

Model-Based Traceability for System Stabilization

Christian M. Adriano, Xinlu Tong

University of California, Irvine

Department of Informatics

Irvine, CA 92697-3440, U.S.A.

{adrianoc,xinlut}@uci.edu

Abstract — Traceability is commonly adopted as an aid

to manage test cases in face of changing requirements. Our

approach to traceability is to help decide which tests and

bugs should be prioritized in order to minimize the time

necessary to execute acceptance test activities of testing,

debugging and fixing. Our approach is to apply a set of

models based on traceability among requirements, tests,

and software components. In this paper we demonstrate

the facts motivating the model and how the model is to be

operated. We also offer as future work some research

questions and possible extensions.
Index Terms — Model-Driven Engineering, Traceability, Bug

Triage.

I. INTRODUCTION

Traceability is commonly adopted as an aid to manage test

cases in face of changing requirements. Since a trace from

requirements to test cases is kept, any change in the former set

could be traced to the specific test cases. Hence, knowing

which test cases became invalid and should be updated is a

straightforward decision. Our use of traceability is quite

different. We aim at a traceability model that provides data for

deciding which tests and bugs should be approached first in

what sequence. Our hypothesis is that model-based

requirements engineering methods could provide an

operational framework to help teams drive system stabilization

activities (test, debugging and fixing).

We know a lot about bug localization [1], communication

through bug reporting [2], bug triage [3][4], and bug

delegation [5][6]. Meanwhile, we still know little about how

teams optimally work on sequencing tests and bugs [7].

Nowadays decisions are mostly tacit and ad hoc. For instance,

who better knows the code or feature takes the burden of

deciding [5][6]. Relying on code ownership may not be

possible for situations in which teams have to deal with legacy

systems. This is also the case of an organizational culture that

presupposes a distributed ownership over the source code

(Agile teams). Hence, in the absence of ownership

information, the team has to rely on qualitative data related to

the tasks of the testing and bug fixing. More precisely, the

features/requirements and code impacted, as well as their

importance to goals defined by user or by the team. The

performance of a team to efficiently stabilize a system is thus

directly related to the objectivity (accuracy and precision) and

relevance of the information of impact and importance.

In the next sections we describe and define the practical

problem face by software teams in stabilization activities. The

problem is supported by a case studied for which we

conducted interviews and a survey. Then we describe the

solution based on a model, data inputs and the computation of

the data to suggest optimal sequences to help teams perform

testing and bug fixing. We conclude the paper with an analysis

and future work.

II. THE PROBLEM OF SYSTEM STABILIZATION

A. Problem Framing

Our problem framing is to understand the cycle of testing-

debugging-fixing as a collaborative stabilization activity. By

system stabilization we comprise the activities carried out

during testing and code fixing. The goal to stabilize consists of

having the application with acceptable quality to be deployed

in a user acceptance environment. Acceptance quality is user

agreed number and impact of defects. It does not normally

mean zero defects. In other words, an application with minor

not harmful defects (e.g. visual misalignment of widgets) may

be considered as having acceptable quality. Figure-1 illustrates

the stabilization process with fundamental activities of testing,

deciding which bugs should be fixed by whom and when (Bug

Triaging), debugging for fixing and finally verifying whether

the fixes actually hold (retesting).

Figure-1. Typical Cycle of System Stabilization during

Testing

The problem of stabilization is especially challenging for

tailor made software, for which it is very difficult to predict

how many and where the bugs reside after all the coding was

done. Since effort and time is limited, it is paramount to

wisely decide where to invest effort in bug finding. Besides

that, system stabilization could be at risk when team starts

modifying the code inappropriately. For instance, the failure

of understanding the origin of a bug might imply on

modifications resulting from unapproved change requests,

invalid defects or ambiguous specifications. Moreover, the

failure to recognize a proper sequence of fixing can be

particularly problematic in layered or highly componentized

architectures. Changing the code without being aware of code

dependencies might implicate in system brittleness and code

smells. Therefore, system stabilization is a real issue faced by

teams in the heat of the software testing phases and sprints

(e.g. agile settings). Figure-2 depicts the cycles of opening and

fixing bugs during a system stabilization effort. The blue line

curve represents the output of testing activities and the red line

curve the output of the programmers fixing bugs. This chart

demonstrates how these two activities and respective teams

work synchronized and in a tightly coupled collaboration.

Figure-2. Example of the stabilization output for a testing

phase. Red = Bugs Opened; Blue=Bugs Fixed; Dotted line

= Balance (Opened-Fixed)

B. Results from the Case Study

The case study involved interviews and a survey. In the

interviews we gathered information to refine the questions to

the survey. The interviews were conducted with four senior

testers and the surveyed involved twenty programmers and

testers. Concerning the issue of prioritizing where to invest

test effort, a tester from a military project declared that there is

always an intuition where the major bugs should be at each

new release or deployment. When inquired whether there were

some effort to translate such intuition to a method, the tester

answered negatively. This suggests that sequencing of tests as

prioritization of effort is an actual though tacit practice.

A team leader of an agile team declared that time constraint

is the most impacting factor for performing tests during

sprints. Deciding what to test and what to fix is really

challenging. A partially solution was to invest more heavily in

automated testing to speed the process. The problem is that it

lefts unattended the explorative test approach, which is the

most effective to find bugs in new or modified areas of the

system. This vision is corroborated by an anecdotal

declaration of a quality manager of a major agile software

environment vendor:

“We can stop a test session, create a bunch more, and head

of in a new direction, which I would say more fruitful to find

bugs in another area [of the software]” – QA Manager at

Software Product Summit, 2011.

The interviews also demonstrated that team from different

cultures have distinct approaches to sequencing and to

traceability as well. The first interviewee from the military

sector works under a waterfall development process and the

team has 10 testers for 7 developers. The amount of testing is

justified by the heterogeneity of the deployment environments.

For this team, isolating testers and developers is the norm to

mitigate bias (testing the features that already work or

programming only what will be tested). Regarding

traceability, the main concern is with user change requests and

how they affect test cases and test data. Traceability is not

used to decide where and how much tests to be made. The

interviewee from the agile team follows a culture of

distributed code ownership and relies heavily on code revision

sessions. Every time a change was made on a critical code, the

programmer was instructed to submit the code to a committee

of experienced programmers to review it. Traceability for this

team is accomplished by a tool that enforces the association of

every source code commit to an issue opened in their tracking

system. Issues can be new functionalities and bugs. This

traceability data was used to improve the localization of a bug

or a change to be implemented in the system. The traceability

is neither used to decide what to test, nor the sequence of

fixing.

Analyzing these two approaches to test, bug fixing and

traceability, we understand they are complementary in terms

of coverage, since the first gets requirements to test cases,

while the second the issues to code. Nevertheless

complementary, they aim at completely different needs and do

not address the problem raised by our research. The first

models traceability as data retrieval (concerned with finding

things). The second approach models traceability as an

information space (concerned with understanding things). We

need a different approach, a search space concerned with

finding local or global optimum to traverse the software and

all its artifacts.

The survey concluded with 20 professionals confirmed

some of these problems. People prioritize tests and bugs based

on user satisfaction, as is demonstrated in figure-3. Therefore,

the traceability from goals to bugs is strong input for

sequencing tests and bugs

Figure-3 Test Sequencing Options Reported

Concerning the order of bug fixing, the answers also

concentrated on the importance to the final user (figure-4).

Such result emphasizes the use of traceability to retrieve a user

0

2

4

6

8

10

12

14

16

18

20

13/5 15/5 17/5 19/5 21/5 23/5 25/5

Convegence Chart

Open Fix Balance

Based on

dependenc

ies among

funcionaliti

es

26%

Based on

code

dependenc

ies

15%

Based on

criteria for

quality risk

18%

Based on

importanc

e to the

final user

41%

12. Choose all the options that apply. How

do you and your team define the order

(sequence) of tests to run (in an

integration test environment)?

as a client prioritization criterion. This type of prioritization

does not take in consideration the net of artifact and code

produced. We believe this concentration stem from the test

prioritization decision making and not from a conscious

choice made by the team.

Figure-4 Bug Fix Sequencing Options Reported

The survey also demonstrated that the worst defects were

the intermittent (29%, see figure-5), not the ones related to

NRF (figure-4), third party code, or had a large impact on the

system. Reproducing a defect implies capturing the same

context of the problematic situation. Context is covered by

same states and inputs used. Understanding what happens with

the application in specific situations involve combining

knowledge from different sources. Hence traceability, due to

its connectivity nature, may be an important missing link.

Figure-5 Root-cause of Bugs Hard to Fix

Tracking bugs involves traversing the system composed not

only by code, but by all the documents produced in the

requirements and design efforts. Hence, if we were to pursue

the hypotheses that optimal test and fix sequences exist and

are effective to system stabilization, the answer must be raised

from the requirements engineering methods that create

integrated maps of the knowledge about the software being

grown.

III. TRACEABILITY AS A SEARCH SPACE

The decision space of what to test and fix an in which

sequence is very complex. Many criteria exist to select tests

and bugs, such as user satisfaction, code complexity measures,

impact analysis, etc. At same time, conditions for decision

change as new knowledge emerge during meetings. For

example, information about cost and solution are imprecise

during bug triage meetings. Therefore, previous good decision

cannot be reused fully and the wrong ones only bring

accidental learning to the investigation space. The software

with all its artifacts is a space being grown as people acquire

more knowledge [11]. It hence implies on recognizing that it is

difficult to define a set of static criteria to find the optimum.

Traceability is an approach to build a map incrementally.

Artifacts and its constituent parts form a map. A map can be

used to localize oneself or to extract measurements (area,

distances, flow, densities, etc.). We can describe a region in

two metaphors – map or trajectory [12]. The map provides a

global totalizing fish-eye vision of the territory based on a

static perspective. Therefore, a map describes a place.

Meanwhile, the trajectory provides a local subjective

perspective based on movements. Trajectory describes a

space. The map metaphor is convenient to understand where

things are and relate to each other (entities and dependencies).

Trajectory is convenient to understand how things behave in a

context (execution, states, and events). For the purpose of

traceability for aiding system comprehension, map metaphor

is the adequate one. For the purpose of debugging an

application, the trajectory metaphor is more representative of

the exploration actions performed during testing and

debugging. Delimit regions by the possibility of traversing or

impediments of so. The former represents a space like

metaphor, the latter a place like metaphor. Examples of the

former are method calls and shared objects. Examples of the

second are variable scopes and packages.

IV. SURVEY OF TRACEABILITY RESEARCH

A. What Is Traceability

In requirements engineering, traceability is an effective

bridge that aligns system evolution with changing stakeholder

needs. It also helps uncover unexpected problems, provide

innovative opportunities, and lays the groundwork for

corporate knowledge management [13]. Also, traceability aids

project managers in verification, cost reduction, accountability

and change management [14]. According to Gotel and

Finkelstein’s paper [15], the definition of traceable software is:

"Requirements traceability refers to the ability to describe and

follow the life of a requirement, in both a forwards and

backwards direction (i.e., from its origins, through its

development and specification, to its subsequent deployment

and use, and through all periods of on-going refinement and

iteration in any of these phases).” [15]

Based on

dependenci

es among

funcionaliti

es

24%

Based on

code

dependenci

es

15%

Based on

criteria for

quality risk

17%

Based on

importance

to the final

user

39%

No formal

order

5%

14. Choose all the options that apply.

How do you and your team define the

order (sequence) of bugs to fix during

integration test?

It was in a

code nobody

had

knowledge

about

7%

It was hidden

in a third

party

component

(COTS)

7%

It was

intermitent,

hence

difficult to

spot

29%

It was costly

to reproduce

(a lot of setup

needed)

15%

Implied in

large changes

to the system

14%

Implied in

major

changes to

requirements

14%

It was a non-

functional

problem

(e.g.,

performance,

security,

scaleability)

14%

17. Remember the most difficult bug you

and your team had to fix. Choose all the

options that apply.

From this definition, we know that traceability is an

important factor throughout the whole process of software

development, and the way we use to achieve traceability is to

create links that connect different software artifacts.

Traceability links indicate various relationships between

and within certain artifacts. There are several ways to

categorize such relationships. According to the roadmap paper

of software traceability [16], traceability relations denote

overlap, satisfiability, dependency, evolution, generalization

and refinement relations. It also represents the conflict and

rationalization associations between software artifacts or

contribution relations between artifacts and the stakeholders

[16]. Among them, dependency and contribution relations can

be directly used for system stabilization. Dependency relations

reflect the dependencies and concurrency between modules

and the robustness of the system. Contribution relations reflect

the ownership of code and the relationships between

stakeholders and artifacts, which show the relevance of a

certain part of the system with user satisfaction.

Traceability seems to be merely criteria for system

development just like reliabilities, or learnability; but actually,

with this capability of tracing, many problems can be solved.

According to Wieringa’s introduction to traceability [17], the

need for traceability falls into four aspects. For project

management, traceability can help to estimate the impact of a

change in requirements, to discover conflicts between

requirements earlier and to bring reduced development time

and effort for future systems because of the reuse of past

implementation decisions. For customers, traceability can help

to evaluate the quality of the product with respect to the user

requirements and acceptance testing can refer directly to the

user requirements being tested for. For designers, traceability

can help to more easily verify the satisfaction from design to

requirements. For maintainers, they can estimate the impact of

a change in requirements on the implementation [17].

For reference, there are many insightful and thorough

surveys introducing and evaluating different traceability

techniques. The seminal paper of Gotel and Finkelstein [15]

investigated and discussed the underlying nature of the

requirements traceability problem. Other papers ([18][19])

discussed traceability techniques for model-driven engineering.

Bashir and Qadir’s survey [20] compared existing traceability

techniques and revealed problems in them.

B. Traceability Techniques

To achieve traceability, There are many existing techniques

that requirements engineers can choose from, including

requirements matrices [21]; keyphrase dependencies [22];

reference model [23]; hypertext [24]; integration documents

[25]; constraint networks [26]; goal-centric traceability [27];

value-based traceability [28] [29]. In addition, Tsumaki and

Morisawa proposed a framework of traceability using UML

[30], a method that supports links between UML models. It is

improved by [31] and later by [32].

However, such tracing techniques mostly incur in overhead

due to manually creating and maintaining traceability links;

thus they are not widespread [33]; and only large companies

mandated by software process standards such as CMMI or

ISO 15504 end up adopting traceability techniques [34]. Also,

different stakeholders in the software development process

have different traceability goals [18]. Moreover, Ramesh and

Jarke [23] suggested that there are two types of groups

focusing on different levels of traceability information, one of

which is low-end and another high-end [23]. In order to use

traceability information to improve quality and efficiency of

testing and debugging, we need more detailed traceability

information for high-end users to ensure the precision of

tracing.

Recent years have seen many automation supports for

traceability. There are two trends of automated tracing:

information-retrieval-based traceability recovery and

traceability for model-driven engineering. Based on the

feasibility study of automated requirements analysis using

information retrieval methods by Dag et al. [35], Antoniol et

al. proposed an approach for recovering traceability links [36].

Further research efforts ([37], [38], [39] and [40]) continued

this direction of investigation. Likewise, Kagdi et al. [41] used

text mining to explore software repositories and link co-

changing artifacts.

The emergence of model-driven engineering technologies

was to address the inability of third-generation languages to

alleviate the complexity of platforms and express domain

concepts effectively [42]. With a transition layer of abstraction,

software development becomes closer to design intent and

requirements. Also, Model-driven development provides an

opportunity to automate both the creation and discovery of

traceability relationships, and to maintain consistency among

the heterogeneous models used throughout the system-

development life cycle [18]. So this can make it easy to unify

the standards of traceability and its relations, but we should

consider the high cost to use such a formal method.

C. Goal-based Requirements Engineering

A goal is an objective the system under consideration should

achieve [43]. Using goal to elicit requirements can be intuitive

since it captures the rationale of requirements analysis. A goal

refinement tree provides traceability links from high-level

strategic objectives to low-level technical requirements [43].

In this way, we can know from traceability information that a

project deviates from the ultimate objective or not. Besides

that, we can find the requirements that customers care most

and make decisions for bug prioritization. To support goal-

based requirements engineering, there are various modeling

techniques that we can choose, both formal and informal.

Among them, KAOS model [44] focuses on the refinement of

goals and numerous relationships between them, and i* model

[45] targets on the intentions of actors and their interactions.

D. Challenges and Prospect of Traceability

Despite the time and efforts made to the development of

traceability, there are still many problems and challenges in it.

Traceability can be difficult to accomplish in practice,

primarily because creating and maintaining traceability links is

time-consuming, costly, arduous, and error prone [46][23].

Also, there exists no standards and unified framework for

traceability. Different categorizations of traceability relations

that have been proposed in the literature and the lack of a

commonly agreed standard semantics for all these types do not

provide confidence in the use of traceability techniques and do

not facilitate the establishment of a common framework to

allow the development of tools and techniques to support

automatic (or semi-automatic) generation of these relations

[22].

Under this context, researchers of traceability established the

International Center of Excellence for Software Traceability

(CoEST) work together on the GCT (Grand Challenge of

Traceability) project [47]. It is designed to challenge and

inspire people to work towards achieving a difficult, yet a

significant goal [48]. It identified several sub-challenges

supposed to be overcome by 2035. Moreover, TraceLab, a

research environment designed to facilitate innovation and

creativity, will empower future traceability research [49].

Therefore, we believe that support for traceability will be

more reliable and purposed in the near future, and based on

that, our proposed work will be promising and trustable.

E. Innovation of Our Work in Face of the Literature

Our work aims at a new use of traceability, which is using

traceability model to directly provide data for deciding the

sequences of test cases and bugs. To the best of our

knowledge, this has not been covered by any paper yet.

Traceability is commonly adopted as an aid to manage test

cases with respect to changing requirements and acceptance

testing, so the team can directly refer to requirements to

review the needs of a user, without having the cost of

searching artifacts manually. Testers and developers need to

review the requirements from time to time. Furthermore, for

large project it is not possible to test every component and fix

all the bugs before delivery or milestone. There has to be some

tradeoffs for testing and debugging. To the best of our

knowledge, no prior research has been made to explore the

role of traceability in such situations.

On the other hand, our proposed method will use formalized

traceability models with weighted nodes that indicate the

relevance and significance of traceability relations. In this way,

we directly use traceability information as a search space.

Automated queries and decision making will be made based

on some mathematical operations on the traceability models.

This is more like data mining on organized and extracted

information.

As future work, we will integrate the method to an existing

tool. This approach can serve as the bridge or connector

between bug triaging tools, bug tracking tools, repositories,

modeling tools and traceability tools.

V. REQUIREMENTS FOR THE MODEL

A. Goals and Requirements

We define here high level requirements for the model and the

solutions as well.

Goal-1: The model for traceability is first built before the

requirements elicitation activities and is refined through

requirements, design and coding activities. Therefore, it is

necessary to capture in the model the goal hierarchy provided

in the KAOS diagram, which already provide the traceability

from goals to requirements and even to some important

entities.

Requirement-1: Importing the data from this model should be

considered an option; hence the model should be able to

model the data from KAOS.

Goal-2: The model should be flexible to accommodate

different sources of traceability data, levels of granularity for

traceability data, and the customization of new queries to

compute sequences (based on team defined criteria).

Requirement-2: The model should be designed as a framework

with extension points (hotspots) and a core to represent the

dependencies.

Goal-3: The model should enable the precise and accurate

attachment of the artifacts produced in later phases (e.g.

diagrams and code)

Requirement-3: A formal representation of each relationship

will provide the point of attachment on each artifact

Goal-4: The users could query the traceability model by using

contents from typical test phase artifacts such as bug reports,

logs and stack-traces.

Requirement-4: Relationships will be represented in a matrix

with numerical values. Functions will construct and query the

matrix. Those artifacts could also be represented in matrices or

the data could be extracted from them to query the existing

matrices.

Goal-5: Enable to customize dependencies based on different

criteria.

Requirement-5: Relationships should be turned off (zero) or

on (1) or even have weights.

B. Assumptions and Out-of-Scope Requirements

Traceability is a very diverse field as we saw in the survey

section. Even after defining the requirements for our model we

are still left with many possible ambiguities. Hence, we were

concerned with discussing what we are not considering as

requirements for our model. For each non-scope we declare an

assumption, as follows:

• We do not aim at coping with changes of artifacts

during system stabilization

o Assumption - it is expected that during

stabilization artifacts will be solid and there

will be only minor issues regarding mostly to

ambiguity, error or misunderstanding of

artifact content. Such issues map to the bug

origination investigation.

• We do not aim at generating traceability information

automatically

o Assumption: Traceability information will be

entered as people create and update new

artifacts. The automation support will consist

of querying the traceability data to calculate

compute the sequences.

• We do not aim at visualization and navigation through

dependencies

o Assumption: people will already access the

artifacts and will already know where the

information they need is located. We

recognize that it may not be true while dealing

with legacy systems or having a new member

being involved in the project. We do not aim

at solving the problem of providing better

access to artifacts. Requirements traceability

tools are available, although not used.

After having stated all the requirements and non-requirements,

we pass to the actual model definition.

VI. THE MODEL

A. Design Rationale (Options considered)

The design rationale involved two main sets of questions and

three options for each. The option adopted is the third option

for both questions.

• How traceability data can be obtained?

• Option-1: Import from existing tools and enrich

data

• Option-2: Create new traceability data targeted

to aid stabilization

• Option-3: Glean it from annotations (tags) made

by the team over all artifacts. Annotations could

also be extracted by processing the comments

and method names in code and comparing them

against other artifacts.

We discarded options 1 and 2 in order not to reinvent the way

traceability is already created.

• How is granularity defined to effectively help in system

stabilization? I.e., how to define what is traceable?

• Option-1: Fixed granularity based on the

traceability model defined before requirements

elicitation.

• Option-2: Evolving granularity based on

decision points at every artifact construction

• Option-3: Hierarchical granularity enables the

establishment of standard categories which may

be extended to accommodate smaller grains. The

team can create new tags as their understanding

of the software and the domain improves.

We discarded option-1 because it is the current status quo of

traceability utilization, which does not solve the problem of

sequencing. The option-2 was discarded because it disregards

the fact that the KAOS model already provides the basic

categories to trace back artifacts.

B. Diagram Representation

The diagram in figure-6 demonstrates how the traceability

model fits within the layers of the process of producing

artifacts and the process of system stabilization. The

production of artifacts comprises all activities from goal

modeling to code development. The system stabilization

comprises planning tests, executing tests, bug triage meetings,

debugging and fixing. We did not include deployment and

change management activities as relevant to traceability at this

point of research.

Figure-6 Traceability in the context of layered processes

C. Formal Modeling Decisions

Models can be visual, textual, informal or formal. We chose

for a textual and formal model due to the following three

reasons. A formal model would enable the verification during

the specification of the data mapping between existing

traceability data and our solution. If new artifacts or parts of it

were created, the model could expedite the analyses of impact

on the algorithms consuming the traceability information.

Ultimately, the formal specification could serve as an

abstraction of the implementation useful to design new

traceability options, such as tertiary and weighted

dependencies. The formal representation provides a more

intuitive base for logical reasoning on the unfolding

consequences to data import, matrix representation (multi-

dimensional) and querying and traversing the data structures.

As choice for data structure we decided to adopt the Design

Structured Matrix (DSM) [8] method due to the

expressiveness and the amount of ongoing research around it.

DSM has been shown useful to specify products with complex

dependencies [9] and support designers to analyze change

impacts. It is also very useful to detect circular dependencies

and to understand how parts are clustered, and therefore

support decision making on modularizing the development

process itself [10]. Such aspects are still not part of this

research, but we plan to investigate their underpinnings in

future work.

The matrices we adopted are bi-dimensional and combine

artifacts from two families only. Therefore, the matrix is

constrained by an assumption of sequential process of

production of such artifacts. We acknowledge this

oversimplification, which do not even represent the waterfall

process. In the future we plan to experiment with multi-

dimensional matrices which stem from considering

dependencies as clusters. In other words, this means an artifact

depending at same time on more than one artifact.

D. Definitions

Below we define the entities that are essential part of the

traceability model.

• Artifact (A) = any document, diagram or code part

of software project.

• Artifact Family (A.) = goal, requirement, design,

code, test case, bug report

• Traceable Atom (T) = part of an artifact relevant to

be related to other parts from other or same artifact. It

is the smallest unit for representing artifact content,

which could be lines or labels.

• Design Structured Matrix (DSM) = represents all

dependencies among two or more different Families

of Artifacts.

• Dependency = a relation between two Traceable

• Sequence = a set of Dependencies

Functions:

• Make Dependency (MD) = creates a Dependency

• Compute Sequence (CS) = obtains a Sequence given

a DSM

• Populate (PDSM) = creates a DSM

E. Symbols

Artifact = A

Artifact Family:

• GO = Goal

• RE = Requirement document

• DS = Diagram

• CD = Code

Traceable = T (name) or T (line start, line end).

• T.GO (“goal1”)

o specifies that “goal1” is traceable

• T.RE (“req1”,2,10)

o specifies that from line 2 to line 10 of

requirement “req1” is considered a

traceable

• T.DS (“Strategy Pattern”) = specifies that the

Strategy Pattern diagram is a traceable

• T.CD (“class Validator”) = specifies that the piece

of code named “class Validator” is a traceable

Make Dependency = MD (T, T)

• MD (T.DS(“Strategy Pattern”, T.CD(“class

Validator”), 1)

• Creates a dependency with value 1 between a

design traceable and a code traceable. If we put

value zero, we would turn off the dependency

F. Specifying a Traceability

1) Coarse Grain

A = {File A, File B}

T.GO = A [1]

T.GO (“g1”) = “Enable interconnectivity”

T.RE = A [2]

A.RE (“rq1”) = “Manage sessions”

MD (AR(“rq1”), AG(“g1”),3)

2) Fine Grain

MD (T.AR(“rq1”,”alternative condition”),

T.AG(“g1”),1)

VII. SAMPLE RESULTS OF APPLYING TRACEABILITY

Formalized traceability models serve as a search space in

our proposed work. After importing the dependencies to the

DSM, we will traverse them to automatically generate

sequences of tests and bugs to be fixed. Here follows three

examples of sequence generation for different criteria. For

requirement we mean functionalities visible to the final user.

A. User Satisfaction Criterion

Considering a goal priority of [A, B, C] and a DSM that

relates these goals to a set of defective requirements (see

figure-8). Therefore, looking at DSM for bugs versus

requirements, we cascade the priority from goals and obtain

the following bug sequence: ([Bz], [Bw,By],[Bx])

Figure-8. The dependencies between goals and

requirements

Figure-9. The dependencies between bugs and

requirements

B. Robustness and Reliability Criterion

Considering the level of dependencies on each requirement

gives us the requirements more fundamental to the system,

and therefore that should be fixed first. Figure-10 shows this

traceability. Therefore, the resulting sequence of bugs should

be as follows: ([Bw], [By],[Bx],[Bz])

Figure-10. Requirement to requirement dependency

C. Minimize Concurrency

The objective of this criterion is to have different developers

working in parallel without implying in extensive code or

requirement concurrencies. It is not always possible to have

zero concurrency and this criterion demonstrates that a

compromise can be made by a team during bug triage.

The DSM relating code and requirements (figure-11) depicts

in colored lines the sets of dependencies being accounted for

the sequencing choices. In green, the sequencing suggests the

bugs from requirements Req4 to be grouped. The yellow line

suggests that bugs from Req2 and Req3 be grouped (so, a

concurrency on the same requirement). Besides that, line

yellow also implies a code concurrency on the omega

component.

Such decisions need team to discuss and analyze the suggested

sequences and weight the risks. For minimizing concurrency,

if two bugs fall in code beta and omega, and both code beta

and omega implement Req3 (as shown in Figure-11), the team

may decide to put those two bugs together in a certain position

of the sequence.

Therefore, querying DSMs in figure-11 and figure-9 results in

the following sequence: ([Bx], [By,Bw],[Bz])

Figure-11. Dependencies among bugs and code

components in Greek letters

VIII. CONCLUSION AND FUTURE WORK

The traceability model for system stabilization is a novel

use for an old requirements engineering method. Our approach

provides a more integrated context for its adoption. The

positive outcome is to have traceability repositioned as an aid

to decision making. Hence, it puts teams in a position to

effectively collaborate by discussing how to maintain and

consume the traceability data. Meanwhile, traceability in the

current industry format is mostly aimed for individual use.

The negative outcome of our research is that traceability still

relies on the quality of the data produced during requirements

engineering. We did not address this issue, although it is

crucial to demonstrate the usefulness of the approach to

system stabilization.

The future work is threefold. First, set and run experiments

to investigate the effect of granularity on the precision and

accuracy of the sequencing criteria. Second, extend

PorchLight tool [3] to enable the use of the suggested

sequences during bug triage meetings. With the tool we will

be able to investigate how human factors related to motivation

and intuition play a role in the decision making process. We

expect that the optimality provided by the sequences would

improve the quality of traceability and feedback with new

criteria for sequencing. Third, we also plan to investigate more

complex forms of dependencies and see how they may better

represent the reality of agile or crowdsourcing based teams.

.

REFERENCES

[1] Jones J. A., Harrold M. J., Stasko J., “Visualization of Test Information

to Assist Fault Localization”, in proc ICSE 2002.

[2] Breu, S., et al., Information needs in bug reports: improving cooperation

between developers and users. in proc of CSCW 2010.

[3] Bortis G., van der Hoek A., “PorchLight: A Tag-based Approach to Bug

Triaging”, in proc. of CSCW 2011.

[4] Bertram D., et al., “Communication, collaboration, and bugs: the social

nature of issue tracking in small, collocated teams”, in proc of CSCW

2010.

[5] Anvik J., Hiew L., Murphy, G.,C., “Who should fix this bug?”, in proc

ICSE 2006.

[6] Guo, P. J., et al., “Not My Bug! and Other Reasons for Software Bug

Report Reassignment”. In proc. of CSCW 2011.

[7] Xuan, J., et al., “Developer Prioritization in Bug Repositories”, In proc

of ICSE 2012.

[8] Browning, T.R.; , "Applying the design structure matrix to system

decomposition and integration problems: a review and new

directions," Engineering Management, IEEE Transactions on , vol.48,

no.3, pp.292-306, Aug 2001

[9] Sangal N., et al., “Using dependency models to manage complex

software architecture”, in proc of the 20th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and

applications (OOPSLA '05), 2005

[10] Baldwin, C.Y., Clark K.B., “Design Rules – the Power of Modularity”,

vol.1 ed. The MIT Press; First Edition, Mar15, 2000

[11] Armour, P., “The Five Orders of Ignorance”, in CAMC, vol. 43, no. 10,

pp. 17-20, Oct., 2000

[12] De Certau M. and Rendall S. F, “The Practice of Everyday Life”, ed.

University of California Press, 1984

[13] Jarke, M. (1998). Requirements tracing. Communications of the ACM,

41(12), 32-36.

[14] Watkins, R., & Neal, M. (1994). Why and how of requirements tracing.

Software, IEEE, 11(4), 104-106.

[15] Gotel, O. C., & Finkelstein, C. W. (1994, April). An analysis of the

requirements traceability problem. In Requirements Engineering, 1994.,

Proceedings of the First International Conference on (pp. 94-101).

IEEE.

[16] Spanoudakis, G., & Zisman, A. (2005). Software traceability: a roadmap.

Handbook of Software Engineering and Knowledge Engineering, 3, 395-

428.

[17] Wieringa, R. (1995). An introduction to requirements traceability.

[18] Aizenbud-Reshef, N., Nolan, B. T., Rubin, J., & Shaham-Gafni, Y.

(2006). Model traceability. IBM Systems Journal, 45(3), 515-526.

[19] Galvao, I., & Goknil, A. (2007, October). Survey of traceability

approaches in model-driven engineering. In Enterprise Distributed

Object Computing Conference, 2007. EDOC 2007. 11th IEEE

International (pp. 313-313). IEEE.

[20] Bashir, M. F., & Qadir, M. A. (2006, December). Traceability

techniques: A critical study. In Multitopic Conference, 2006. INMIC'06.

IEEE (pp. 265-268). IEEE.

[21] Davis, A. M. (1990). Software requirements: analysis and specification.

Prentice Hall Press.

[22] Jackson, J. (1991, December). A keyphrase based traceability scheme. In

Tools and Techniques for Maintaining Traceability During Design, IEE

Colloquium on (pp. 2-1). IET.

[23] Ramesh, B., & Jarke, M. (2001). Toward reference models for

requirements traceability. Software Engineering, IEEE Transactions on,

27(1), 58-93.

[24] Kaindl, H. (1993). The missing link in requirements engineering. ACM

SIGSOFT Software Engineering Notes, 18(2), 30-39.

[25] Lefering, M. (1993, January). An incremental integration tool between

requirements engineering and programming in the large. In

Requirements Engineering, 1993., Proceedings of IEEE International

Symposium on (pp. 82-89). IEEE.

[26] Bowen, J., O'Grady, P., & Smith, L. (1990). A constraint programming

language for life-cycle engineering. Artificial Intelligence in

Engineering, 5(4), 206-220.

[27] Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., &

Christina, S. (2005, May). Goal-centric traceability for managing non-

functional requirements. In Software Engineering, 2005. ICSE 2005.

Proceedings. 27th International Conference on (pp. 362-371). IEEE.

[28] Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., & Grünbacher, P.

(Eds.). (2005). Value-based software engineering. Springer.

[29] Egyed, A., Biffl, S., Heindl, M., & Grünbacher, P. (2005, November). A

value-based approach for understanding cost-benefit trade-offs during

automated software traceability. In Proceedings of the 3rd international

workshop on Traceability in emerging forms of software engineering

(pp. 2-7). ACM.

[30] Tsumaki, T., & Morisawa, Y. (2000). A framework of requirements

tracing using UML. In Software Engineering Conference, 2000. APSEC

2000. Proceedings. Seventh Asia-Pacific (pp. 206-213). IEEE.

[31] Letelier, P. (2002, September). A framework for requirements

traceability in UML-based projects. In Proc. of 1st International

Workshop on Traceability in Emerging Forms of Software Engineering

(pp. 173-183).

[32] Settimi, R., Cleland-Huang, J., Ben Khadra, O., Mody, J., Lukasik, W.,

& DePalma, C. (2004, September). Supporting software evolution

through dynamically retrieving traces to UML artifacts. In Software

Evolution, 2004. Proceedings. 7th International Workshop on Principles

of (pp. 49-54). IEEE.

[33] Arkley, P., Mason, P., & Riddle, S. (2002, September). Position paper:

Enabling traceability. In Proceedings of the 1st International Workshop

on Traceability in Emerging Forms of Software Engineering, Edinburgh,

Scotland (September 2002) (pp. 61-65).

[34] Neumuller, C., & Grunbacher, P. (2006, September). Automating

software traceability in very small companies: A case study and lessons

learne. In Automated Software Engineering, 2006. ASE'06. 21st

IEEE/ACM International Conference on (pp. 145-156). IEEE.

[35] Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., &

Karlsson, J. (2002). A feasibility study of automated natural language

requirements analysis in market-driven development. Requirements

Engineering, 7(1), 20-33.

[36] Antoniol, G., Canfora, G., Casazza, G., & De Lucia, A. (2000).

Information retrieval models for recovering traceability links between

code and documentation. In Software Maintenance, 2000. Proceedings.

International Conference on (pp. 40-49). IEEE.

[37] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., & Merlo, E.

(2002). Recovering traceability links between code and documentation.

Software Engineering, IEEE Transactions on, 28(10), 970-983.

[38] Hayes, J. H., Dekhtyar, A., & Osborne, J. (2003, September). Improving

requirements tracing via information retrieval. In Requirements

Engineering Conference, 2003. Proceedings. 11th IEEE International

(pp. 138-147). IEEE.

[39] Lucia, A. D., Fasano, F., Oliveto, R., & Tortora, G. (2007). Recovering

traceability links in software artifact management systems using

information retrieval methods. ACM Transactions on Software

Engineering and Methodology (TOSEM), 16(4), 13.

[40] Marcus, A., & Maletic, J. I. (2003, May). Recovering documentation-to-

source-code traceability links using latent semantic indexing. In

Software Engineering, 2003. Proceedings. 25th International

Conference on (pp. 125-135). IEEE.

[41] Kagdi, H., Maletic, J. I., & Sharif, B. (2007, June). Mining software

repositories for traceability links. In Program Comprehension, 2007.

ICPC'07. 15th IEEE International Conference on (pp. 145-154). IEEE.

[42] Schmidt, D. C. (2006). Model-driven engineering. COMPUTER-IEEE

COMPUTER SOCIETY-, 39(2), 25.

[43] Van Lamsweerde, A. (2001). Goal-oriented requirements engineering: A

guided tour. In Requirements Engineering, 2001. Proceedings. Fifth

IEEE International Symposium on (pp. 249-262). IEEE.

[44] Van Lamsweerde, A. (2000, June). Requirements engineering in the year

00: A research perspective. In Proceedings of the 22nd international

conference on Software engineering (pp. 5-19). ACM.

[45] Yu, E. S. (1997, January). Towards modelling and reasoning support for

early-phase requirements engineering. In Requirements Engineering,

1997., Proceedings of the Third IEEE International Symposium on (pp.

226-235). IEEE.

[46] Gotel, O., & Finkelstein, A. (1995, March). Contribution structures

[Requirements artifacts]. In Requirements Engineering, 1995.,

Proceedings of the Second IEEE International Symposium on (pp. 100-

107). IEEE.

[47] Gotel, O., Cleland-Huang, J., Hayes, J. H., Zisman, A., Egyed, A.,

Grünbacher, P., ... & Maletic, J. (2012). The Grand Challenge of

Traceability (v1. 0). Software and Systems Traceability, 343-409.

[48] Cleland-Huang, J., Czauderna, A., Dekhtyar, A., Gotel, O., Hayes, J. H.,

Keenan, E., ... & Maeder, P. (2011, May). Grand challenges,

benchmarks, and tracelab: Developing infrastructure for the software

traceability research community. In Proceedings of the 6th International

Workshop on Traceability in Emerging Forms of Software Engineering

(pp. 17-23). ACM.

[49] Keenan, E., Czauderna, A., Leach, G., Cleland-Huang, J., Shin, Y.,

Moritz, E., ... & Hearn, D. (2012, June). Tracelab: An experimental

workbench for equipping researchers to innovate, synthesize, and

comparatively evaluate traceability solutions. In Proceedings of the 2012

International Conference on Software Engineering (pp. 1375-1378).

IEEE Press.

BIOGRAPHIES

Christian M. Adriano (M’2005) holds a bachelor and

a master in Computer Engineering from State

University of Campinas. He is currently a PhD student

at the University of California Irvine. Christian has

maintained a Project Management Professional

credential since 2008 and has more than ten years of

experience in developing software for banking sector.

Xinlu Tong (M’76-SM’81-F’87) holds a bachelor in

Software Engineering from Tongji University. He is

currently a Master student at the University of California,

Irvine.

