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Abstract — Traceability is commonly adopted as an aid 

to manage test cases in face of changing requirements. Our 

approach to traceability is to help decide which tests and 

bugs should be prioritized in order to minimize the time 

necessary to execute acceptance test activities of testing, 

debugging and fixing. Our approach is to apply a set of 

models based on traceability among requirements, tests, 

and software components. In this paper we demonstrate 

the facts motivating the model and how the model is to be 

operated. We also offer as future work some research 

questions and possible extensions. 
Index Terms — Model-Driven Engineering, Traceability, Bug 

Triage. 

 

I. INTRODUCTION  

Traceability is commonly adopted as an aid to manage test 

cases in face of changing requirements. Since a trace from 

requirements to test cases is kept, any change in the former set 

could be traced to the specific test cases. Hence, knowing 

which test cases became invalid and should be updated is a 

straightforward decision. Our use of traceability is quite 

different. We aim at a traceability model that provides data for 

deciding which tests and bugs should be approached first in 

what sequence. Our hypothesis is that model-based 

requirements engineering methods could provide an 

operational framework to help teams drive system stabilization 

activities (test, debugging and fixing).  

We know a lot about bug localization [1], communication 

through bug reporting [2], bug triage [3][4], and bug 

delegation [5][6]. Meanwhile, we still know little about how 

teams optimally work on sequencing tests and bugs [7]. 

Nowadays decisions are mostly tacit and ad hoc. For instance, 

who better knows the code or feature takes the burden of 

deciding [5][6]. Relying on code ownership may not be 

possible for situations in which teams have to deal with legacy 

systems. This is also the case of an organizational culture that 

presupposes a distributed ownership over the source code 

(Agile teams). Hence, in the absence of ownership 

information, the team has to rely on qualitative data related to 

the tasks of the testing and bug fixing. More precisely, the 

features/requirements and code impacted, as well as their 

importance to goals defined by user or by the team. The 

performance of a team to efficiently stabilize a system is thus 

directly related to the objectivity (accuracy and precision) and 

relevance of the information of impact and importance. 

 

In the next sections we describe and define the practical 

problem face by software teams in stabilization activities. The 

problem is supported by a case studied for which we 

conducted interviews and a survey. Then we describe the 

solution based on a model, data inputs and the computation of 

the data to suggest optimal sequences to help teams perform 

testing and bug fixing. We conclude the paper with an analysis 

and future work. 

II. THE PROBLEM OF SYSTEM STABILIZATION 

A. Problem Framing 

Our problem framing is to understand the cycle of testing-

debugging-fixing as a collaborative stabilization activity. By 

system stabilization we comprise the activities carried out 

during testing and code fixing. The goal to stabilize consists of 

having the application with acceptable quality to be deployed 

in a user acceptance environment. Acceptance quality is user 

agreed number and impact of defects. It does not normally 

mean zero defects. In other words, an application with minor 

not harmful defects (e.g. visual misalignment of widgets) may 

be considered as having acceptable quality. Figure-1 illustrates 

the stabilization process with fundamental activities of testing, 

deciding which bugs should be fixed by whom and when (Bug 

Triaging), debugging for fixing and finally verifying whether 

the fixes actually hold (retesting). 

 
Figure-1. Typical Cycle of System Stabilization during 

Testing 

The problem of stabilization is especially challenging for 

tailor made software, for which it is very difficult to predict 

how many and where the bugs reside after all the coding was 

done. Since effort and time is limited, it is paramount to 

wisely decide where to invest effort in bug finding. Besides 

that, system stabilization could be at risk when team starts 

modifying the code inappropriately. For instance, the failure 

of understanding the origin of a bug might imply on 

modifications resulting from unapproved change requests, 

invalid defects or ambiguous specifications. Moreover, the 

failure to recognize a proper sequence of fixing can be 

particularly problematic in layered or highly componentized 

architectures. Changing the code without being aware of code 

dependencies might implicate in system brittleness and code 



 

smells. Therefore, system stabilization is a real issue faced by 

teams in the heat of the software testing phases and sprints 

(e.g. agile settings). Figure-2 depicts the cycles of opening and 

fixing bugs during a system stabilization effort. The blue line 

curve represents the output of testing activities and the red line 

curve the output of the programmers fixing bugs. This chart 

demonstrates how these two activities and respective teams 

work synchronized and in a tightly coupled collaboration.  

 

 
 

Figure-2. Example of the stabilization output for a testing 

phase.  Red = Bugs Opened; Blue=Bugs Fixed; Dotted line 

= Balance (Opened-Fixed) 

 

B. Results from the Case Study 

The case study involved interviews and a survey. In the 

interviews we gathered information to refine the questions to 

the survey. The interviews were conducted with four senior 

testers and the surveyed involved twenty programmers and 

testers. Concerning the issue of prioritizing where to invest 

test effort, a tester from a military project declared that there is 

always an intuition where the major bugs should be at each 

new release or deployment. When inquired whether there were 

some effort to translate such intuition to a method, the tester 

answered negatively. This suggests that sequencing of tests as 

prioritization of effort is an actual though tacit practice.  

A team leader of an agile team declared that time constraint 

is the most impacting factor for performing tests during 

sprints. Deciding what to test and what to fix is really 

challenging. A partially solution was to invest more heavily in 

automated testing to speed the process. The problem is that it 

lefts unattended the explorative test approach, which is the 

most effective to find bugs in new or modified areas of the 

system. This vision is corroborated by an anecdotal 

declaration of a quality manager of a major agile software 

environment vendor:  

 

“We can stop a test session, create a bunch more, and head 

of in a new direction, which I would say more fruitful to find 

bugs in another area [of the software]” – QA Manager at 

Software Product Summit, 2011. 

 

The interviews also demonstrated that team from different 

cultures have distinct approaches to sequencing and to 

traceability as well. The first interviewee from the military 

sector works under a waterfall development process and the 

team has 10 testers for 7 developers. The amount of testing is 

justified by the heterogeneity of the deployment environments. 

For this team, isolating testers and developers is the norm to 

mitigate bias (testing the features that already work or 

programming only what will be tested).  Regarding 

traceability, the main concern is with user change requests and 

how they affect test cases and test data. Traceability is not 

used to decide where and how much tests to be made.  The 

interviewee from the agile team follows a culture of 

distributed code ownership and relies heavily on code revision 

sessions. Every time a change was made on a critical code, the 

programmer was instructed to submit the code to a committee 

of experienced programmers to review it. Traceability for this 

team is accomplished by a tool that enforces the association of 

every source code commit to an issue opened in their tracking 

system. Issues can be new functionalities and bugs. This 

traceability data was used to improve the localization of a bug 

or a change to be implemented in the system. The traceability 

is neither used to decide what to test, nor the sequence of 

fixing.  

Analyzing these two approaches to test, bug fixing and 

traceability, we understand they are complementary in terms 

of coverage, since the first gets requirements to test cases, 

while the second the issues to code. Nevertheless 

complementary, they aim at completely different needs and do 

not address the problem raised by our research. The first 

models traceability as data retrieval (concerned with finding 

things). The second approach models traceability as an 

information space (concerned with understanding things). We 

need a different approach, a search space concerned with 

finding local or global optimum to traverse the software and 

all its artifacts. 

The survey concluded with 20 professionals confirmed 

some of these problems. People prioritize tests and bugs based 

on user satisfaction, as is demonstrated in figure-3. Therefore, 

the traceability from goals to bugs is strong input for 

sequencing tests and bugs 

 

 
Figure-3 Test Sequencing Options Reported 

 

Concerning the order of bug fixing, the answers also 

concentrated on the importance to the final user (figure-4). 

Such result emphasizes the use of traceability to retrieve a user 
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as a client prioritization criterion. This type of prioritization 

does not take in consideration the net of artifact and code 

produced. We believe this concentration stem from the test 

prioritization decision making and not from a conscious 

choice made by the team. 

  

 
Figure-4 Bug Fix Sequencing Options Reported 

 

The survey also demonstrated that the worst defects were 

the intermittent (29%, see figure-5), not the ones related to 

NRF (figure-4), third party code, or had a large impact on the 

system. Reproducing a defect implies capturing the same 

context of the problematic situation. Context is covered by 

same states and inputs used. Understanding what happens with 

the application in specific situations involve combining 

knowledge from different sources. Hence traceability, due to 

its connectivity nature, may be an important missing link. 

 

 
Figure-5 Root-cause of Bugs Hard to Fix 

 

Tracking bugs involves traversing the system composed not 

only by code, but by all the documents produced in the 

requirements and design efforts. Hence, if we were to pursue 

the hypotheses that optimal test and fix sequences exist and 

are effective to system stabilization, the answer must be raised 

from the requirements engineering methods that create 

integrated maps of the knowledge about the software being 

grown. 

III. TRACEABILITY AS A SEARCH SPACE 

The decision space of what to test and fix an in which 

sequence is very complex. Many criteria exist to select tests 

and bugs, such as user satisfaction, code complexity measures, 

impact analysis, etc. At same time, conditions for decision 

change as new knowledge emerge during meetings. For 

example, information about cost and solution are imprecise 

during bug triage meetings. Therefore, previous good decision 

cannot be reused fully and the wrong ones only bring 

accidental learning to the investigation space. The software 

with all its artifacts is a space being grown as people acquire 

more knowledge [11]. It hence implies on recognizing that it is 

difficult to define a set of static criteria to find the optimum.  

Traceability is an approach to build a map incrementally. 

Artifacts and its constituent parts form a map. A map can be 

used to localize oneself or to extract measurements (area, 

distances, flow, densities, etc.). We can describe a region in 

two metaphors – map or trajectory [12]. The map provides a 

global totalizing fish-eye vision of the territory based on a 

static perspective. Therefore, a map describes a place. 

Meanwhile, the trajectory provides a local subjective 

perspective based on movements. Trajectory describes a 

space. The map metaphor is convenient to understand where 

things are and relate to each other (entities and dependencies). 

Trajectory is convenient to understand how things behave in a 

context (execution, states, and events). For the purpose of 

traceability for aiding system comprehension, map metaphor 

is the adequate one. For the purpose of debugging an 

application, the trajectory metaphor is more representative of 

the exploration actions performed during testing and 

debugging. Delimit regions by the possibility of traversing or 

impediments of so. The former represents a space like 

metaphor, the latter a place like metaphor. Examples of the 

former are method calls and shared objects. Examples of the 

second are variable scopes and packages. 

IV. SURVEY OF TRACEABILITY RESEARCH 

A. What Is Traceability 

In requirements engineering, traceability is an effective 

bridge that aligns system evolution with changing stakeholder 

needs. It also helps uncover unexpected problems, provide 

innovative opportunities, and lays the groundwork for 

corporate knowledge management [13]. Also, traceability aids 

project managers in verification, cost reduction, accountability 

and change management [14]. According to Gotel and 

Finkelstein’s paper [15], the definition of traceable software is: 

  

"Requirements traceability refers to the ability to describe and 

follow the life of a requirement, in both a forwards and 

backwards direction (i.e., from its origins, through its 

development and specification, to its subsequent deployment 

and use, and through all periods of on-going refinement and 

iteration in any of these phases).” [15] 
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From this definition, we know that traceability is an 

important factor throughout the whole process of software 

development, and the way we use to achieve traceability is to 

create links that connect different software artifacts.  

Traceability links indicate various relationships between 

and within certain artifacts. There are several ways to 

categorize such relationships. According to the roadmap paper 

of software traceability [16], traceability relations denote 

overlap, satisfiability, dependency, evolution, generalization 

and refinement relations. It also represents the conflict and 

rationalization associations between software artifacts or 

contribution relations between artifacts and the stakeholders 

[16]. Among them, dependency and contribution relations can 

be directly used for system stabilization. Dependency relations 

reflect the dependencies and concurrency between modules 

and the robustness of the system. Contribution relations reflect 

the ownership of code and the relationships between 

stakeholders and artifacts, which show the relevance of a 

certain part of the system with user satisfaction. 

Traceability seems to be merely criteria for system 

development just like reliabilities, or learnability; but actually, 

with this capability of tracing, many problems can be solved. 

According to Wieringa’s introduction to traceability [17], the 

need for traceability falls into four aspects. For project 

management, traceability can help to estimate the impact of a 

change in requirements, to discover conflicts between 

requirements earlier and to bring reduced development time 

and effort for future systems because of the reuse of past 

implementation decisions. For customers, traceability can help 

to evaluate the quality of the product with respect to the user 

requirements and acceptance testing can refer directly to the 

user requirements being tested for. For designers, traceability 

can help to more easily verify the satisfaction from design to 

requirements. For maintainers, they can estimate the impact of 

a change in requirements on the implementation [17]. 

For reference, there are many insightful and thorough 

surveys introducing and evaluating different traceability 

techniques. The seminal paper of Gotel and Finkelstein [15] 

investigated and discussed the underlying nature of the 

requirements traceability problem. Other papers ([18][19]) 

discussed traceability techniques for model-driven engineering. 

Bashir and Qadir’s survey [20] compared existing traceability 

techniques and revealed problems in them. 

 

B. Traceability Techniques 

To achieve traceability, There are many existing techniques 

that requirements engineers can choose from, including 

requirements matrices [21]; keyphrase dependencies [22]; 

reference model [23]; hypertext [24]; integration documents 

[25]; constraint networks [26]; goal-centric traceability [27]; 

value-based traceability [28] [29]. In addition, Tsumaki and 

Morisawa proposed a framework of traceability using UML 

[30], a method that supports links between UML models. It is 

improved by [31] and later by [32]. 

However, such tracing techniques mostly incur in overhead 

due to manually creating and maintaining traceability links; 

thus they are not widespread [33]; and only large companies 

mandated by software process standards such as CMMI or 

ISO 15504 end up adopting traceability techniques [34]. Also, 

different stakeholders in the software development process 

have different traceability goals [18]. Moreover, Ramesh and 

Jarke [23] suggested that there are two types of groups 

focusing on different levels of traceability information, one of 

which is low-end and another high-end [23]. In order to use 

traceability information to improve quality and efficiency of 

testing and debugging, we need more detailed traceability 

information for high-end users to ensure the precision of 

tracing. 

Recent years have seen many automation supports for 

traceability. There are two trends of automated tracing: 

information-retrieval-based traceability recovery and 

traceability for model-driven engineering. Based on the 

feasibility study of automated requirements analysis using 

information retrieval methods by Dag et al. [35], Antoniol et 

al. proposed an approach for recovering traceability links [36]. 

Further research efforts ([37], [38], [39] and [40]) continued 

this direction of investigation. Likewise, Kagdi et al. [41] used 

text mining to explore software repositories and link co-

changing artifacts.  

The emergence of model-driven engineering technologies 

was to address the inability of third-generation languages to 

alleviate the complexity of platforms and express domain 

concepts effectively [42]. With a transition layer of abstraction, 

software development becomes closer to design intent and 

requirements. Also, Model-driven development provides an 

opportunity to automate both the creation and discovery of 

traceability relationships, and to maintain consistency among 

the heterogeneous models used throughout the system-

development life cycle [18]. So this can make it easy to unify 

the standards of traceability and its relations, but we should 

consider the high cost to use such a formal method. 

 

C. Goal-based Requirements Engineering 

A goal is an objective the system under consideration should 

achieve [43]. Using goal to elicit requirements can be intuitive 

since it captures the rationale of requirements analysis. A goal 

refinement tree provides traceability links from high-level 

strategic objectives to low-level technical requirements [43]. 

In this way, we can know from traceability information that a 

project deviates from the ultimate objective or not. Besides 

that, we can find the requirements that customers care most 

and make decisions for bug prioritization. To support goal-

based requirements engineering, there are various modeling 

techniques that we can choose, both formal and informal. 

Among them, KAOS model [44] focuses on the refinement of 

goals and numerous relationships between them, and i* model 

[45] targets on the intentions of actors and their interactions. 

 

D. Challenges and Prospect of Traceability 

Despite the time and efforts made to the development of 

traceability, there are still many problems and challenges in it. 

Traceability can be difficult to accomplish in practice, 

primarily because creating and maintaining traceability links is 

time-consuming, costly, arduous, and error prone [46][23]. 

Also, there exists no standards and unified framework for 

traceability. Different categorizations of traceability relations 



 

that have been proposed in the literature and the lack of a 

commonly agreed standard semantics for all these types do not 

provide confidence in the use of traceability techniques and do 

not facilitate the establishment of a common framework to 

allow the development of tools and techniques to support 

automatic (or semi-automatic) generation of these relations 

[22].  

Under this context, researchers of traceability established the 

International Center of Excellence for Software Traceability 

(CoEST) work together on the GCT (Grand Challenge of 

Traceability) project [47]. It is designed to challenge and 

inspire people to work towards achieving a difficult, yet a 

significant goal [48]. It identified several sub-challenges 

supposed to be overcome by 2035. Moreover, TraceLab, a 

research environment designed to facilitate innovation and 

creativity, will empower future traceability research [49]. 

Therefore, we believe that support for traceability will be 

more reliable and purposed in the near future, and based on 

that, our proposed work will be promising and trustable. 

 

E. Innovation of Our Work in Face of the Literature 

Our work aims at a new use of traceability, which is using 

traceability model to directly provide data for deciding the 

sequences of test cases and bugs. To the best of our 

knowledge, this has not been covered by any paper yet. 

Traceability is commonly adopted as an aid to manage test 

cases with respect to changing requirements and acceptance 

testing, so the team can directly refer to requirements to 

review the needs of a user, without having the cost of 

searching artifacts manually. Testers and developers need to 

review the requirements from time to time. Furthermore, for 

large project it is not possible to test every component and fix 

all the bugs before delivery or milestone. There has to be some 

tradeoffs for testing and debugging. To the best of our 

knowledge, no prior research has been made to explore the 

role of traceability in such situations.   

On the other hand, our proposed method will use formalized 

traceability models with weighted nodes that indicate the 

relevance and significance of traceability relations. In this way, 

we directly use traceability information as a search space. 

Automated queries and decision making will be made based 

on some mathematical operations on the traceability models. 

This is more like data mining on organized and extracted 

information. 

As future work, we will integrate the method to an existing 

tool. This approach can serve as the bridge or connector 

between bug triaging tools, bug tracking tools, repositories, 

modeling tools and traceability tools. 

 

V. REQUIREMENTS FOR THE MODEL 

A. Goals and Requirements 

We define here high level requirements for the model and the 

solutions as well. 

 

Goal-1: The model for traceability is first built before the 

requirements elicitation activities and is refined through 

requirements, design and coding activities. Therefore, it is 

necessary to capture in the model the goal hierarchy provided 

in the KAOS diagram, which already provide the traceability 

from goals to requirements and even to some important 

entities.  

Requirement-1: Importing the data from this model should be 

considered an option; hence the model should be able to 

model the data from KAOS. 

 

Goal-2: The model should be flexible to accommodate 

different sources of traceability data, levels of granularity for 

traceability data, and the customization of new queries to 

compute sequences (based on team defined criteria). 

Requirement-2: The model should be designed as a framework 

with extension points (hotspots) and a core to represent the 

dependencies. 

 

Goal-3: The model should enable the precise and accurate 

attachment of the artifacts produced in later phases (e.g. 

diagrams and code) 

Requirement-3: A formal representation of each relationship 

will provide the point of attachment on each artifact 

 

Goal-4: The users could query the traceability model by using 

contents from typical test phase artifacts such as bug reports, 

logs and stack-traces. 

Requirement-4: Relationships will be represented in a matrix 

with numerical values. Functions will construct and query the 

matrix. Those artifacts could also be represented in matrices or 

the data could be extracted from them to query the existing 

matrices. 

 

Goal-5: Enable to customize dependencies based on different 

criteria. 

Requirement-5: Relationships should be turned off (zero) or 

on (1) or even have weights. 

 

B. Assumptions and Out-of-Scope Requirements 

Traceability is a very diverse field as we saw in the survey 

section. Even after defining the requirements for our model we 

are still left with many possible ambiguities. Hence, we were 

concerned with discussing what we are not considering as 

requirements for our model. For each non-scope we declare an 

assumption, as follows: 

 

• We do not aim at coping with changes of artifacts 

during system stabilization 

o Assumption - it is expected that during 

stabilization artifacts will be solid and there 

will be only minor issues regarding mostly to 

ambiguity, error or misunderstanding of 

artifact content. Such issues map to the bug 

origination investigation. 

 

• We do not aim at generating traceability information 

automatically 

o Assumption: Traceability information will be 

entered as people create and update new 

artifacts. The automation support will consist 



 

of querying the traceability data to calculate 

compute the sequences. 

 

• We do not aim at visualization and navigation through 

dependencies 

o Assumption: people will already access the 

artifacts and will already know where the 

information they need is located. We 

recognize that it may not be true while dealing 

with legacy systems or having a new member 

being involved in the project. We do not aim 

at solving the problem of providing better 

access to artifacts. Requirements traceability 

tools are available, although not used. 

 

After having stated all the requirements and non-requirements, 

we pass to the actual model definition. 

VI. THE MODEL 

A. Design Rationale (Options considered) 

The design rationale involved two main sets of questions and 

three options for each. The option adopted is the third option 

for both questions. 

 

• How traceability data can be obtained? 

• Option-1: Import from existing tools and enrich 

data 

• Option-2: Create new traceability data targeted 

to aid stabilization 

• Option-3: Glean it from annotations (tags) made 

by the team over all artifacts. Annotations could 

also be extracted by processing the comments 

and method names in code and comparing them 

against other artifacts. 

 

We discarded options 1 and 2 in order not to reinvent the way 

traceability is already created. 

 

• How is granularity defined to effectively help in system 

stabilization? I.e., how to define what is traceable? 

• Option-1: Fixed granularity based on the 

traceability model defined before requirements 

elicitation. 

• Option-2: Evolving granularity based on 

decision points at every artifact construction 

• Option-3: Hierarchical granularity enables the 

establishment of standard categories which may 

be extended to accommodate smaller grains. The 

team can create new tags as their understanding 

of the software and the domain improves. 

 

We discarded option-1 because it is the current status quo of 

traceability utilization, which does not solve the problem of 

sequencing. The option-2 was discarded because it disregards 

the fact that the KAOS model already provides the basic 

categories to trace back artifacts. 

 

B. Diagram Representation 

The diagram in figure-6 demonstrates how the traceability 

model fits within the layers of the process of producing 

artifacts and the process of system stabilization. The 

production of artifacts comprises all activities from goal 

modeling to code development. The system stabilization   

comprises planning tests, executing tests, bug triage meetings, 

debugging and fixing. We did not include deployment and 

change management activities as relevant to traceability at this 

point of research. 

 

 
Figure-6 Traceability in the context of layered processes 

 

C. Formal Modeling Decisions 

Models can be visual, textual, informal or formal. We chose 

for a textual and formal model due to the following three 

reasons. A formal model would enable the verification during 

the specification of the data mapping between existing 

traceability data and our solution. If new artifacts or parts of it 

were created, the model could expedite the analyses of impact 

on the algorithms consuming the traceability information. 

Ultimately, the formal specification could serve as an 

abstraction of the implementation useful to design new 

traceability options, such as tertiary and weighted 

dependencies. The formal representation provides a more 

intuitive base for logical reasoning on the unfolding 

consequences to data import, matrix representation (multi-

dimensional) and querying and traversing the data structures. 

 

As choice for data structure we decided to adopt the Design 

Structured Matrix (DSM) [8] method due to the 

expressiveness and the amount of ongoing research around it. 

DSM has been shown useful to specify products with complex 

dependencies [9] and support designers to analyze change 

impacts. It is also very useful to detect circular dependencies 

and to understand how parts are clustered, and therefore 

support decision making on modularizing the development 

process itself [10]. Such aspects are still not part of this 

research, but we plan to investigate their underpinnings in 

future work.  

 

The matrices we adopted are bi-dimensional and combine 

artifacts from two families only. Therefore, the matrix is 

constrained by an assumption of sequential process of 

production of such artifacts. We acknowledge this 

oversimplification, which do not even represent the waterfall 

process. In the future we plan to experiment with multi-

dimensional matrices which stem from considering 



 

dependencies as clusters. In other words, this means an artifact 

depending at same time on more than one artifact. 

 

D. Definitions 

Below we define the entities that are essential part of the 

traceability model.  

• Artifact (A) = any document, diagram or code part 

of software project.  

• Artifact Family (A.) = goal, requirement, design, 

code, test case, bug report 

• Traceable Atom (T) = part of an artifact relevant to 

be related to other parts from other or same artifact. It 

is the smallest unit for representing artifact content, 

which could be lines or labels. 

• Design Structured Matrix (DSM) = represents all 

dependencies among two or more different Families 

of Artifacts.  

• Dependency = a relation between two Traceable 

• Sequence = a set of Dependencies 

 

Functions: 

• Make Dependency (MD) = creates a Dependency 

• Compute Sequence (CS) = obtains a Sequence given 

a DSM 

• Populate (PDSM) = creates a DSM 

 

 

E. Symbols 

 

Artifact = A 

Artifact Family:  

• GO = Goal 

• RE = Requirement document 

• DS = Diagram 

• CD = Code 

 

Traceable = T (name) or T (line start, line end).  

• T.GO (“goal1”)  

o  specifies that “goal1” is traceable 

•  T.RE (“req1”,2,10)  

o  specifies that from line 2 to line 10 of 

requirement “req1” is considered a 

traceable 

• T.DS (“Strategy Pattern”) = specifies that the 

Strategy Pattern diagram is a traceable 

• T.CD (“class Validator”) = specifies that the piece 

of code named “class Validator” is a traceable 

 

Make Dependency = MD (T, T)  

• MD (T.DS(“Strategy Pattern”, T.CD(“class 

Validator”), 1 )  

• Creates a dependency with value 1 between a 

design traceable and a code traceable. If we put 

value zero, we would turn off the dependency 

 

F. Specifying a Traceability 

1) Coarse Grain 

A = {File A, File B} 

T.GO = A [1] 

T.GO (“g1”) = “Enable interconnectivity” 

T.RE = A [2] 

A.RE (“rq1”) = “Manage sessions” 

MD (AR(“rq1”), AG(“g1”),3) 

 

2) Fine Grain 

MD ( T.AR(“rq1”,”alternative condition”), 

T.AG(“g1”),1) 

VII. SAMPLE RESULTS OF APPLYING TRACEABILITY 

Formalized traceability models serve as a search space in 

our proposed work. After importing the dependencies to the 

DSM, we will traverse them to automatically generate 

sequences of tests and bugs to be fixed. Here follows three 

examples of sequence generation for different criteria. For 

requirement we mean functionalities visible to the final user. 

 

A. User Satisfaction Criterion 

Considering a goal priority of [A, B, C] and a DSM that 

relates these goals to a set of defective requirements (see 

figure-8). Therefore, looking at DSM for bugs versus 

requirements, we cascade the priority from goals and obtain 

the following bug sequence:  ([Bz], [Bw,By],[Bx]) 

 

 
Figure-8. The dependencies between goals and 

requirements 
 

 
Figure-9. The dependencies between bugs and 

requirements 
 

B. Robustness and Reliability Criterion 

Considering the level of dependencies on each requirement 

gives us the requirements more fundamental to the system, 

and therefore that should be fixed first. Figure-10 shows this 

traceability. Therefore, the resulting sequence of bugs should 

be as follows: ([Bw], [By],[Bx],[Bz]) 

 



 

 
Figure-10. Requirement to requirement dependency 

 

C. Minimize Concurrency 

The objective of this criterion is to have different developers 

working in parallel without implying in extensive code or 

requirement concurrencies. It is not always possible to have 

zero concurrency and this criterion demonstrates that a 

compromise can be made by a team during bug triage. 

 

The DSM relating code and requirements (figure-11) depicts 

in colored lines the sets of dependencies being accounted for 

the sequencing choices. In green, the sequencing suggests the 

bugs from requirements Req4 to be grouped. The yellow line 

suggests that bugs from Req2 and Req3 be grouped (so, a 

concurrency on the same requirement). Besides that, line 

yellow also implies a code concurrency on the omega 

component.  

 

Such decisions need team to discuss and analyze the suggested 

sequences and weight the risks. For minimizing concurrency, 

if two bugs fall in code beta and omega, and both code beta 

and omega implement Req3 (as shown in Figure-11), the team 

may decide to put those two bugs together in a certain position 

of the sequence.  

 

Therefore, querying DSMs in figure-11 and figure-9 results in 

the following sequence: ([Bx], [By,Bw],[Bz]) 

 

 

 
Figure-11. Dependencies among bugs and code 

components in Greek letters 

 

VIII. CONCLUSION AND FUTURE WORK 

The traceability model for system stabilization is a novel 

use for an old requirements engineering method. Our approach 

provides a more integrated context for its adoption. The 

positive outcome is to have traceability repositioned as an aid 

to decision making. Hence, it puts teams in a position to 

effectively collaborate by discussing how to maintain and 

consume the traceability data. Meanwhile, traceability in the 

current industry format is mostly aimed for individual use. 

The negative outcome of our research is that traceability still 

relies on the quality of the data produced during requirements 

engineering. We did not address this issue, although it is 

crucial to demonstrate the usefulness of the approach to 

system stabilization. 

 

The future work is threefold. First, set and run experiments 

to investigate the effect of granularity on the precision and 

accuracy of the sequencing criteria. Second, extend 

PorchLight tool [3] to enable the use of the suggested 

sequences during bug triage meetings. With the tool we will 

be able to investigate how human factors related to motivation 

and intuition play a role in the decision making process. We 

expect that the optimality provided by the sequences would 

improve the quality of traceability and feedback with new 

criteria for sequencing. Third, we also plan to investigate more 

complex forms of dependencies and see how they may better 

represent the reality of agile or crowdsourcing based teams. 

. 
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