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Abstract 

The on-going H2020 project INFRALERT aims to increase rail and road infrastructure capacity in the current 

framework of increased transportation demand by developing and deploying solutions to optimise maintenance 

interventions planning. INFRALERT develops an ICT platform - the expert-based Infrastructure Management 

System eIMS - which follows a modular approach including several expert-based toolkits. This paper presents 

the architecture of the eIMS as well as the functionalities, methodologies and exemplary results of the toolkits 

for i) nowcasting and forecasting of asset condition, ii) alert generation, iii)  RAMS & LCC analysis and iv) 

decision support. The applicability and effectiveness of the eIMS and its toolkits will be demonstrated in two 

real-world pilot scenarios, which are described in the paper: a meshed road network in Portugal under the 

jurisdiction of Infraestruturas de Portugal (IP) and a freight railway line in Northern Europe managed by 

Trafikverket. 

 

Keywords: intelligent maintenance, linear transport infrastructure, condition nowcasting & forecasting, alert 

management, RAMS & LCC, decision support, maintenance & interventions planning 

 

Nomenclature 

eIMS expert-based Infrastructure Management System 

IM Infrastructure Manager 

KPI Key Performance Indicator 

LCC Life Cycle Cost 

RAMS Reliability, availability, maintainability and safety 
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1. Introduction 

An efficient transport system is more than ever critical for the economy and for the social empowerment of the 

citizens. Almost regardless to the economy growth rate the demand for transport capacity grows almost 

everywhere, but in congested areas there is no room available for new infrastructures. The only viable solution is 

making a better use of the existing network by more effective maintenance interventions and extending the life 

of the existing assets. The good news is that new technologies allow a frequent and accurate monitoring of the 

infrastructure: frequency and accuracy of the measurements enable the implementation of new maintenance 

strategies, where the accuracy and speed of the feedback is a key issue. Furthermore, tactical and operational 

maintenance planning and scheduling of interventions can be done based on more reliable and accurate 

information about the actual and predicted condition of the infrastructure and its assets, so that the real 

maintenance needs now and in the future are well covered. 

 

This is the motivation of the ongoing H2020 project INFRALERT (Infralert 2016) whose developments are 

demonstrated on existing road and railways systems. There are some previous FP6-7 projects aligned with the 

goals of INFRALERT for railway infrastructures. Among them, ACEM-Rail (grant agreement no. 265954) 

developed some preliminary tools for maintenance planning, such as tamping planning.  The AUTOMAIN 

project (grant agreement no. 265722) focussed on possession time reduction (capacity enhancement) by 

improving inspection and monitoring capabilities, automating and optimising maintenance planning, and 

speeding-up maintenance activities through lean analysis. The OPTIRAIL project (grant agreement no. 314031) 

developed tool and framework for more effective planning of infrastructure maintenance activities based on 

expert knowledge and condition monitoring/maintenance management data. The main objective for the 

INNOTRACK project (grant agreement no. 31415) was to reduce the LCC, while improving the reliability, 

availability, maintainability and safety (RAMS) characteristics. INNOTRACK’s innovations and outcomes 

related to INFRALERT include: track subgrade monitoring and assessment evaluation and predictive models for 

S&C. In addition, the on-going H2020 project In2Smart (grant agreement no. 730569) develops an intelligent 

asset management framework based on a similar concept and including also advanced monitoring technologies. 

On the other hand, regarding road infrastructures, the AM4INFRA is an H2020 project that started in 2017 (grant 

agreement no. 713793) that is in line with multi-asset perspective underlying INFRALERT. AM4INFRA aims to 

deliver the first ever common European asset management framework approach that enables consistent and 

coherent cross-asset, cross-modal and cross-border decision-making. Finally, TRIMM project under the FP7 

(grant agreement no. 285119), gave a good contribution in highlighting the cost-benefit analysis of road 

monitoring techniques and utilisation in asset management. In this context, INFRALERT aims to develop an 

expert-based Infrastructure Management System (eIMS) to support and automate asset management from 

measurement to maintenance. This includes the collection, storage and analysis of inspection data, the 

determination of maintenance tasks necessary to keep the performance of the infrastructure system in optimal 

condition, and the optimal planning of interventions. 

 

The eIMS will provide the system architecture and functional design for the integrated system. It will include 

and support: 

 

- The Data Farm as a tool for the collection and organisation of condition monitoring data: Merging data 

from multiple sources delivering frequent measurements requires a high level of automation. The data 

organisation starts with an accurate localisation and mapping of asset condition information of the 

infrastructure. 

- An automated Health Assessment and Prediction tool to perform accurate asset condition nowcasting and 

forecasting, applying novel hybrid modelling techniques. 

- A comprehensive automatic pattern recognition system able to correlate historical condition measurements 

of the infrastructure with maintenance actions. 

- An Alert management system which analyses asset condition and operational information to provide alerts 

whenever the infrastructure reaches or is close to reaching a critical level in the present time or in the near 

future. 

- Methods and tools to evaluate system, subsystems and component RAMS parameters dynamically and 

stochastically. 

- LCC models that assess maintenance costs of the different activities taking into account the uncertainty 

inherent in the RAMS. 

- Decision support tools for interventions planning on the tactical and operational level, capable to handle 

uncertain information in the decision-making process coming from stochastic input like uncertain alerts, 

RAMS and LCC parameter. 
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INFRALERT’s scope

Linear transport infrastructure

Condition 
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Data Farm
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Budget
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Toolkits

Regulations

Infrastructure 
Manager / 
Operator

Optimized 
interventions

External information

The eIMS will be the shell that allocates different modules and decision support tools so that all the 

developments within INFRALERT will be integrated into a single system. This system will be developed in a 

modular architecture, which will ensure the flexibility required for implementation on any linear asset, as well as 

the interoperability required for the seamless integration with other information systems owned by the 

Infrastructure Managers or maintenance contractors. 

 

The developments of the INFRALERT project will be validated in two real infrastructure systems as pilot 

demonstrators: (1) A meshed road network in Portugal owned and managed by Infraestruturas de Portugal, 

where tactical planning of major interventions will be demonstrated. (2) A rail corridor in Northern Sweden 

owned by Trafikverket, where decisions on repair and maintenance activities have to be made in a short-term 

horizon. 

 

The paper is structured as follows: Section 2 provides an overview on the underlying concept of the eIMS from 

an architectural perspective, i.e. it describes how the different modules are organised, and gives insights into the 

implementation of the system. Section 3 briefly explains the functionalities and methodologies used in the 

expert-based toolkits that constitute the eIMS, together with exemplary results from the pilot demonstrators, 

which are also presented in Section 4. Section 5 concludes the findings from the project made so far. 

 

2. The concept of eIMS 

2.1. Overall architecture 

INFRALERT exploits the similarities of linear infrastructures and develops systems and tools for support 

Infrastructure Managers (IM) or Maintenance Contractors in maintenance interventions decision making. Figure 

1 shows in a dashed box the developed eIMS platform and its interaction with the IM or maintenance contractor 

and the different data bases. The eIMS collects and organises all external (e.g. traffic, budget, regulations) and 

internal information necessary for decision-making in a single Data Farm. With internal information we refer to 

data that describe the infrastructure itself, i.e. asset register and condition information from monitoring and 

measurement. The operator interacts with the platform by using the different toolkits to support decision-making 

on interventions planning, and triggers the execution of maintenance interventions. 

 

 

 

Fig. 1 Concept and scope of INFRALERT Fig. 2 eIMS platform 

 

Figure 2 illustrates the concept and the scope of INFRALERT which has been conceived using a modular 

approach to facilitate its flexibility and applicability. It includes the Data Farm as a data management system and 

a set of toolkits covering Data Analytics modules (asset condition prognosis and diagnosis, alert management 

and RAMS & LCC analysis) and a decision support tool which receives the results of the Data Analytics 

modules and optimises maintenance interventions. All these modules are conceived as plug-ins into a common 

shell, which is the expert-based Infrastructure Management System (eIMS), allowing seamless communication 

among the different modules and with external data bases and the user. Therefore, INFRALERT is conceived to 

be compatible with existing asset management systems. 
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2.2. Implementation details 

2.2.1. Software architecture and component diagram 

The implemented eIMS framework is open and cloud based, thus the software architecture fully support 

distributed deployment. The development Java-based environment supports the state of the art of DevOps 

standards. The development of the eIMS framework follows a module-based approach, what enables adding 

features one by one. The main purpose of the Middleware is to achieve a standard way of adding and handling 

new modules and integrating current toolkits. As it can be seen in Figure 3 a Java-based 3-tier software 

architecture is recommended as basic system architecture for the eIMS. The layers of the system are: the 

presentation layer, the “business logic” layer (which is also responsible for the computations) and the data 

storage layer. Toolkits are implemented vertically across the layers. This means that every toolkit has 

components in every layer (blue dotted rectangles). Obviously, the core of the eIMS has been implemented in the 

business logic layer, where the implemented classes are able to interoperate with each other. The storage layer 

called “Data Farm” provides an integrated and cloud-based data ontology for all stakeholders to access the 

innovative INFRALERT services that is well scalable, portable, extendable as acceptable cost. 

 

The eIMS requires the execution of various toolkits which may easily need high computation power. Besides, 

the eIMS must be cloud-based. In order to fulfil these tasks as much as possible, a system composed of easily 

scalable micro-services has been developed instead of having one big monolith application. The Figure 4 shows 

the hosting environment, which contains the frontend webserver and the inner application server container and 

also the common database ontology called Data Farm. The services built by using Spring Cloud based on Java 

works properly in any distributed environment, including the developer’s own machine, bare metal data centres 

and even on Docker container platform. 

 

  

Fig. 3 eIMS software architecture Fig. 4 eIMS component diagram 

2.2.2. User processes and graphical user interface (GUI) 

User processes are the processes where eIMS provides a user interface, so they can be managed by the user. In 

the architecture, this user interface is represented by the presentation layer. The implemented GUI is web-based. 

It is an SPA (Single Page Application) which uses a RIA (Rich Internet Application) technology that enables 

responsive and modern HTML5 web applications. In Figure 5, some examples of the eIMS GUI wireframes can 

be seen. 
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Fig. 5 GUI wireframes 

3.  Expert-based toolkits 

In the following subsections the Data Analytics toolkits (asset condition, alert management and RAMS&LCC) 

and the Decision Support tool are presented together with exemplary results from the pilot tests.  

3.1. Nowcasting and forecasting of asset conditions 

The asset condition toolkit takes inspection and condition monitoring data as input, processes them and produces 

an assessment of the current condition (nowcasting) as well as a prediction of the future evolvement of the 

condition (forecasting). The output of the nowcasting is used on a strategic level to assess the development of the 

quality of the infrastructure network.  

 

The main purpose of the 

forecasting is to improve 

maintenance planning on a 

tactical level allowing 

optimization of maintenance 

tasks and resources by 

knowing beforehand which 

part of the network requires 

maintenance. The time period 

for such a maintenance 

planning is typically between 

12 and18 months for railway 

infrastructure and up to 60 

months for road.   

 

A flowchart describing the processing blocks of the asset condition toolkit for road and rail use cases is shown in 

Figure 6.  The main building blocks are: input, pre-processing, nowcasting, forecasting and output modules. The 

tasks and data requirement for each module is clearly presented in the figure.  Inputs to the asset condition 

modules are mainly historical condition data over time and with a specified location. The data is pre-processed 

before applying nowcasting and forecasting models by: dividing it into homogenous segments and cleaned using 

some defined rules. The cleaning takes care of data quality issues, inconsistencies in the measurement data and 

empty records. The outputs of the module are the current condition (nowcasting) and future condition 

(forecasting). Typically, nowcasting is performed by means of thresholding. That is, the condition of a segment 

is categorised as being within a certain range related to design level, maintenance level and other alert levels 

with different severities. This output provides valuable information about infrastructure network and it enables 

the assessment of the overall quality of the network to support strategic decision on maintenance and 

reinvestment. Nowcasting output includes: condition level of each segment, table of descriptive statistics and 

cumulative distribution of the networks/section condition. 

Fig. 6 Flowchart of the asset condition toolkit 
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An example of the output for nowcasting implementation 

in the toolkit is presented in Figure 7. The figure presents 

quality description of a geometry parameter using 

cumulative percentage over a given railway section for 

two measurements conducted the same year. For quality 

classification of railway geometry, six thresholds are 

commonly used: Design Level, Maintenance Level, Alert 

level, Intervention Level Low, Intervention Level High, 

and Immediate action level (EN 13848-5). In Figure 7 the 

Maintenance Level is highlighted to compare how much 

of the line section is below this threshold for the two 

measurements.  

 

In forecasting, the goal is to establish a degradation 

pattern and to estimate the remaining useful life (RUL) of 

the asset (Vaidya & Rausand, 2011). Forecast is a critical 

aspect of extracting information from data and must 

carefully be carried out to avoid wrong decisions. 

Randomness of nature, events, materials, people, 

instruments and processes are some reasons why 

uncertainty modelling is important to obtain reliable 

condition assessment and forecast for linear asset. 

Modelling of uncertainty represents the difference 

between the predicted response and the true response 

(that can neither be known nor measured accurately), and 

comprises of several parts: model parameters, model 

form, and process noise (Sankararaman, 2015). There are 

several methods in the literature for uncertainty 

representation, for instance, probability theory 

(Kolmogorov, 1956), fuzzy set theory (Zimmermann, 

2010; Sikorska et al., 2011), evidence theory (Shafer, 

1976), imprecise probabilities (Weichselberger, 2000), 

etc. The uncertainty presented in INFRALERT is mainly 

based on the model form approaches. A common approach for forecasting is data-driven, however physic-based 

and symbolic models can be added to improve condition prediction performance in an approach called hybrid 

modelling. The hybrid approach with uncertainty modelling does not only improve prediction accuracy but also 

enables the prediction of different evolution paths of the asset condition in the future due to measurement 

uncertainty, inherent variability of the degradation process and model idealization. A result of the forecasting of 

rail condition is presented in Figure 8. The hybrid modelling approach addresses two critical issues for linear 

infrastructure degradation modelling. One is the need for pre-processing and data-cleaning. The other is the need 

for a noise model that can take into consideration non-constant error which is often the case for infrastructure 

geometry features. The implemented hybrid model uses an expert-based model for data pre-processing and a 

parametric data-driven model for forecasting. The parametric model can be expressed as 𝑦 = 𝑓(𝑋, β) + 𝜖; where 

y is the response variable that is a function of the predictors X and unknown variables β, and ε is the noise. In the 

example depicted in Figure 8, the response variable was the standard deviation of the longitudinal level and the 

model function was exponential as in 𝛽(1)𝑒𝛽(2)𝑡. A combined error model was used 𝑦 = 𝑓 + (𝑎 + 𝑏|𝑓|), which 

include both a constant random error term (a) and a proportional error term (b). 

3.2. Alert generation 

The aim of the Alert Management toolkit is to predict and prioritise maintenance alerts and the required 

maintenance interventions based on the forecasted severity of degradation/failure of the assets themselves, and 

the know-how brought in by the information recorded in the historical maintenance work-orders repository. Two 

alert grades are predicted and involved in the proposed methodology outlined in the block diagram of Figure 9a. 

A first module, AM1, estimates pre-alerts based on detecting those features overcoming their associated limits or 

reference thresholds. Those features exceeding their prescribed thresholds are used to assign a level of technical 

severity (TSL) to the associated pre-alert. The TSL is quantified using a pre-defined distance criterion between 

 
Fig. 7 Nowcasting of railway geometry (StDev Longitudinal 

Level). The dotted lines show the cumulative percentages of the 
track segments that are below the Maintenance Level. 

 

Fig. 8 Forecasting of railway geometry. 
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the value of the feature and the threshold. The second module, AM2, estimates alerts and the most probable 

interventions to be conducted based on the historical information stored in the maintenance work-orders 

repository. This module embodies two different functional submodules. Submodule AM21 triggers alerts 

regarding the need of maintenance and their corresponding level of global technical severity (GTSL) in terms of 

all forecasted features considered as a whole; the methodology is based on Supervised Machine Learning 

modelling previously trained with the explanatory features (e.g. measurements) and the historical interventions 

repository. Submodule, AM22, aims at determining the set of k-most probable maintenance interventions that 

have to be conducted, as well as their corresponding probabilities of occurrence, via a learning procedure based 

on historical intervention types database. 

 

 

The same structure is kept in rail and road pilot demonstrators as they both are linear asset. The outcome of this 

toolkit is used as an input for the Decision Support System in order to obtain the most efficient maintenance 

plan. The toolkit’s predictions are compared with a set of real conducted maintenance interventions using an 

available measurement campaign as input (not used as a training set for the models) in order to obtain the 

accuracy of the techniques and models. An example extracted from the road case, shown in Figure 9b, presents 

an accuracy of 93.4% (1159 positive predictions out of 1241 sections). Disaggregating the results by 

maintenance types (T0 to T4), 843 sections out of 859 are correctly predicted as T0, 39 out of 41 as T1, 148 out 

of 187 as T2, 28 out of 30 as T3, 80 out of 93 as T3.1 and 21 out of 31 as T4. This implies that the largest errors 

are obtained when the model predicts T2 (accuracy of 90%), T3 (acc. 87%) and T4 (acc. 86%) types as 

suggested by the confusion matrix derived during the calibration step of the models (Figure 9b). 

3.3. RAMS and LCC analysis 

One of the main objectives of INFRALERT is to find cost-efficient maintenance strategies. Therefore, the 

assessment of costs is an important element for the project. Life-Cycle Cost (LCC) analysis is a well-known 

engineering technique that estimates the sum of all costs incurred during the whole life cycle of a system, 

including acquisition, ownership and termination costs.  

 

In railway and road infrastructures, operation and maintenance comprise a major share of the system’s life-cycle 

and they are the most sensitive to cost uncertainties. Acounting for such uncertainties is crucial at operational 

level and for long-term decisions. The integration of stochastic Reliability, Availability, Maintainability and 

Safety (RAMS) parameters in the LCC analysis allows obtaining reliable predictions of system maintenance 

costs and dependencies of these costs with specific cost drivers through sensitivity analyses. 

 

 

Confusion matrix for: DT 

 

 

a) b) 

Fig. 9 Alert generation toolkit. a) Workflow diagram, b) Example of results 

Real WO

Predicted WO

T4

T3.1

T3

T2

T1

T0

Yes

Yes

Yes

Yes

Yes

No

Thick Hot-Mix Asphalt overlay (thickness > 5 cm) combined or not with milling

Surface milling with Thin Hot-Mix Asphalt overlay (thickness ≥ 5 cm)

Thin Hot-Mix Asphalt overlay (thickness ≤ 5 cm)

Microsurfacing, Surface dressing

Do nothing

No maintenance requested

Alert Description

11

M
o

d
e

l
F

u
sio

n

Atificial Neural 
Network

Decision Tree

K- nearest
neigbours

Support vector 
machine

Artificial Neural Networks

Decision Tree

Asset Condition

Diagnosis

Prognosis

Data
Farm

Decision 
support

 

p a i
X


Feature 

2tmX tmX

Independent variable X
t
 

iRT

1iRT 

2( )p tma i
F X X 


1( )iP F RT 

1 1 1   ( ) ( )( )p p
iTSL P F RT Alert with severity=TSL

Machine Learning (Module AM2)

Deterministic/Stocastic level (Module AM1)

Alert Management

Supervised M. L. 
(Submodule AM21)

Unsupervised M. L. 
(Submodule AM22)

M
o

d
e

l
F

u
sio

n

Clustering

K- nearest
neigboursClustering

KNN



N. Jiménez-Redondo et al. / TRA2018, Vienna, Austria, April 16-19, 2018 

 

The RAMS & LCC toolkit embedded in the eIMS is devoted to a combined RAMS and LCC calculation and can 

be divided in three main blocks: i) Data collectors and pre-processing tools, ii) RAMS&LCC simulators and iii) 

Trackers of system’s RAMS&LCC related Key Performance Indicators (KPI). The workflow is illustrated in 

Figure 10: The data collection process extracts relevant data from the Data Farm (cost figures and work orders) 

and prepares that data (e.g. cleaning and filtering) for the application of suitable RAMS statistical models. The 

second main block corresponds to the combined RAMS&LCC analysis where cost models are built according to 

the system and richness data. The outputs of the module characterise system failures and maintenance cost and 

are used for tactical and strategic planning. These outputs are also used to track previously identified KPIs. The 

upper panel of Figure 11 shows costs estimations of replacement activities carried out on the switches and 

crossings component of the INFRALERT's rail demo case. These costs have been estimated by considering 

corrective maintenance interventions and extracting component's mean-times-to-failure and -restore from work 

orders. The lower panel shows a sensitivity analysis, where the percentage change in the total LCC-value (for 

replacements) is calculated by varying the different factors entering in the LCC formula a 10%. 

3.4. Smart decision support 

The smart decision support toolkit is the final step of the semi-automated data processing chain of the 

INFRALERT eIMS. Since maintenance and intervention planning is the end point of this chain there is high 

demand for interactivity with the user of the system. To assure a high acceptance and usability of the planning 

tools, a generic framework has been designed to integrate smart decision support with existing procedures and 

toolkits for asset condition assessment, alert generation and RAMS & LCC analysis. This framework is general 

enough to be easily adapted and applied to a wide range of maintenance and intervention planning scenarios. It 

provides the basis for the development of specific optimisation models following a condition- and risk-based 

planning concept. 

 

In compliance with existing practices and standards, maintenance planning is separated in three levels: strategic, 

tactical and operational planning. In strategic planning, the assets are grouped; for example with respect to asset 

type, geometric characterisations, or traffic volume. For each asset group, the best maintenance policy or the best 

mix of policies is determined. Inputs of strategic planning are failure rates, deterioration and maintenance 

models. The selected policies have to meet RAMS targets or given KPIs and have to minimise LCC. Therefore, 

strategic planning is connected to the RAMS & LCC toolkit.  

 

 

 
Fig. 10 Overview of RAMS&LCC toolkit Fig. 11 Estimated costs for S&C replacements 
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For tactical and dynamic planning, the current and future track condition has to be determined by nowcasting 

and forecasting tools. The output of 

the alert management toolkit is a 

prioritised list of maintenance 

activities which are necessary in the 

medium-term and in the short-term, 

based on predicted conditions. They 

are scheduled on two levels, in a 

medium-term time horizon in 

tactical planning and in short-term 

in dynamic planning. In tactical 

planning, the alerts or interventions 

will be selected, combined and 

allocated to time intervals. Based on 

the resulting coarse tactical plan, the operator can order material, book machines and plan track possessions or 

road closures. The tactical plan will also be the input for operational planning. There, the selected and allocated 

maintenance interventions together with newly added and urgent activities will be scheduled in detail. Thereby, 

operational constraints like manpower, machines available, material available, etc. will be considered in the 

planning model. Eventually, maintenance is executed according to the schedule, assets are inspected and new 

measurement data is generated. This results in new information in the asset data farm and a feedback to the 

whole planning process. Figure 12 provides an overview on the described decision support framework. 

 

An important novelty of INFRALERT's smart decision support is the introduction of a concept to deal with 

uncertainties in maintenance planning: Uncertainties arise because the condition of assets is changing 

permanently over time due to degradation, thereby developing in an unpredictable or at least non-calculable 

manner. The consequence is that future condition development, but also risk assessment and costs associated to 

interventions to be executed, are uncertain in planning, and that maintenance schedules have to be adapted 

continuously with current information. The essential difference to traditional planning approaches relies on how 

the concept makes use of information about the "uncertain" condition of infrastructure assets and about the 

"uncertain" risks associated to degradation: In the eIMS framework, nowcasting and forecasting provides asset 

condition and relevant diagnosis and prognosis information about lifetime, failures, defects, quality indexes and 

their future development. This information will be integrated directly into the models underlying the decision 

support process as probabilistic inputs, describing infrastructure variables and maintenance restrictions. Thus, the 

determination of interventions is done in a condition-based manner. Besides, the concept is risk-based since it 

considers the underlying risk and failure modes and probabilities coming from RAMS analysis. In the new 

planning concept, decisions are always made by balancing the trade-off between the risks and consequences of 

failures on the one hand and the associated costs and traffic disruptions on the other one. 

4. Pilot demonstrators 

4.1. Meshed road network 

The road pilot in Portugal (in progress) comprises 539 km of roads in the Coimbra region under IP jurisdiction 

(Portuguese road and rail networks infrastructure manager). It includes a rich variety of road types (principal, 

national, regional, etc.). All the available data is based on the IP Pavement Management System (SGPav) which 

stores information of maintenance activities carried out since the initial construction and road condition data 

since 2007, such as longitudinal (IRI) and transverse unevenness (Rut Depth), cracked area and pavement 

macrotexture. SGPav is then used to support the company’s maintenance strategy, categorising interventions in 

major or routine maintenance. Major maintenance includes relevant works in terms of cost, length and 

complexity while routine maintenance includes smaller scale and lower complexity works, such as pavement 

localised repairs or other activities such as drainage system cleaning, shoulder treatment, minor works performed 

in bridges and any urgent repairs. The data stored in SGPav is related to the section element (start and end node). 

The network selected for the road pilot includes sections of an average length of 6.6 km, connecting 87 nodes. 

For each section, besides general information associated with the part of the road it represents, extensive 

information was made available for the project’s development, including all the field measurements, the 

pavement historical information with all the road maintenance work performed up to date. 

Fig. 12 Decision support framework 
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4.2. Railway line 

The rail pilot (in progress) consists of two track sections on the heavy haul route of the rail Swedish Transport 

administration’s network. The northern section is about 135 km long while the southern section is about 165 km 

long. They are both single tracks with mixed traffic of iron ore freight, passenger trains and other freight trains. 

The train speed on the line is between 80 and 120 km/h. The maximum allowable axle load on the line section is 

30 tonnes and the annual accumulated tonnage is about 30 MGT. The track sections have continuous welded rail, 

head hardened 60E1 rail type, with concrete sleepers and Pandrol fasteners and fast clips. These line sections 

operate in extreme climatic conditions which can influence the reliability, availability, maintainability and safety 

characteristics of the infrastructure. The winter season sees snowfall and extreme temperatures. The annual 

temperatures vary between -40°C and 25°C. These track sections are considered relevant for the project due to 

the socio-economic significance to industrial and mining activities in Sweden that calls for high maintenance 

requirements. The predicted increase in the traffic on this line between 2006 and 2050 is about 136%, this is 

reported to be the highest in the entire Swedish network. Intelligent management system such as eIMS is 

required to support decision making to enhance capacity, availability and better use of resources on existing 

infrastructure. For the demonstration and validation of the condition and decision models, and other 

developments in this project, the following data has been provided: track geometry data, relevant information 

from asset register, work order records for corrective maintenance actions, reported preventive maintenance 

actions between 2008 and 2012, regular predetermined maintenance tasks and other information describing the 

maintenance practices on the track section. 

5. Conclusions 

This paper presents the implementation of the INFRALERT eIMS for predicting and optimising maintenance 

interventions in linear infrastructures. The development has been framed as a modular and general concept, and 

can address the maintenance of any type of linear assets. In particular, this system has been successfully tested in 

two different pilot cases: a road network and two rail lines. The description presented focuses on four main 

modules of the system: i) a module for nowcasting and forecasting of asset condition which is a basic input for 

the following process units; ii) a module to support and automate the prediction of maintenance intervention 

alerts, which combines the current and predicted asset condition with operational and historical maintenance data 

to get information about the needed maintenance tasks by means of data analytics and machine learning models, 

it provides forecasted maintenance alerts to be considered in the maintenance planning; iii) a module to compute 

probabilistic RAMS parameters which provides relevant information for the planning; and iv) a module to solve 

the tactical planning optimization problem which receives the predictions and computations from the alert 

management and the RAMS & LCC systems. The results of each toolkit have been summarised in Section 3. 
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