

Co-funded by the Horizon 2020

Framework Programme of the European Union

Big Data to Enable Global Disruption of the Grapevine-powered Industries

D3.3 - Distributed Indexing Components

DELIVERABLE NUMBER D2.3

DELIVERABLE TITLE Distributed Indexing Components

RESPONSIBLE AUTHOR Rossano Venturini (CNR)

Ref. Ares(2018)4969476 - 27/09/2018

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 1

GRANT AGREEMENT N. 780751

PROJECT ACRONYM BigDataGrapes

PROJECT FULL NAME
Big Data to Enable Global Disruption of the Grapevine-powered
industries

STARTING DATE (DUR.) 01/01/2018 (36 months)

ENDING DATE 31/12/2020

PROJECT WEBSITE http://www.bigdatagrapes.eu/

COORDINATOR Pythagoras Karampiperis

ADDRESS 110 Pentelis Str., Marousi, GR15126, Greece

REPLY TO pythk@agroknow.com

PHONE +30 210 6897 905

EU PROJECT OFFICER Mr. Riku Leppanen

WORKPACKAGE N. | TITLE WP3 | Data & Semantics Layer

WORKPACKAGE LEADER ONTOTEXT

DELIVERABLE N. | TITLE D3.3 | Distributed Indexing Components

RESPONSIBLE AUTHOR Rossano Venturini (CNR)

REPLY TO Rossano.Venturini@unipi.it

DOCUMENT URL http://www.bigdatagrapes.eu/

DATE OF DELIVERY (CONTRACTUAL) 30 September 2018 (M9)

DATE OF DELIVERY (SUBMITTED) 28 September 2018 (M9)

VERSION | STATUS 1.0 | Final

NATURE Demonstrator (DEM)

DISSEMINATION LEVEL Public (PU)

AUTHORS (PARTNER)
Rossano Venturini (CNR), Raffaele Perego (CNR), Milena Yankova
(ONTOTEXT), Pythagoras Karampiperis (Agroknow)

CONTRIBUTORS

Vladimir Alexiev (ONTOTEXT), Panagiotis Zervas (Agroknow),
Sabine Karen Yemadje Lammoglia (INRA), Arnaud Charleroy (INRA),
Pascal Neveu (INRA), Aikaterini Kasimati (AUA), Maritina Stavrakaki
(AUA)

REVIEWER Stefan Scherer (GEOCLEDIAN)

http://www.bigdatagrapes.eu/
mailto:pythk@agroknow.com
mailto:Rossano.Venturini@unipi.it
http://www.bigdatagrapes.eu/

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 2

VERSION MODIFICATION(S) DATE AUTHOR(S)

0.1 Table of Contents 07/09/2018 Rossano Venturini (CNR)

0.5 Initial version 12/09/2018 Rossano Venturini (CNR)

0.8 Input from partners 14/9/2018

Vladimir Alexiev
(ONTOTEXT), Panagiotis

Zervas (Agroknow),
Sabine Karen Yemadje

Lammoglia (INRA),
Arnaud Charleroy

(INRA), Pascal Neveu
(INRA), Aikaterini

Kasimati (AUA), Maritina
Stavrakaki (AUA)

0.9 Internal Review 21/09/2018
Stefan Scherer
(GEOCLEDIAN)

1.0
Final edits after internal

review

25/09/2018

Rossano Venturini
(CNR), Raffaele Perego
(CNR), Milena Yankova

(ONTOTEXT),
Pythagoras Karampiperis

(Agroknow)

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 3

PARTICIPANTS CONTACT

Agroknow IKE
(Agroknow, Greece)

Pythagoras Karampiperis
Email: pythk@agroknow.com

Ontotext AD
(ONTOTEXT, Bulgaria)

Todor Primov
Email: todor.primov@ontotext.com

Consiglio Nazionale Delle
Richerche

(CNR, Italy)

Raffaele Perego
Email: raffaele.perego@isti.cnr.it

Katholieke Universiteit Leuven
(KULeuven, Belgium)

Katrien Verbert
Email: katrien.verbert@cs.kuleuven.be

Geocledian GmbH
(GEOCLEDIAN Germany)

Stefan Scherer
Email: stefan.scherer@geocledian.com

Institut National de la Recherché
Agronomique
(INRA, France)

Pascal Neveu
Email: pascal.neveu@inra.fr

Agricultural University of Athens
(AUA, Greece)

Katerina Biniari
Email: kbiniari@aua.gr

Abaco SpA
(ABACO, Italy)

Simone Parisi
Email: s.parisi@abacogroup.eu

APIGAIA
(APIGEA, Greece)

Eleni Foufa
Email: Foufa-e@apigea.com

mailto:pythk@agroknow.com
mailto:todor.primov@ontotext.com
mailto:raffaele.perego@isti.cnr.it
mailto:katrien.verbert@cs.kuleuven.be
mailto:pascal.neveu@inra.fr
mailto:kbiniari@aua.gr
mailto:s.parisi@abacogroup.eu
mailto:Foufa-e@apigea.com

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 4

ACRONYMS LIST

BDG
BIC
D-GAPS
GDBMS
LSM-tree
OWL
PEF
RDF
RDFS
SPARQL
SIMD
TSDB
VByte

Big Data Grapes
Binary Interpolative Coding
Delta Gaps
Graph Data Base Management System
Log-Structured Merge-tree
Web Ontology Language
Partitioned Elisa Fano
Resource Description Framework
RDF Schema
Symantec Protocol and RDF Query Language
Single Instruction Multiple Data
Time series database
Variable-Byte

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 5

EXECUTIVE SUMMARY

The BigDataGrapes (BDG) platform aspires to provide components that go beyond the state-of-the-art on
various stages of the management, processing, and usage of grapevine-related big data assets thus making
easier for grapevine-powered industries to take important business decisions. The platform employs the
necessary components for carrying out rigorous analytics processes on complex and heterogeneous data
helping companies and organizations in the sector to evolve methods, standards and processes based on
insights extracted from their data.

The goal of the BDG Distributed Indexing activity is to develop novel methodologies and components for
realizing efficient indexing over distributed big data batch and cross-streaming sources.

The activities carried out in this first period focused on the design of time and space efficient indexing data
structures for structured and unstructured data such as labelled trees, graphs, and text documents, including
compression techniques for Big data management that support a broad range of analytical queries over
arbitrary data dimensions. Specifically, we investigated the efficiency and effectiveness dimensions of indexes
for RDF triples based on inverted indexes, and designed a novel compression technique for making these
indexes more efficient in both space and time. This deliverable includes the first version of the software
components developed and discusses the preliminary results obtained. An appendix shows how to access the
software, install it and reproduce the tests conducted.

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 6

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 5

1 INTRODUCTION ... 8

1.1 INVERTED INDEXES PRELIMINARIES .. 8

1.2 ORGANIZATION OF THE DOCUMENT ... 10

2 STATE OF THE ART .. 11

2.1 RDF INDEXING .. 11

2.2 INVERTED LIST COMPRESSION ... 11

2.2.1 Block-based ... 11

2.2.2 PForDelta .. 12

2.2.3 Elias-Fano .. 12

2.2.4 Binary Interpolative Coding ... 12

2.2.5 The Variable-Byte family .. 13

3 BIGDATAGRAPES RDF INDEXING .. 14

3.1 EXPERIMENTS ... 14

4 STATE-OF-THE-ART OF TECHNOLOGICAL TOOLS ... 16

4.1 GRAPH-BASED INDEXING .. 16

4.2 TIME SERIES INDEXING ... 17

5 SUMMARY .. 19

6 REFERENCES ... 20

7 APPENDIX ... 21

7.1 SETUP & INSTALL THE RDF INDEX.. 21

7.1.1 Getting the code .. 21

7.1.2 Building the code ... 21

7.1.3 Input data format .. 21

7.1.4 FROM RDF Input data format ... 22

7.1.5 Building the indexes .. 22

7.2 ELASTICSEARCH DOCUMENTATION & TOOLS .. 23

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 7

TABLE OF FIGURES

Figure 1: The performance of various compressors for the DBPedia dataset, expressed as: time for building the
indexes (in minutes), space (bits per docID) and query time (μsec per and query) ... 15

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 8

1 INTRODUCTION

This accompanying document for deliverable D3.3 (Distributed Indexing Components) reports about the work
done and the software components implemented within Task 3.3 (Big Data Indexing) of WP3 (Data & Semantics
Layer) of the BigDataGrapes (BDG) project. The goal of Task 3.3 is to develop novel methodologies and
components for realizing efficient indexing over distributed big data batch and cross-streaming sources.

Specifically, the activities carried out in this first period focused on the design of time and space efficient data
structures for indexing huge amount of structured and unstructured data such as labelled trees, graphs, and
text documents, supporting a broad range of analytical queries over arbitrary data dimensions. This deliverable
includes the first version of the software components developed and discusses the preliminary results obtained.
In particular, we present a novel compression technique (Pibiri & Venturini 2018) for inverted indexes based
on Variable-Byte, a well-known and widely adopted method for coding integer sequences by saving memory
space and enabling fast search operations. As detailed in Section 2, the use of the inverted indexes is a common
approach used to index RDF datasets. In this document we provide preliminary results obtained by applying the
novel method on a large inverted index for RDF data.

The inverted index is the core data structure at the basis of search engines, massive database architectures and
social networks. It is also one of the main solution used to index RDF datasets, for example Semplore (L. Zhang
et al. 2007) and Siren (Delbru et al. 2010) use inverted indexes. In its simplicity, the inverted index can be
regarded as being a collection of sorted integer sequences, called inverted or posting lists.

1.1 INVERTED INDEXES PRELIMINARIES

Given a collection D of documents, each document is identified by a non-negative integer called a document
identifier, or docid. A posting list is associated to each term appearing in the collection, containing the list of
the docids of all the documents in which the term occurs. The collection of the posting lists for all the terms is
called the inverted index of D, while the set of the terms is usually referred to as the dictionary. Posting lists
typically contain additional information about each document, such as the number of occurrences of the term
in the document, and the set of positions where the term occurs.

Inverted index compression is essential to make efficient use of the memory hierarchy, thus maximizing query
processing speed. Representing sequences of integers in compressed space is thus a fundamental problem,
studied since the 1950s with applications going beyond inverted indexes.

A classical solution is based on sorting in increasing order each posting list and representing the sequence using
the differences between consecutive numbers (d-gaps). Since the d-gaps are all positive numbers that can be
encoded with uniquely- decodable variable length binary codes. Smaller the d-gaps less the average number of
bits needed for their encoding.

It is fundamental for a Big Data management system to provide high throughput and, at the same time, return
fast query answers to users. Clearly, a single search server with a single inverted index could be not sufficient
to deal with such constraints. Therefore, the query processing subsystem is usually deployed on a cluster of
servers which can adopt a replicated and/or distributed architecture.

In the replicated architecture, each cluster’s server holds a replica of the same inverted index. Servers operate
in parallel, processing different queries at the same time hence increasing the search engine throughput. When
a user issues a query, it is first received by a broker, which routes the query on one search server. Once the
search server has computed the query results, these are sent back to the issuing user. However, such replicated
architecture does not have effects on query latency. From the user perspective, query latency is the amount of
time elapsing between issuing the query and receiving its result. One way to reduce latencies is to reduce the

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 9

query processing times. To this end, the index can be partitioned into smaller shards. In fact, query processing
times increase with the posting lists’ lengths, since more postings need to be traversed, decompressed, and
scored. Therefore, index partitioning aims at keeping the posting lists short so that query processing times are
reduced. For instance, document-based partitioning assign different documents to different shards, such that
each shard can act as an independent inverted index. After partitioning, index shards are assigned to different
search servers and incoming queries are dispatched to all search servers. Each server computes the query
results on its shard independently from the others. These partial results are then aggregated and sent back to
the issuing user.

As follows from the above discussion, the distribution and replication of indexes is a orthogonal dimension with
respect to the choice of the data structure for storing and accessing the inverted index. Any implementation of
an inverted index can be used in a replicated and distributed architecture designed, dimensioned and tuned to
meet the given throughput and latency requirements. Anyway, due to the huge quantity of data available and
processed on a daily basis by the mentioned systems, compressing the inverted index is indispensable since it
can introduce a two-fold advantage over a non-compressed representation: feed faster memory levels with
more data and, hence, speed up the query processing algorithms. As a result, the design of algorithms that
compress the index effectively while maintaining a noticeable decoding speed is an old problem in computer
science, that dates back to more than 50 years ago, and still a very active field of research. Many representations
for inverted lists are known, each exposing a different compression ratio vs. query processing speed trade-off.

We point the reader to Section 2 for a concise overview of the different encoders that have been proposed
through the years.

Among these, Variable-Byte (henceforth, VByte) is the most popular and used byte-aligned code. In particular,
VByte owes its popularity to its sequential decoding speed and, indeed, it is the fastest representation up to
date for integer sequences. For this reason, it is widely adopted by well-known companies as a key database
design technology to enable fast search of records.

We mention some noticeable examples. Google uses VByte extensively: for compressing the posting lists of
inverted indexes and as a binary wire format for its protocol buffers. IBM DB2 employs VByte to store the
differences between successive record identifiers. Amazon patented an encoding scheme, based on VByte and
called Varint-G8IU, which uses SIMD (Single Instruction Multiple Data) instructions to perform decoding faster.
Many other storage architectures rely on VByte to support fast full-text search, like Redis, UpscaleDB and
Dropbox.

We now quickly review how the VByte encoding works. The binary representation of a non-negative integer is
divided into groups of 7 bits which are represented as a sequence of bytes. In particular, the 7 least significant
bits of each byte are reserved for the data whereas the most significant (the 8-th), called the continuation bit,
is equal to 1 to signal continuation of the byte sequence. The last byte of the sequence has its 8-th bit set to 0
to signal, instead, the termination of the byte sequence. Decoding is simple: we just need to read one byte at
a time until we find a value smaller than 27.

The main drawback of VByte lies in its byte-aligned nature, which means that the number of bits needed to
encode an integer cannot be less than 8. For this reason, VByte is only suitable for large numbers. However, the
inverted lists are notably known to exhibit a clustering effect, i.e., these present regions of close identifiers that
are far more compressible than highly scattered regions (Ottaviano & Venturini 2014). Such natural clusters are
present because the indexed data itself tend to be very similar. The key point is that efficient inverted index
compression should exploit as much as possible the clustering effect of the inverted lists. VByte currently fails
to do so and, as a consequence, it is believed to be space-inefficient for inverted indexes.

Our paper (Pibiri & Venturini 2018) disproves the folklore belief that VByte is too large to be considered space-

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 10

efficient for compressing inverted indexes. This is done by presenting Opt-VByte, an optimized VByte-based
algorithm that improves compression ratio of VByte by a factor 2 on the standard Web pages. Although the
literature reports about several index representations that outperform both in time and space VByte, one of
the reason for being interested in improving VByte is that VByte is extremely popular and several existing
systems use it. As our solution only introduces an optimization algorithm to run at construction time and the
compression algorithm is essentially Vbyte, it can be adopted by any of these systems with a very small effort.
This can thus have a large impact.

The basic idea is based on partitioning the inverted lists into blocks and representing each block with the most
suitable encoder, chosen among VByte and the characteristic bit-vector representation. Partitioning the lists
has the potential of adapting to the distribution of the integers in the lists by adopting VByte for the sparse
regions where larger d-gaps are likely to be present.

Since we cannot expect the dense regions of the lists be always aligned with uniform boundaries, we consider
the optimization problem of minimizing the space of representation of an inverted list by representing it with
variable-length partitions. To solve the problem efficiently, we introduce an algorithm that finds the optimal
partitioning in linear time and constant space.

1.2 ORGANIZATION OF THE DOCUMENT

The deliverable is organized as follows. Section 2 presents the state-of-the-art for inverted index representation,
while Section 3 discusses the results of the experiments conducted to test our index on a large RDF dataset and
experimentally comparing the efficiency of OPT-VByte against other competitors. We emphasize that OPT-
VByte has been designed and implemented in the context of the BDG project. A paper discussing the
advantages of OPT-VByte with respect to the state of the art is currently under revision for publication in a first-
tier international journal. Experiments conducted to assess this technique for indexing RDF data show that OPT-
VByte is better than any other approach but Partitioned Elias Fano (PEF) (Ottaviano & Venturini 2014), the state-
of-the-art technique for coding inverted indexes developed by the same authors of OPT-VByte before the
beginning of the BDG project. Section 4 complete the review of the state of the art by presenting the most
popular tools for graph and time series indexing. These tools are widely used and their discussion provide a
complementary view on the problem of efficient distributed indexing with respect to the research results
previously discussed. We conclude with a plan for future work. Finally, an Appendix provides instructions to
download the software, install it and test our index on the provided RDF dataset.

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 11

2 STATE OF THE ART

In this Section we describe the main approaches for indexing RDF data: Indexing based on Database
Management systems, on B-tree, and on inverted indexes. As our implementation follows the latter approach,
the remaining of the Section present a detailed overview of the main techniques for representing inverted
indexes. This allows to fully understand our main contribute that will be described in the subsequent sections.

2.1 RDF INDEXING

Three different main approaches have been proposed to deal with the problem of solving RDF patterns, i.e.,
triples or quadruples. Database Management based systems manage RDF triples or quads by relying on existing
RDBMS systems. Conversely, RDF-native systems are specifically designed to deal with RDF datasets. The index
contains the whole dataset and has to provide very basic operations on it. These operations should efficiently
solve the possible instances of any SPARQL pattern. The whole SPARQL query is then solved by joining the
partial results of its patterns. A native index structure may consist of three B-trees (or its variants like B+-tree).
Each of them stores the triples in the dataset indexed, respectively, by subject, predicate and object. Access
patterns that contain two variables are solved trivially by querying the correct B-tree while access patterns with
fewer than two variables ask for a join of partial result to obtain the final answer. Observe that the join may be
computationally very expensive since it may be degenerated to a complete scan of the whole dataset. These
poor worst-case guarantees lead researchers to design more efficient solutions. A possible solution consists on
resorting to six different B-Trees. YARS2 (Harth & Decker 2005; Harth et al. 2007) reduces significantly the
number of required B-trees. RDF-3X (Neumann & Weikum 2010) is currently among the best indexes. It uses six
B+-trees for index triples, namely, it does not resort to the reduction proposed in (Harth & Decker 2005).
Inverted-index based systems implement RDF-systems over inverted lists, the logical data structure generally
used for speeding-up search in large repositories. Semplore (L. Zhang et al. 2007) is an index over semantic data
that supports hybrid searches which integrate structured query parts with keyword context. Siren (Delbru et
al. 2010) is a system based on a node indexing scheme. In their approach each element of any posting list is a
path on a tree representation of the dataset. These solutions have a much lower space usage compared to the
other approaches as they do not need any replication of the dataset. Furthermore, as we will see in the next
subsection, compression of inverted lists is a mature field of research with several very effective solutions.

2.2 INVERTED LIST COMPRESSION

In this subsection we overview the most important compressors devised for efficient inverted list
representation. Additionally, to the ones we review in the following, we remark that well-known compressors
like Elias' Gamma and Delta and Golomb are known to obtain inferior compression ratios for inverted index
storage with respect to the state-of-the-art, thus we do not consider them. The reader can refer to the paper
(Pibiri & Venturini 2018) for a complete list of references.

2.2.1 Block-based

Given an increasingly ordered posting list representing the docid containing a given term, blocks of integers can
be encoded separately, to improve both compression ratio and retrieval efficiency. This line of work finds its
origin in the so-called Frame-of-reference.

A simple example of this approach, called binary packing, encodes blocks of fixed length, e.g., 128 integers. To
reduce the value of the integers, we can subtract from integer the previous one (the first integer is left as it is),
making each block be formed by integers greater than zero known as delta-gaps (or just d-gaps). Scanning a
block will need to re-compute the original integers by computing the prefix sums.

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 12

In order to avoid the prefix sums, we can just encode the difference between the integers and the first element
of the block (base+offset encoding).
Using more than one compressor to represent the blocks, rather than only one, can also introduce significant
improvements in query time within the same space constraints.

Other binary packing strategies are Simple9, Simple8b, Simple16, and QMX, that combine relatively good
compression ratio and high decompression speed. The key idea is to try to pack as many integers as possible in
a memory register (32, 64 or 128 bits). Along with the data bits, a selector is used to indicate how many integers
have been packed together in a single unit. In the QMX mechanism the selectors are run-length encoded.

2.2.2 PForDelta

The biggest limitation of block-based strategies is that these are inefficient whenever a block contains at least
one large element, because this causes the compressor to use a number of bits per element proportional to the
one needed to represent that large value. To overcome this limitation, PForDelta was proposed. The main idea
is to choose a proper value k for the universe of representation of the block, such that a large fraction, e.g., 90%,
of its integers fall in the range [b, b + 2k - 1] and, thus, can be written with k bits each. This strategy is called
patching. All integers that do not fit in k bits, are treated as exceptions and encoded separately using another
compressor.

The optimized variant of the encoding (Opt-PFOR), which selects for each block the values of b and k that
minimize its space occupancy, has been demonstrated to be more space-efficient and only slightly slower than
the original PForDelta.

2.2.3 Elias-Fano

This strategy directly encodes a monotone integer sequence without a first delta encoding step. It was
independently proposed by Elias and Fano, hence its name. Given a sequence of size n and universe u, its Elias-
Fano representation takes at most n log u/n + 2n bits, which can be shown to be less than half a bit away from
the information-theoretic lower bound. The encoding has been recently applied to the representation of
inverted indexes and social networks, thanks to its excellent space efficiency and powerful search capabilities,
namely random access in O(1) and successor queries in O(1 + log u/n) time. The latter operation which, given an
integer x of a sequence S returns the smallest integer y in S such that y <= x, is the fundamental one when
resolving boolean conjunctions over inverted lists. If you pick a random sequence of n numbers up to m, then
Elias-Fano is (almost) optimal. However, real-world inverted lists are far from being random sequences as they
have clusters of consecutive (or almost consecutive) integers.

The partitioned variant of Elias-Fano (PEF) (Ottaviano & Venturini 2014), splits a sequence into variable-sized
partitions and represents each partition with Elias-Fano. The partitioned representation sensibly improves the
compression ratio of Elias-Fano by preserving its query processing speed. In particular, it currently embodies
the best trade-off between index space and query processing speed.

2.2.4 Binary Interpolative Coding

Binary Interpolative Coding (BIC) (Moffat & Stuiver 2000) is another approach that, like Elias-Fano, directly
compresses a monotonically increasing integer sequence. In short, BIC is a recursive algorithm that first encodes
the middle element of the current range and then applies this encoding step to both halves. At each step of
recursion, the algorithm knows the reduced ranges that will be used to write the middle elements in fewer bits
during the next recursive calls.

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 13

Many papers in the literature experimentally proved that BIC is one of the most space-efficient method for
storing highly clustered sequences, though among the slowest at performing decoding (Ottaviano & Venturini
2014).

2.2.5 The Variable-Byte family

Various encoding formats for VB have been proposed in the literature in order to improve its sequential
decoding speed. By assuming that the largest represented integer fits into 4 bytes, two bits are sufficient to
describe the proper number of bytes needed to represent an integer. In this way, groups of four integers require
one control byte that must be read once as a header information. This optimization was introduced in Google's
Varint-GB and reduces the probability of a branch misprediction which, in turn, leads to higher instruction
throughput. Working with byte-aligned codes also opens the possibility of exploiting the parallelism of SIMD
instructions of modern processors to further enhance the decoding speed. This is the line of research taken by
the recent proposals that we overview below.

Varint-G8IU uses a similar idea to the one of Varint-GB but it fixes the number of compressed bytes rather than
the number of integers: one control byte is used to describe a variable number of integers in a data segment of
exactly 8 bytes, therefore each group can contain between two and eight compressed integers.

Masked-VByte directly works on the original VB format. The decoder first gathers the most significant bits of
consecutive bytes using a dedicated SIMD instruction. Then, using previously-built look-up tables and a shuffle
instruction, the data bytes are permuted to obtain the original integers.

Stream-VByte, instead, separates the encoding of the control bytes from the data bytes, by writing them into
separate streams. This organization permits to decode multiple control bytes simultaneously and, therefore,
reduce branch mispredictions that can stop the CPU pipeline execution when decoding the data stream.

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 14

3 BIGDATAGRAPES RDF INDEXING

3.1 EXPERIMENTS

We report here the result of an experiment we performed to test the efficiency of different index
representations. We measure the efficiency of an index representation with respect three main characteristics:
index construction time, index space usage, and query time.

The experiment uses an RDF dataset obtained from DBpedia. We removed all the inverted lists shorter than 128
postings. These very short lists can be treated in a different and more efficient way (e.g., no compression). The
resulting dataset has more than two Billion postings.

All the experiments were run on a machine with Intel i7 -4790K CPU with 4 cores (8 threads) clocked at 4.00GHz
and with 32GB of RAM DDR3, running Linux 4.13.0 (Ubuntu 17.10), 64 bits.

To test the building time of the indexes we measure the time needed to perform the whole building process,
that is: (1) fetch the posting lists from disk to main memory; (2) encode them in main memory; (3) save the
whole index data structure back to a file on disk.

Since the process is mostly I/O bound, we make sure to avoid disk caching effects by clearing the disk cache
before building the indexes.

To test the query processing speed of the indexes, we memory map the index data structures on disk and
compute boolean conjunctions over a set of random queries drawn. Each query specifies the elements of a
triple and searches for all the triple matching the unspecified one. We used 600,000 queries.

We repeat each experiment three times to smooth fluctuations in the measurements and consider the mean
value. The query algorithm runs on a single core and timings are reported in microseconds.

The results are reported in the Figure 1 below. The table compares most of the algorithm presented in Section
2 against our novel proposal: Opt-VByte (Pibiri & Venturini 2018) with respect to: building time, space usage and
query time.

Even if Opt-VByte optimally partitions each inverted list before compressing it, its building time is very
competitive, being very close to the one of non-optimized compressors (e.g., Varint-GB and other VByte
method).

Opt-VByte is better than any other VByte-based approach (Varint-*, Masked-VByte and Stream-VByte) wrt to
space usage and query time. Indeed, it improves the space usage by a factor more than 1.4 and the query time
by a factor more than 2. This makes it the best VByte approach with margin.

Space usage of Opt-VByte is also very close to the one of the best compressors (e.g., BIC uses less than 0.5 bits
per posting less than Opt-VByte).

Query time of Opt-VByte is 2 times faster than any other competitor but PEF. PEF instead is much faster (a factor
2.8 faster than Opt-VByte).

We observe that PEF is both faster and smaller than Opt-VByte. Thus, PEF results as the best solution if the
building time is not a main concern. However, the better query time of PEF wrt Opt-VByte is quite surprisingly
and it may be due to the properties of the query set we used. Indeed, queries are very selective (i.e., they return

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 15

a very small number of results). In this setting the base algorithm of PEF (i.e., Elias-Fano) is much more efficient
than the base algorithm of Opt-VByte (i.e., VByte). However, the introduction of a real set of queries may
change this aspect. Thus, the plan for the future is to: 1) repeat the experiment with a real set of queries and
other datasets; 2) try to combine PEF and Opt-VByte to get the best of the two for RDF indexing.

Figure 1: The performance of various compressors for the DBPedia dataset, expressed as: time for building the indexes
(in minutes), space (bits per docID) and query time (μsec per query)

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 16

4 STATE-OF-THE-ART OF TECHNOLOGICAL TOOLS

4.1 TOOLS FOR GRAPH-BASED INDEXING

Graph databases – and consequently triple stores – show their power with respect to conventional storage and
indexing schemes as queries become more complex or follow relations that are deeper than first level. A graph
database doesn’t utilize foreign keys or JOIN operations. Instead, all relationships are natively stored within
vertices. This results in deep traversal capabilities, increased flexibility and enhanced agility.

Graph databases are consequently equipped to easily accommodate rapidly scaling data and easily expand the
underlying schema describing the data. Several graph databases solutions have been proposed and are being
distributed, often in the context of a general data management environment.

Neo4j1 is the most popular graph database system2 at the time of writing. It is a native graph storage framework,
following the property graph model for representing and storing data, i.e. the representation model
conceptualises information as nodes, edges or properties. Accessing and querying the underlying data is
achieved via the usage of the open-sourced Cypher query language, originally developed exclusively for Neo4j.

Titan 3 is a GDBMS optimised for the management of large-scale graphs distributed across multi-machine
clusters of arbitrary size. Titan is not a native graph store, instead supporting different backends like Apache
Cassandra and Oracles’ BerkeleyDB. Its search mechanism provides connectors to popular enterprise search
platforms like Solr and Elasticsearch.

Cayley4 is based on the graph backend of Freebase and Google Knowledge Graph. It also isn’t a native graph
storage system, as it relies on key-value pairs and traditional relational databases for storing and indexing.

GraphDB5 is an RDF triplestore compliant with the core semantic web W3C specifications (RDF, RDFS, OWL). It
acts as a SAIL over the RDF4J framework 6 , thus providing functionalities for all critical semantic graph
operations (storing, indexing, reasoning, querying, etc.). The query language used is the implementation of the
SPARQL 1.1 specifications, while connectors with Elasticsearch and Lucence are incorporated in the system.

AllegroGraph7 is also a native graph database following the core semantic web standards. While it is closed-
source and generally relies on its own implementation for storage and indexing, it also provides integration
with full-text search frameworks and standardized languages for querying (SPARQL and Prolog).

OrientDB 8 follows the Property Graph model to actually handle different types of data, abstracting their
representation via the usage of an application-specific Object Data Model. Accordingly, it support different
indexing mechanisms, relying on Lucene for full-text and spatial indexing.

1 https://neo4j.com

2 https://db-engines.com/en/ranking/graph+dbms

3 http://titan.thinkaurelius.com

4 https://cayley.io

5 http://graphdb.ontotext.com

6 http://rdf4j.org

7 https://franz.com/agraph/allegrograph/

8 https://orientdb.com

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 17

In addition to pure graph databases, several multi-model management systems have incorporated the
management of graph data structures to their functionality. A brief overview of the most prominent such
systems follows.

MarkLogic 9 is a multi-model DBMS, initially conceived as a document-based NoSQL platform, but adding
support for the management of semantic data expressed in RDF.

Virtuoso 10 is an engine that acts as a single-point server and middleware for multiple data management
paradigms (relational, object-relational, XML, RDF, file-based). The underlying storage mechanism is a
traditional relational database with abstraction and serialisation components built into the framework for
exposing data of the aforementioned different representations. RDF data are accessed and queried using an
extension of the SPARQL specification.

ArangoDB11 is a document-based NoSQL DBMS that support graph data representation via a generic vertex-
edge model. The data are actually stored in a JSON-based binary format and queried through AQL, a custom
query language. ArangoDB comprises multiple indexing mechanisms, among them a vertex-centric index
optimized for handling graphs.

4.2 TOOLS FOR TIME SERIES INDEXING

Although, time series data can be stored in traditional relational databases, in case of real-time applications the
high data volumes as well as the large number of transactions makes their use not practical.

That is why is necessary a system that is built especially for handling metrics and events or measurements that
are time-stamped. A time series database (TSDB) is optimized to handle such data by creating indices based on
a timestamp or a time range.

Moreover, a TSDB provides the facilities to create, manage and organize time series, along with basic
calculations over the series. These calculations include, multiplying, adding or combining time series to form
new time series.

The most popular time series databases are InfluxDB12 and Elasticsearch13. InfluxDB is especially optimized for
storing and querying data points with a timestamp. It stores the data following the Log-structured merge-tree
(LSM) tree paradigm 14 and supports data transformation and selection queries, through client libraries and
REST APIs.

On the other hand, Elasticsearch is a distributed database, providing a full-text search engine based on Lucene15.
The distributed nature of Elasticsearch, allows near real-time search in all kinds of documents. The indices of
Elasticsearch can be divided into shards, hence supporting automatic rebalancing and routing. Moreover, the
indices can be replicated to support efficient fault-tolerance.

Furthermore, Elasticsearch encapsulates out-of-the-box methods for establishing connections with messaging
systems like Kafka, which makes integration easier and allows the faster development of real-time applications.

9 https://www.marklogic.com

10 https://virtuoso.openlinksw.com

11 https://www.arangodb.com

12 https://www.influxdata.com/

13https://www.elastic.co/

14 O’Neil, P., Cheng, E., Gawlick, D., & O’Neil, E. (1996). The log-structured merge-tree (LSM-tree). Acta Informatica, 33(4), 351-385.

15http://lucene.apache.org/

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 18

Contrary to InfluxDB, the first step to store any data to Elasticsearch is to define how the data are mapped. This
enables the use of the advanced aggregation/ facets mechanism, which allows the building of advanced and
complex queries targeting the actual content of the timestamped documents.

The smooth integration of Elasticsearch with messaging systems and the fact that Elasticsearch encapsulates
with and advanced search engines, makes it a fine candidate for the purposes of the BDG project.

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 19

5 SUMMARY

The activities carried out in T3.3 during this first period focused on the design of time and space efficient data
structures for indexing complex data that can support a broad range of analytical queries over arbitrary data
dimensions. This deliverable presented the first version of the software components implementing a novel
compression technique for inverted indexes based on Variable-Byte, a well-known and widely adopted method
for coding integer sequences by saving memory space and enabling fast search operations. The design and
implementation of this novel indexing technique have been detailed in a scientific paper currently under
revision for publication (Pibiri & Venturini 2018). This accompanying document introduced the context for
understanding our contribution to the advance of the state of the art in the field, and report about the
experiments conducted to assess the efficiency of the method for indexing and searching large RDF datasets.
Furthermore, it discussed the main tools available to index and manage graph and time series. These tools are
very popular and have been successfully used in a plenty of applications.

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 20

6 REFERENCES

Delbru, R. et al., 2010. A Node Indexing Scheme for Web Entity Retrieval. In L. Aroyo et al., eds. The Semantic
Web: Research and Applications. Springer Berlin / Heidelberg, pp. 240-256. Available at:
http://dx.doi.org/10.1007/978-3-642-13489-0_17.

Harth, A. & Decker, S., 2005. Optimized Index Structures for Querying RDF from the Web. In Proceedings of the
Third Latin American Web Congress. Washington, DC, USA: IEEE Computer Society, p. 71--. Available at:
http://dl.acm.org/citation.cfm?id=1114687.1114857.

Harth, A. et al., 2007. YARS2: a federated repository for querying graph structured data from the web. In
Proceedings of the 6th international, The semantic web and 2nd Asian conference on Asian semantic web
conference. Berlin, Heidelberg: Springer-Verlag, pp. 211-224. Available at:
http://dl.acm.org/citation.cfm?id=1785162.1785179.

Moffat A. & Stuiver L., 2000. Binary interpolative coding for effective index compression. Information Retrieval
Journal, 3(1):25–47.

Neumann, T. & Weikum, G., 2010. The RDF-3X engine for scalable management of RDF data. The VLDB Journal,
19(1), pp.91-113. Available at: http://dx.doi.org/10.1007/s00778-009-0165-y.

Pibiri, G. & Venturini, R., 2018. Variable-Byte encoding is now space-efficient too. Available at:
https://arxiv.org/abs/1804.10949

Ottaviano, G. & Venturini, R., 2014. Partitioned Elias-Fano indexes. In Proceedings of the 37th International
Conference on Research and Development in Information Retrieval (SIGIR), pages 273–282.

Zhang, L. et al., 2007. Semplore: an IR approach to scalable hybrid query of semantic web data. In Proceedings
of the 6th international, The semantic web and 2nd Asian conference on Asian semantic web conference. Berlin,
Heidelberg: Springer-Verlag, pp. 652-665. Available at: http://dl.acm.org/citation.cfm?id=1785162.1785210.

http://dx.doi.org/10.1007/978-3-642-13489-0_17
http://dl.acm.org/citation.cfm?id=1114687.1114857
http://dl.acm.org/citation.cfm?id=1785162.1785179
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dl.acm.org/citation.cfm?id=1785162.1785210

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 21

7 APPENDIX

7.1 SETUP & INSTALL THE RDF INDEX

7.1.1 Getting the code

To get the code, clone it from GitHub

 git clone https://github.com/jermp/opt_vbyte

Currently, this is a private repository as the paper is still under submission. We will release the code upon the
publication of the paper.

7.1.2 Building the code

The code is tested on Linux Ubuntu with gcc 7.3.0. The following dependencies are needed for the
build: CMake >= 2.8 and Boost >= 1.42.0.
The code is largely based on the ds2i project, so it depends on several submodules. If you have cloned the
repository without --recursive, you will need to perform the following commands before building:

$ git submodule init
$ git submodule update

To build the code on Unix systems (see file CMakeLists.txt for the used compilation flags), it is sufficient to do
the following:

$ mkdir build
$ cd build
$ cmake .. -DCMAKE_BUILD_TYPE=Release
$ make -j[number of jobs]

Setting [number of jobs] is recommended, e.g., make -j4.

Unless otherwise specified, for the rest of this guide we assume that we type the terminal commands of the
following examples from the created directory build.

7.1.3 Input data format

The collection containing the docID and frequency lists follow the format of ds2i, that is all integer lists are
prefixed by their length written as 32-bit little-endian unsigned integers:

• <basename>.docs starts with a singleton binary sequence where its only integer is the number of
documents in the collection. It is then followed by one binary sequence for each posting list, in order of
term-ids. Each posting list contains the sequence of docIDs containing the term.

• <basename>.freqs is composed of a one binary sequence per posting list, where each sequence
contains the occurrence counts of the postings, aligned with the previous file (note however that this
file does not have an additional singleton list at its beginning).

The data subfolder contains an example of such collection organization, for a total of 113,306 sequences and
3,327,520 postings. The queries file is, instead, a collection of 500 (multi-term) queries. For the following
examples, we assume to work with the sample data contained in data.

https://github.com/jermp/opt_vbyte
https://github.com/ot/ds2i

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 22

7.1.4 FROM RDF Input data format

We can use the script rdf_to_index.sh to convert a RDF dataset (in .ttl format) to the input data format
described above. The script, given a ttl file, processes it and produces an inverted list for each subject, predicate
and object. These inverted lists contain identifiers of all the triples that contain that subject, predicate and
object. The script also produces a random set of queries that can be used to test the efficiency of the different
indexes.

7.1.5 Building the indexes

The executables src/create_freq_index should be used to build the indexes, given an input collection. To know
the parameters needed by the executable, just type

$./create_freq_index

without any parameters. You will get:

$ Usage ./create_freq_index:
$ <index_type> <collection_basename> [--out <output_filename>] [--F <fix_cost>] [--check]

Below we show some examples.

Example 1.

The command

$./create_freq_index opt_vb ../data/test_collection --out test.opt_vb.bin

builds an optimally-partitioned VByte index that is serialized to the binary file test.opt_vb.bin.

Example 2.

The command

$./create_freq_index block_maskedvbyte ../data/test_collection --out test.vb.bin

builds an un-partitioned VByte index that is serialized to the binary file test.vb.bin, using Macked-VByte to
perform sequential decoding.

Example 3.

The command

$./queries opt_vb and test.opt_vb.bin ../data/queries

performs the boolean AND queries contained in the data file queries over the index serialized
to test.opt_vb.bin.

NOTE: See also the Python scripts in the scripts/ directory to build the indexes and collect query timings.

Big Data to Enable Global Disruption of the Grapevine-powered industries

D3.3 | Distributed Indexing Components 23

7.2 ELASTICSEARCH DOCUMENTATION & TOOLS

Documentation/ Tool Description Link

Elasticsearch Official Documentation https://www.elastic.co/guide/index.html

Kibana
Development & Dashboard

Workbench
https://www.elastic.co/products/kibana

Configuration Model
Tool that estimates the configuration

of Elasticsearch, given various
scenarios

https://docs.google.com/spreadsheets/d/1r5H
mOlv6dfN_EVe8Pyfx3GEl16LbALPPQ2Geym6

bgx8/edit?usp=sharing

Docker
Dockerized versions of Elasticsearch

& Kibana
https://www.docker.elastic.co/

https://www.elastic.co/guide/index.html
https://www.elastic.co/products/kibana
https://docs.google.com/spreadsheets/d/1r5HmOlv6dfN_EVe8Pyfx3GEl16LbALPPQ2Geym6bgx8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1r5HmOlv6dfN_EVe8Pyfx3GEl16LbALPPQ2Geym6bgx8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1r5HmOlv6dfN_EVe8Pyfx3GEl16LbALPPQ2Geym6bgx8/edit?usp=sharing
https://www.docker.elastic.co/

