervention event e is executed at some point in year t+ 1, that is defined by

q̄e(t) =

ns∑
i=1

12∑
m=1

(∑
a∈e

qa(12t+m, i)

)
/12ns ∀t ∈ {0, . . . , 4}.

Thus, combining the last two components leads to the following priority measure of event e

ge(t) := λ1∆ce(t) + λ2q̄e(t), (10)

where λ1 and λ2 are user dependent parameter, i.e., this parameter represent the user preferences regarding costs

and quality.

In Algorithm 1 the First-Fit heuristic is described as pseudo code, where the variable x describes the computed

maintenance plan. More precisely x(e, t) equals one if the intervention event e is allocated in to the time slot t and
zero otherwise. Further, each intervention event e depends on the corresponding time slot t, the section b and the
intervention level `.

6
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Algorithm 1 First-Fit Heuristic

1: Generate a list of all possible intervention events E
2: Compute the priority measure ge for all e ∈ E
3: while E nonempty do

4: Choose event e∗(t∗, b∗, `∗) with ge∗ = max
e∈E

ge

5: if
∑

e∈E:x(e,t∗)=1

ce + ce∗ < Ct∗ &
∑

e∈E:x(e,t∗)=1∧re∈r

1 ≤ 12nr ∀r ∈ R then

6: x(e∗, t∗) = 1
7: Remove all intervention events corresponding to section b∗ from list E
8: else

9: Remove intervention event e∗(t∗, b∗, `∗) from list E
10: end if

11: end while

We start in the first step with the generation of a list E of all possible event interventions, i.e, we build the event

intervention for all segments, all interventions levels and all time steps of the planning horizon . Moreover, we

compute the priority measure, as defined in equation (10), for each event intervention that belongs to the list E.

We choose the event with the highest priority and allocate it into the corresponding planning year if the cost and

capacity constraints are not violated. After allocating event intervention e∗ we remove all other event interventions
that correspond to section b∗ from the list E . If the event intervention does not fit into the corresponding planning

year, i.e., it violates constraints, we just remove this specific event intervention from the list and continue with Step

3 of Algorithm 1. Finally, if list E is empty we managed to construct one possible plan x.

3.2.2 Monte-Carlo Rollout method

Based on the above First-Fit Algorithm that generates on possible plan we investigate in the following the Monte-

Carlo Rollout method in order to choose the plan with the best evaluation for achieving a robust and high-quality

solution. The pseudo code of the Monte-Carlo Rollout method is presented in Algorithm 2, where we used the

following additional notation:

• xi: Plan where we fix the intervention event ei and compute the resulting plan via the First-Fit heuristic.

• α1, α2, α3: User dependent parameters that weight costs, quality and availability of a certain plan.

The starting point is a list E that contains the intervention events for all segments, all interventions levels and

all time steps of the planning horizon. Further, using (10) we compute for each intervention event the priority

measure ge and determine the section b∗ that corresponds to the intervention event with the highest priority. To

analyse the situation for all possible event interventions {e0, e1, . . . , ek} that could be executed on the section b∗,
we check for each ei ∈ {e0, e1, . . . , ek} whether the budget and capacity constraints in Step 7 are satisfied. If the
intervention event ei is feasible we compute the corresponding plan xi while applying the First-Fit heuristic to the

reduced set E \ {e0, e1, . . . , ek}. This plan xi is evaluated, in Step 11, for ns different scenarios, i.e., we compute

a weighted sum of the costs, quality and availability for each scenario σj . The weights α1, α2 and α3 are user

dependent and represent the preferences of the user. In order to obtain an evaluation of the plan xi we compute

in Step 16 the average (arithmetic mean) of the evaluations for the different scenarios. Finally, we select from

{e0, e1, . . . , ek} the intervention event emax with the highest evaluation value f̄(xmax) and remove all interventions
events {e0, e1, . . . , ek} from the list E . We continue with this algorithm until the list E is empty which implies

that all intervention events are allocated to the 5 planning years. Consequently, the first planning steps results into

a yearly allocation of the intervention events.

Second Planning Step:

In the second step we want to refine the planning in order to get a monthly allocation of the intervention events.

Therefore, we consider each planning year separately.

We start with the prioritisation of intervention events using the difference in estimated costs∆ce, quality∆qe and
failure effects∆(E (Tdown)Pfailure) for month 1 and 12 of the planning year, i.e., we consider a priority measure
of the form

he := α1∆ce + α2 (∆qe +∆(E (Tdown)Pfailure)) , (11)

7
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Algorithm 2Monte-Carlo Rollout

1: Generate a list of all possible intervention events e(t, b, `) ∈ E
2: Compute the priority measure ge ∀e ∈ E
3: while E nonempty do

4: Choosem intervention events L∗ = {e∗1, . . . , e∗m} with the highest priority measure
5: for all Intervention events e∗ ∈ L∗ do

6: for all Scenarios σ ∈ Σ do

7: if
∑

e∈E:x(e,t∗)=1

ce + ce∗ < Ct∗ &
∑

e∈E:(x(e,t∗)=1∧re∈r)

1 ≤ 12nr ∀r ∈ R then

8: Set x′(e∗, t∗) = 1
9: Determine E′ := E \ {e that belong to section b∗}
10: Compute x′

σ via applying the First-Fit Heuristic (Algorithm 1) to E′

11: Evaluate the plan and compute f(x′
σ) := α1c(x

′
σ) + α2q(x

′
σ) + α3v(x

′
σ)

12: end if

13: end for

14: Compute the average rating f̄(e∗) =

( ∑
σ∈Σ

f(x′
σ)

)
/|Σ|

15: end for

16: Choose event e∗ = argmin
e∗∈L∗

f̄(e∗)

17: E = E′

18: x(e∗, t∗) = 1
19: end while

whereα1 andα2 are user dependent parameter. Via the failure effect, we add an additional component to the priority

measure in order to model effects of failures which lead to short-term, operational interventions. Therefore, we

use predicted RAMS parameter for failure modes based on asset condition parameters. More precisely, we us the

product of the failure probability and the expected downtime due to the failure.

Based on the measure (11) we select the intervention event with the highest priority and allocate it into the first

month. Further, we select from the remaining intervention events the ones that best fit to selected event, i.e., we

add intervention events such that the availability of the network does not decrease more that n% and the capacity

constraint in Step 7 is satisfied. This procedure is repeated for all the 12 months. The corresponding pseudo code

is presented in Algorithm 3, where xm
i describes the monthly plan of the planning year i.

Algorithm 3Monthly allocation

1: for all Planning years i ∈ {1, 2, . . . , 5} do
2: Consider the list of intervention events Ei generated in the first step for the planning year i
3: Compute the priority measure he

4: for all Planning months j ∈ {1, 2, . . . , 12} do
5: Choose event intervention e∗ with maxh∗

e

6: xm
i (e∗, j) = 1 . Allocate e∗ into month j

7: Choose intervention events {e0, e1, . . . , ek} from Ei \ e∗ such that
v(G, f) does not decrease more than n% and∑
e∈Ei:xm

i (e,j)=1∧re∈r

1 ≤ nr ∀r ∈ R

8: for all el ∈ {e0, e1, . . . , ek} do
9: xm

i (el, j) = 1 . Allocate {e0, e1, . . . , ek} into month j
10: end for

11: Remove all intervention events with xm(e, j) = 1 from list Ei

12: end for

13: end for

4. Conclusion

In this deliverable we considered the mathematical modelling and algorithm design for the tactical maintenance

planning. Therefore, we investigated a part of the Portuguese road network and considered maintenance decisions

on the tactical planning level. In particular we focused on:
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• Integration of uncertain information ( e.g. the ending time of each intervention event will be only known at

execution time)

• Avoiding of multiple traffic interruptions

• Integration of traffic flow into the optimisation model

• Integration of seasonality (more precisely weather dependency)

• Using stochastic information

In general we focused on the definition on the mathematical optimisation model, involving the objective functions,

degree of freedom and restrictions, where the objective functions are linked to the evaluation framework and KPI’s.

In the algorithm design phase we applied the Monte-Carlo Rollout method to take into account the uncertain and

stochastic information of the use case.
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