🕥 SINTEF

122

Hydrogen Export to Svalbard Exploiting Stranded Wind in Finnmark

Federico Zenith, SINTEF Mathematics & Cybernetics Input Meeting for Svalbard's Future Energy Supply November 9, 2018, Oslo, Norway

Motivation

Opportunity: The HAEOLUS Project

Quantification

Motivation

Opportunity: The HAEOLUS Project

Quantification

Hydrogen Import to Svalbard

- Not considered in Multiconsult's report
- Can exploit better green H₂ sources
 - Wind in Finnmark
- H₂ can be readily imported
 - Container solutions available
 - (Initially) also non-green H₂?
- Combined heat & power (CHP) fuel cells
 - High efficiency (45 %+45 %)
 - Market ready

Flexibility & Scalability in Deployment

- Fuel cells are modular
- Can be introduced gradually
 - Start with smaller pilot
 - Extend later: future-proof
 - LNG requires MW-class investment
- Can team up with local renewables later
- Distributed generation several places
 - Same efficiency
 - E.g. replacing boilers FH1-6
 - Better reliability with multiple systems
- Can make diesel generators obsolete

Hydrogenics "closet" with
4×33 kW fuel cells
systems.
Each can be replaced
individually.
Already deployed in 1 MW
unit i Kolon, Korea (in a 40' container).

Motivation

Opportunity: The HAEOLUS Project

Quantification

The HAEOLUS Project haeolus.eu, @HaeolusProject , @Haeolus f, Haeolus in

- Hydrogen production from wind power
- Similar to Utsira project, but larger: 50 kW \Rightarrow 2.5 MW
- Stranded wind power in Varanger
 - 320 MW concession, 95 MW built
 - Bottleneck in Varangerbotn
 - Ressurser opptil 2000 MW
- Norway's best capacity factor, 50 %
- No significant hydro power for storage
- Can import 160 MW to maintain H₂ production
- Vision: produce and export hydrogen worldwide

💋 VARANGER KRAFT

HAEOLUS Facts & Plans

- Production start: summer 2019
- Location: Berlevåg harbour
- Capacity: 1 ton H₂ per day
- Total committed production: 120 tons
- Project duration: 4 years
- Own power line to Raggovidda
- Total budget about 7 M€, EU contribution 5 M€

Berlevåg and the plant site at the harbour.

HAEOLUS Consortium & Objectives

Objectives:

- Demonstration of multiple use modes
 - Also mini-grid, relevant for Svalbard
- Hydrogen valorisation
- Sale of grid services
- Remote operation
- Control algorithms development
- Minimised maintenance by prognostics
- 33 public deliverables (18 reports)

Consortium:

- SINTEF (coordinator)
- Hydrogenics
- Varanger Kraft
- Tecnalia
- UniSannio
- UBFC
- KES

Motivation

Opportunity: The HAEOLUS Project

Quantification

() SINTEF

- Energy cost from wind in Finnmark: 215 NOK/MWh¹
- Electrolyser: 9.3 MNOK/MW, OPEX 7 % derav²
- Compressors: 6 MNOK/MW_{H₂}, OPEX 4 % derav²
- 40' container, 780 kg_{H2}: 3 MNOK
- Logistics Berlevåg-Longyearbyen: 10 NOK/kg_{H2}
- CHP fuel cells: 25 kNOK/kW, 22 years³

Sources:

- 1. Multiconsult LCOE calculation for Davvi wind power plant
- 2. Noack et al. (DLR, LBST, Fraunhofer, KBB)
- 3. FCH JU's Multi-Annual Implementation Plan (MAWP)

Full Deployment with only Imported Hydrogen

All Items are NPV over 25 years with 4 % Discounting Rate

Energy costs $(262.6 \, \text{GWh/y})$ 882 MNOK **30 MW Electrolysers** 279 MNOK **Electrolyser OPEX 304 MNOK 158 MNOK** Compressors **Compressor OPEX 70 MNOK** 243 hydrogen containers **729 MNOK** Logistics over 25 years **789 MNOK** Fuel cells in Longvearbyen **212 MNOK** Total

Energy cost

3423 MNOK 0.91 NOK/kWh

- Not very competitive with alternatives...
- ... but actually OK kWh price
- 60 MW new wind power @ Raggovidda
- Burning some H₂ for heat—wasteful
- What can improve in time?
 - Fuel cell cost
 - Electrolyser cost and OPEX
 - Cheaper H₂ storage in Longyearbyen
 - Heat savings (-40%)
- It can land at about 2000 MNOK

Pilot Deployment in Conjunction with HAEOLUS Adapted to a 1 t/d production in Berlevåg

Investments

Compressor	8 MNOK
Fuel cells	16 MNOK
10 containers	30 MNOK
Total investments	54 MNOK
Yearly OPEX	
Energy	4.1 MNOK/y
Logistics	3.6 MNOK/y
Compressor OPEX	0.3 MNOK/y
Total OPEX	8 MNOK

- Budget within range of an EU demo project
 - FCH JU call coming in January...
- Proceed in steps:
 - Replace diesel gensets
 - Supplement local renewables
 - Combine with battery storage (day cycle)
 - Gradually expand capacity
- Optimise battery+hydrogen+import
- Finally, take coal plant offline

_

-

_

Conclusions

- Hydrogen import to Svalbard is economically viable (0.91 NOK/kWh)
- Hydrogen import is more expensive than alternatives, if stand-alone
- Storage and logistics are major expenses; unlikely to drop
- Use import as support to local wind/solar to achieve zero emission
- Gradually introduce hydrogen, complete by 2038 (coal plant decommissioning)

Conclusions

- Hydrogen import to Svalbard is economically viable (0.91 NOK/kWh)
- Hydrogen import is more expensive than alternatives, if stand-alone
- Storage and logistics are major expenses; unlikely to drop
- Use import as support to local wind/solar to achieve zero emission
- Gradually introduce hydrogen, complete by 2038 (coal plant decommissioning)

Thank you for your attention!

Hydrogen-Aeolic Energy with Optimised eLectrolysers Upstream of Substation

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement № 779469.

Technology for a better society