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EXECUTIVE SUMMARY 

The objective of this deliverable is to develop inference methods that support efficient information selection 
from heterogeneous data pools. There are many challenges in data reasoning and inference based on 
distributed data. The first one is addressing data security and access rights to both original data and inferred 
information. The second challenge is how the actual inference over distributed sources can be performed and 
implemented.  We address the main principles applied to data inference and different types of inference – rule-
based, query-based, model-based and fuzzy inference – and their application in BigDataGrapes project. The Final 
section is dedicated to state of the art with standard theoretical approach to inference from descriptive logic 
stand point, as well as related work in implementing those approaches. 
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1 INTRODUCTION 

 
The objective of this deliverable is to develop inference methods that support efficient information selection 
from heterogeneous data pools. Further specification will enable implementation on top of the BigDataGraph 
database layer including a semantic graph database (a type of NoSQL graph database engine). The final goal is 
to enable efficient retrieval of data, considering different criteria and implementing mechanisms, which go 
beyond the capabilities of today’s database and search engines. 
 
There are many challenges in data reasoning and inference based on distributed data. The most prominent one 
is addressing data security and access rights to both original data and inferred information. To address data 
security, we follow the industry business need of building the missing piece is the universal semantic data layer. 
Dave Mariani, co-founder and CEO of startup AtScale and former vice president of development, user data and 
analytics at Yahoo formulates it:  

 
"You can define security on the data lake itself … anyone who logs in and runs queries on the data lake is going to 
be secured at the data bit level rather than at the application that's using it. Now data is being secured as it's written 
as opposed to as it's used. You can't do that if you're sending data extracts out to the business and the business is 
dealing with it on its own." 
 
The second challenge of how the actual inference over distributed sources can be performed, in BigDataGrapes 
project we do not limit ourselves to any specific reasoning technique. Approximate reasoning is a non-standard 
reasoning approach based on the idea of sacrificing soundness or completeness for a significant speed-up in 
reasoning. This is done in such a way that the loss of correctness is at least outweighed by the obtained speed-
up. Parallel reasoning and distributed reasoning are considered to be essential for Web-scale reasoning to 
improve scalability. Stream reasoning provides the reasoning support in which memory overload is avoided by 
operating on streams of data instead of statically available sets. Granular reasoning is a non-standard reasoning 
approach in which multiple perspectives/views can be selected for reasoning by using knowledge at various 
levels of specificity and data at variable levels of granularity.  
 
We aim to explore the state of the art and construct possibly several reasoning plug-ins, based on insights from 
both generic inference methods and non-standard reasoning, and invite third parties to contribute further 
components to the BigDataGrapes ecosystem.  
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2 TYPES OF INFERENCE 

 
This section addresses the main principles applied to data inference and it is an attempt for drawing a roadmap 
including their major characteristics, related design and performance issues, the state of the art in the field and 
future directions. The major objectives are: 

• to clarify the principles of operation of the inference and the potential of its distribution; 

• to explain the facets of their performance, because we believe that their understanding this is a key 
factor for the successful adoption of distributed inference. 

The context in which we review types of inference and their distribution potential is addressed in one or more 
of the following goals: 

• to handle efficiently larger volumes of data; 

• to speed up the data loading and indexing and to improve the performance for updates; 

• to lower the query evaluation time for complex queries (e.g. analytical Business Intelligence reports); 

• to better handle concurrent query loads and large numbers of users and 

• to ensure failover, e.g. to surmount failure of one or more nodes and repositories. 

The reminder of this section provides discussion on the different approaches, their advantages and 
disadvantages and appropriateness with respect to different scenarios and goals. 

2.1 RULE-BASED INFERENCE 

Broadly speaking, inference can be characterized by discovering new relations (see Fig1.). On the Semantic Web, 
data is modeled as a set of (named) relations between resources. “Inference” means that automatic 
procedures can generate new relations based on the data and some additional information in the form of a 
vocabulary - a set of rules. Whether the new relations are explicitly added to the set of data or returned at query 
time is matter of implementation. Inference is a tool of choice for improving the quality of data integration by 
discovering new relations, automatically analyzing the content of data, or managing knowledge in general. 
Inference-based techniques are also important for discovering possible inconsistencies in the data. 

Inference is performed by semantic repositories - database management systems - which are capable of 
handling structured data, taking into consideration their semantics as well as rules for interpretation. To foster 
their realization, the World Wide Web Consortium (W3C) developed a series of metadata, ontology, and query 
language standards. The standardization efforts related to the Semantic technology, most notably RDF(S), 
OWL, and SPARQL, provided a solid ground for development and good minimal levels of interoperability. 
Following the enthusiasm and the wide adoption of the related standards, today, most of the semantic 
repositories are database engines, which deal with data represented in RDF, support SPARQL queries, and can 
interpret schemata and ontologies represented in RDFS and OWL. Naturally, such engines take the role of web 
servers of the Semantic Technology. 
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Figure 1: Rule based inference of transitive relations “is located in” 

The logical inference over RDF datasets and their implementation in RDF triple stores or semantic graph 
databases follow one of the two principle strategies for rules application: 

• Forward-chaining: to start from the known facts (the explicit statements) and to perform inference in 
an inductive fashion. Typically, the goal is to compute the Inferred Closure. 

• Backward-chaining: to start from a particular fact or a query, and to verify it or get all possible results. In 
a nutshell, the reasoner decomposes (or transforms) the query (or the fact) into simpler (or alternative) 
facts, which are available in the knowledge base or can be proven through further recursive 
transformations. 

The forward-chaining strategy applies the rules over the available facts in order to infer new facts, which are 
added to the dataset, and then recursively applies the rules over the new dataset. The result is the so-called 
inferred closure: an extension of a knowledge base (the RDF dataset or the graph of RDF triples) with all implicit 
facts (RDF triples) that can be inferred from it. The notion materialization is defined as a procedure that keeps 
an up-to- date inferred closure of the knowledge base.  

Materialization is known as a technique for applying inference before query evaluation. This allows for many 
query optimization approaches to be forward-chaining as querying is realized by lookups in the database. The 
main drawback of materialization is that the database changes, additions, and updates are generally slow 
operations. In many scenarios, the materialization of such frequent changes does not affect the querying 
process, as many of the materialized facts are not used in the answers.    

In such cases, an alternative to forward-chaining is a backward-chaining strategy for inferencing over 
knowledge bases. Here, answering a query requires only partial materialization over the knowledge base. 
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Unfortunately, backward-chaining is inefficient for large knowledge bases, as many optimizations for the 
materialization of a knowledge base are not possible. 

The most advanced approaches to implementing hybrid reasoning for a fraction of OWL in RDF databases as 
presented in the work of Urbani et al (2013). They implement backward-chaining based on the QSQ (query-
subquery) algorithm for Datalog databases modified to support reasoning over OWL RL. In the application of 
the algorithm, the facts are divided in two sets: one over which the forward-chaining is applied and the 
materialization over the set is stored in the semantic graph database in an optimal way. The other is used to 
support a backward-chaining strategy. It applies the materialization only when it is necessary. 

2.2 DISTRIBUTED RULE-BASED INFERENCE 

Distributed architecture and multi-threaded reasoning provide very appealing techniques for processing RDF 
knowledge bases consisting of an enormous amount of statements (usually several billions). The main 
reasoning strategy for RDF knowledge bases - forward-chaining, faces two problems: (i) maintenance of huge 
number of URIs, and (ii) inferring new RDF statements via inference rules applied to existing, in the knowledge 
base, RDF statements.  

Some of the obstacles in distributing inference at scale come from the data volume. Data in the semantic 
representation paradigm are made of terms that are either URIs or literals. Since these terms usually consist of 
long sequences of characters, an effective compression technique must be used to reduce the data size and 
increase the application performance.  In order to define a more compact representation of RDF statements, 
the URIs are represented in dictionaries, where each URI is identified by a numeric value, which is then used for 
the internal representation of the RDF statements. One of the URI terms’ characteristics in an RDF knowledge 
base is their uneven distribution, i.e. many URI terms appear only a few times.  One of the best-known 
techniques for data compression is dictionary encoding and MapReduce algorithm efficiently compresses and 
decompresses a large amount of Semantic Web data, giving a compression ratio of about 1:6 to 1:8. This 
compression approach allows for using parallel processing.  

The expressiveness of the ontology language and complexity of the rules is another challenging area for 
distribution. For example, Oren et. al (2009) shows that partitioning of an RDF database into independent parts 
is not trivial in regard to soundness and completeness of the reasoning or results in communication overload 
between the different partitions.    

Some authors propose additional restrictions on the language expressivity to cope with the problem. For 
example, Priaya et. al (2014) define an ABox independent partitioning, which supports reasoning in OWL Lite 
knowledge bases.  Further work in this direction by Shrinoshita et. al (2017) evaluates enhanced MSC method 
over random graph theory that results in very small tractable concepts provided that the number of role 
assertions are removed from consideration is large enough. 

2.3 QUERY-BASED INFERENCE  

The ability to abstract the query syntax from the data syntax bears important advantages in data access 
scenarios where one has to deal with complex relationships or with schema diversity. As long as the semantic 
repositories can interpret the semantics in a recursive fashion, one can enjoy interpretations of the data, which 
combine results from previous interpretations and explicit assertions. In other words, depending on the data 
patterns and the semantics, one can retrieve facts, which are results of multiple steps of interpretation, and 
this way to uncover relationships which would otherwise remain hidden. 

The standardized way of distributed query inference is to use SPARQL 1.1 Federated Query extension for 
executing queries distributed over different SPARQL endpoints. The SERVICE keyword extends SPARQL 1.1 to 
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support queries that merge data distributed across the Web, and the inference should follow the backward-
chaining strategy implemented on the query level. This feature is very powerful and allows integration of RDF 
data from different sources using a single query. It is also possible to use the federation mechanism to do 
distributed querying over several repositories on a local server for managing security on data level.  

The query-level inference is the most expressive mechanism for inference as it can use the full power of SPARQL 
and for defining rules (as SELECT) statements with filtering and exceptions. It can include custom functions and 
potentially wrap complex machine learning models as well.  

2.4 MODEL-BASED INFERENCE  

Scientists derive insights from models of complex systems by applying the models to address various types of 
prognostic queries. This can include, for example: 

• Prediction: How will the system evolve in the near future?  

• Conditional forecasting: How will the system respond if X changes?  

• Counterfactual analysis: What would have happened if X had been Y?  

• Comparative impact: What is the difference in utility between strategy X and strategy Y? 

• Optimal planning: What is the optimal amount of X to introduce to maximize utility Y?  

• Risk assessment: What is the risk of X?  

• Outcome avoidance: What is the optimal action or intervention to reduce the risk of X decreasing more 
than Y? 

Model-based inference can also be used diagnostically to test models against available data or knowledge 
through model checking, validation, and calibration. Automation of model-based inference procedures could 
increase the speed and accuracy with which these models can be used to address key questions of national 
security by orders of magnitude. Applications will include frequent update of user-specified queries as new data 
becomes available, rapid response to emerging natural disasters or other real-time threats, and even fully 
automated inference with machine-generated queries. 

Model-based inference is predominantly based on machine learning techniques and depend very much on the 
available data features. As part of the initial research in BigDataGrapes will explore the available data sets in 
deliverable D2.1 Use Cases & Technical Requirements Specification before drawing any conclusions on the relevant 
techniques. This work is closely related to D4.3 Methods and Tools for Scalable Distributed Processing.  

2.5 FUZZY INFERENCE 

Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. It 
is classically applied in Fuzzy control systems to formalize the reasoning process of human language by means 
of fuzzy logic.  It uses the “IF…THEN” rules along with connectors “OR” or “AND” for drawing essential 
decision rules. 

Although alternative approaches such as genetic algorithms and neural networks can perform just as well as 
fuzzy logic in many cases, fuzzy logic casts to terms that human operators can understand and makes it easier 
to automate tasks that are already successfully performed by humans. State of the art implementation of Fuzzy 
Inference is provided by Mathworks.  

It is still unclear if Fuzzy logic can be applied to any of the use cases in BigDataGrapes. Such decision can be 
made based on deliverable D2.1 Use Cases & Technical Requirements Specification and initial experiments using 
actual data provided by the use case partners. 
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3 STATE-OF-THE-ART 

3.1 OWL DIALECTS SUITABLE FOR SCALABLE INFERENCE 

In order to match the expectations for the next generation global Web of data, the Semantic Web requires 
scalable high-performance storage and reasoning infrastructure. One challenge towards building such an 
infrastructure is the expressivity of its schema and ontology definition standards RDFS and OWL.  RDFS (Brickley 
and Guha, 2004)  is the schema language for RDF, which allows for the definitions of subsumption hierarchies 
of classes and properties; the latter being binary relationships defined with their domains and ranges. While 
RDFS is generally a fairly simple knowledge representation language, implementing semantic repositories 
which support its semantics and provide performance and scalability comparable to those of relational 
database management systems (RDBMS) is very challenging. 

The semantics of RDFS is based on Logical Programming (LP) – a declarative programming paradigm, in which 
the program specifies a computation by giving the properties of a correct answer. The LP languages like 
PROLOG emphasize the logical properties of a computation, using logic and proof procedures to define and 
resolve problems. Most logic programming is based on the Horn-clause logic with negation-as-failure to store 
the information and rule entailment to solve problems. Datalog is a query and rule language, a simplified version 
of PROLOG, meant to enable the efficient implementation of deductive databases. The semantics of RDFS is 
defined by means of rule entailment formalism, which is a simplification of Datalog.  

OWL1, (Dean and Schreiber, 2004) is an ontology language, which supports more comprehensive logical 
descriptions of the schema elements (see Fig.2), for instance: transitive, symmetric, and inverse properties; 
unions and intersections of classes; and property restrictions. The first version of the OWL specification, which 
was published as W3C standard in year 2004 has three dialects: OWL Lite, OWL DL and OWL Full. They range in 
their levels of expressivity. OWL Lite is a subset of OWL DL, and OWL DL is a subset of OWL Full. The OWL 
language is based on description logics (Baader et al, 2003).  

The reasoning procedures of DLs are decision procedures that are aimed to always terminate – in mathematical 
logic terms this means that DLs are decidable. Compared to other logical languages DLs are relatively 
inexpressive. Still reasoning with DLs is based on satisfiability checking, which means that, in order to prove or 
to reject a specific statement, a DL reasoner needs to check whether it is possible or not to build a model of the 
world which satisfies a “theory” which includes this statement or its negation. For instance, suppose that there 
is a semantic repository which contains one billion statements and a client makes a query, checking whether 
specific resource is an instance of a specific class. In order to validate this, with respect to the semantics of OWL 
DL, a repository should add to its current contents the statement that the resource is not instance of the class 
and check whether the new state of the repository is consistent. It is clear that such semantics is impractical to 
implement for large volumes of data. Even the simplest dialect of OWL, OWL Lite is a DL formalism which does 
not support algorithms enabling efficient inference and query answering over reasonably large knowledge 
bases.  

Logic programming and description logics support semantics and data interpretation capabilities of a different 
nature: LP uses rules to infer new knowledge, whereas DL employ descriptive classification mechanisms. None 
of these is more powerful or expressive than the other one – there are meaning aspects which can be expressed 
in each one of them, which cannot be expressed in a language from the other paradigm. As result, the semantics 

                                                 

 
 

http://en.wikipedia.org/wiki/Query_language
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of OWL Lite and DL are incompatible with that of RDFS2. Although OWL was meant to be layered on top of RDFS 
in the Semantic Web specification stack, there is no “backward compatibility”. In practical terms, this means 
that it may be impossible to “upgrade” an application that uses RDFS schemata to OWL, without replacing the 
schemata with OWL ontologies. The latter may require considerable changes in the semantics of the classes 
and the properties and in the data modeling principles used in the application.  

To bridge the gap of expressivity, compatibility and logical decidability and reach the goals of scalable inference, 
other dialects of OWL have been created which lay between RDF(S) and OWL Lite.  0 presents a simplified map 
of the expressivity or complexity of a number of these OWL-related languages together with their bias towards 
description logic and logical programming based semantics. The diagram provides a very rough idea about the 
expressivity of the languages, based on the complexity of entailment algorithms for them. A direct comparison 
between the different languages is impossible in many of the cases. For instance, Datalog is not simpler than 
OWL DL, it just allows for a different type of complexity.  

 
Figure 2: Diagram of expressivity of OWL dialects  

OWL DLP is a non-standard dialect, offering a promising compromise between expressive power, efficient 
reasoning, and compatibility. It is defined in "Description Logic Programs: Combining Logic Programs with 
Description Logic" (Grosof et al, 2003) as the intersection of the expressivity of OWL DL and logical 
programming . In fact, OWL DLP is defined as the most expressive sub-language of OWL DL, which can be 
mapped to Datalog. OWL DLP is simpler than OWL Lite. The alignment of its semantics to the one of RDFS is 
easier, as compared to the Lite and DL dialects. Still, this can only be achieved through the enforcement of some 

                                                 
2 The issues related to the interoperability and layering of the Semantic Web languages is also discussed in the introductory 

Chapter 1. 
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additional modeling constraints and transformations. A broad collection of information related to OWL DLP can 
be found in “Ontology Logic and Reasoning at Semantic Karlsruhe”3.  DLP has certain advantages: 

• There is freedom to use either DL or LP (and associated tools and methodologies) for modeling 

purposes, depending on the modeler’s experience and preferences. 

• From an implementation perspective, either DL reasoners or deductive rule systems can be used. Thus, 

it is possible to model using one paradigm, e.g. a DL-biased ontology editor, and to use a reasoning 

engine based on the other paradigm, e.g. a semantic repository based on rules.  

These features of DLP provide extra flexibility and ensure interoperability with a variety of tools. Experience 
with using OWL has shown that existing ontologies frequently use only very few constructs outside the DLP 
language. 

Ter Horst (2005) defines RDFS extensions towards rule support and describes a fragment of OWL, more 

expressive than OWL DLP. He introduces the notion of R-entailment of one (target) RDF graph from another 

(source) RDF graph on the basis of a set of entailment rules R. R-entailment is more general than the D-
entailment used by Hayes (2004) in defining the standard RDFS semantics. Each rule has a set of premises, 
which conjunctively define the body of the rule. The premises are “extended” RDF statements, where variables 
can take any of the three positions. The head of the rule comprises one or more consequences, each of which 
is, again, an extended RDF statement. The consequences may not contain free variables, i.e. which are not used 
in the body of the rule. The consequences may contain blank nodes. 

The extension of the R-entailment (as compared to the D-entailment) is that it “operates” on top of the so-
called generalized RDF graphs, where blank nodes can appear as predicates. R-entailment rules without 
premises are used to declare axiomatic statements. Rules without consequences are used to imply 
inconsistency. 

This extension of RDFS became popular as “OWL Horst”. As outlined in "Combining RDF and Part of OWL with 
Rules: Semantics, Decidability, Complexity" (ter Horst, 2005) this language has a number of important 
characteristics: 

• It is a proper (backward-compatible) extension of RDFS. In contrast to OWL DLP, it puts no constraints 
on the RDFS semantics. The widely discussed meta-classes (classes as instances of other classes) are 
not disallowed in OWL Horst.  

• Unlike the DL-based rule languages, like SWRL (Horrocks et al, 2005), R-entailment provides a 
formalism for rule extensions without DL-related constraints; 

• Its complexity is lower than the one of SWRL and other approaches combining DL ontologies with rules 
of "Combining RDF and Part of OWL with Rules: Semantics, Decidability, Complexity" (ter Horst, 2005).  

OWL Horst is supported by GraphDB and ORACLE, which makes it the OWL dialect that has the largest industry 
support. An official OWL dialect with the same properties emerged recently under the name OWL 2 RL. The 
latter is one of the tractable profiles (dialects) defined in the specification of OWL 2 (Motik et al, 2009)  – the 
next version of the OWL language that is currently in process of standardization. OWL 2 RL is designed with the 
objective to be the most expressive OWL dialect which allows for efficient reasoning with large volumes of data 
in rule-based systems. OWL 2 RL was inspired by OWL Horst – its semantics is defined with rule language 

                                                 
3 https://ieeexplore.ieee.org/document/7072815/ 

https://ieeexplore.ieee.org/document/7072815/
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equivalent to R-entailment. However, OWL 2 RL is considerably more expressive than OWL Horst. Support for 
OWL 2 RL is provided by several reasoning engines, including GraphDB and ORACLE. 

Recent research reported in "UniProt in RDF: Tackling Data Integration and Distributed Annotation with the 
Semantic Web" (Redaschi and the UniProt Consortium, 2009) evaluates the level of completeness of the 
inference supported by few inference engines (namely HAWK) and semantic repositories: IBM’s Minerva, 
Sesame and GraphDB by ONTOTEXT. It demonstrates that although GraphDB supports sufficient reasoning to 

answer the LUBM4  queries correctly, it is still not complete with respect to the semantics of the data and the 
queries. 

3.2 ADVANTAGES OF THE DIFFERENT DISTRIBUTION APPROACHES 

The general approaches for distribution of database management systems are: 

• Data partitioning, where the information stored and accessed by the system is spread across multiple 
machines, so that none of them contains the entire dataset; 

• Data replication, where the entire dataset resides on each of the machines. 

Data replication is a traditional approach for boosting the read performance of a DBMS at the cost of 
redundancy and write propagation complexity. In a classic scenario, several slave nodes are assigned 
incoming read requests by a central master node that performs any sort of load balancing (e.g. round robin) 
to distribute the load evenly across the slaves. Writes are executed on the master node and updates are 
propagated to the slaves in the background. Such a setup is very appropriate in situations when a lot of 
read requests occur while write requests are rare or clustered together in large batches (for example if a 
large dataset is initially loaded in the repository). In such situations the resource-intensive replication 
procedure will not be necessary most of the time, while a theoretically linear scalability will take place on 
the reading side.  

While data partitioning looks as the more promising schema, it is also the one which is most problematic to 
implement. In general, it enables the management of larger volumes of data and provides more space for 
in-memory data-structures. Each node can apply more efficient caching and optimization with respect to 
the fraction of the data that it deals with. Data partitioning with redundancy also allows for failover support. 
Still, the major issue is that query evaluation against distributed data requires intensive communication 
between the nodes for exchanging of intermediate results; the most common variety of such 
communication is known as “remote join”. Query optimization schemata, which consider the 
communication costs, are far harder to implement, which triggers less-optimal query evaluation plans and 
larger overall numbers of index lookups. In large number of scenarios these effects neutralize the gains 
from the additional computing power gained from several machines. The same concerns are application for 
rule-based reasoning in repositories using data partitioning.   

Two approaches to data partitioning appear in database systems from the established distributed DBMS 
research: horizontal and vertical partitioning. The horizontal data partitioning approach partitions a dataset 
across several repository nodes where no schema limitations apply to any of the nodes.  A vertical 
partitioning approach would assign different parts of the data schema to different repository nodes, so, 
that later on requests for any type of data would be redirected to the respective repository node. This 
approach can be further extended and types of data that usually appear “close” together can be placed 
within a single node (when possible). In principle, such clustering would allow for whole sub-queries to be 

                                                 
4 LUBM benchmark is introduced in D7.1 
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executed within a single node. It would therefore avoid the transfer of intermediate results between the 
repository nodes and the central query processing node only to complete the query. 

As an overview of the two major distribution approaches we can summarize that: 

• Data partitioning improves data scalability, however in most of the cases hampers the query evaluation 
performance due to high communication overheads. It can improve loading performance if there is no 
materialization involved; 

• Data replication allows for better handling of concurrent query loads and failover. It is neutral with 
respect to loading and inference performance. 

None of these approaches provides a principal advantage for evaluation of complex queries. Under data 
replication one of the nodes can be off-loaded from concurrent queries, which would allow faster execution 
of a complex query. An approach known as “federated join” can in theory improve the performance of such 
queries in very specific data partitioning scenarios, where the communication costs can be minimized. 

3.3 RELATED WORK 

3.3.1 WebPIE by VU Amsterdam  

"WebPIE (Web-scale Parallel Inference Engine)5 is a MapReduce distributed RDFS/OWL inference engine 
written using the Hadoop framework. This engine applies the RDFS and OWL ter Horst rules and it materializes 
all the derived statements." 

It's a stream of work starting from MSc thesis of Urbani (2009) supervised by Frank van Harmelen. Their notable 
achievement is performing materialization of RDFS on 100B statements using notable cluster of machines with 
high-speed connectivity funded as part of LaRCK6 project.  

The major concern about their approach is regarding the manually optimization of Map Reduce rules in a very 
special manner in order to avoid the pitfalls of remote joining, therefore implementing full OWL 2 RL this way 
is unfeasible. 

The more-recent re-implementation of WebPIE (Kim and Parkis, 2015) based on SPARK with its Resilient 
Distributed Datasets (RDDs). They achieve lower scale (less than 1B) and proud of the fact that they doubled 
the speed 5 years later.  

What evidence this provides for our deliverable:  

• Distributed reasoning is only possible for logical languages with very limited expressivity 
• Even for such languages, it requires tailor made inference flows crafted by human experts 
• Although the results demonstrated in experimental setting were very impressive in terms of scalability, 

such systems appeared impractical to exploit in enterprise setting.  
• This is way the project was abandoned and none of the commercial RDF engines with reasoning support 

adopted it.  

                                                 
5 http://few.vu.nl/~jui200/webpie.html 
6 https://cordis.europa.eu/project/rcn/85416_it.html 

http://few.vu.nl/~jui200/webpie.html
https://cordis.europa.eu/project/rcn/85416_it.html
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3.3.2 RDFox by Oxford / Boris Motik 

"RDFox7 is a highly scalable in-memory RDF triple store that supports shared memory parallel datalog reasoning 
behind the founded in 2017 Oxford Semantic Technology8 as university spin-off which aims to commercially 
exploit the technology. The most recent general article about the system (Kim and Park , 2015) is co-author by 
Zhe Wu – the architect of ORACLE's RDF support; ORACLE also have parallelized, but not distributed inference. 

RDFox is not a fully-fledged triplestore as discussed in “RDFox: A Highly-Scalable RDF Store” (Motik et al, 2015), 
it still does not have full SPARQL support but uses owl:sameAs optimization and incremental delete of inferred 
statements. 

Note: this is parallel inference, not distributed inference system.  

What evidence this provides for our deliverable:  

• Parallel inference is feasible and can speed up reasoning substantially, subject to very specific and 
careful implementation of lock-free data structures with low-level programming. This is why it is written 
in C++, not in Java 

• Parallel inference is way easier to implement than distributed reasoning. The core reason of this is that 
there is no data sharding and no "remote join" problem. In 2015 the RDFox team declared future work 
plans for implementation of distributed share-nothing reasoning system. 3 years later they haven't 
published any results in this direction 

MULTI SENSOR write up on reasoning 

Multisensor deliverable 5.4 (Simeonov et al, 2016) reports relevant results on parallel inference and provides 
evidence that a general-purpose commercial data store parallelization can speed up inference at least twice, 
both for small but tangled dataset like Wordnet and for 1B triples knowledge graph. Datasets used in 
Multisensor combine DBPedia, Bablenet, statistics and other business information and the implementation of 
parallel inference has become part of GraphDB since version 7.2. However, the practical results of GraphDB 8.x9 
show that on dataset like the one of LDBC SPB, the speed up is minimal, because in SPB's knowledge graph 
provides owl:sameAs mappings the reasoning implications of which limit the applicability of some of the 
parallelization techniques.  

  

                                                 
7 https://cs.ox.ac.uk/isg/tools/RDFox/ 
8 https://www.oxfordsemantic.tech/  
9 https://ontotext.com/products/graphdb/benchmark-results/ 

https://cs.ox.ac.uk/isg/tools/RDFox/
https://www.oxfordsemantic.tech/
https://ontotext.com/products/graphdb/benchmark-results/
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4 IMPLEMENTATION OF DISTRIBUTED INFERENCE 

 
In BigDataGrapes project we envision using GraphDB by ONTOTEXT as main semantic graph database. GraphDB 

is a highly-efficient and robust graph database with RDF and SPARQL support. GraphDB uses RDF4J10 as a 
library, taking advantage of its APIs for storage and querying, as well as the support for a wide variety of query 
languages (e.g., SPARQL and SeRQL) and RDF syntaxes (e.g., RDF/XML, N3, Turtle). 
 
The development of GraphDB is partly supported by SEKT11, TAO, TripCom12, LarKC13, and 
other FP614 and FP715 European research projects16. 

Distributed inference engine for BigDataGrapes will be implemented as a set of external to GraphDB engines 
which use the APIs of the database to access the data in real time and synchronize inference indexes, power 
inference algorithms and provide provenance of the newly inferred fact.  

4.1 GRAPHDB PLUGIN API  

The most powerful access mechanism to GraphDB and its data layer is via GraphDB Plugin API. It is a framework 
and a set of public classes and interfaces that allow developers to extend GraphDB and build custom inference 
mechanism over distributed data space. These extensions are bundled into plugins, which GraphDB discovers 
during its initialisation phase and then uses to delegate parts of its query processing tasks. The plugins are given 
low-level access to the GraphDB repository data, which enables them to do their job efficiently. They are 
discovered via the Java service discovery mechanism, which enables dynamic addition/removal of plugins from 
the system without having to recompile GraphDB or change any configuration files. 

Plugin API can be effectively used to modify, filter or enrich the final results of a request which is particularly 
suitable to query-based distributed inference.  For each binding set that is to be returned to the GrapHDB client 
the implemented plugin modifies the binding set and return it. After a binding set is processed by a plugin, it is 
passed to the next plugin that has enabled post-processing. Finally, after all results are processed and returned, 
each plugin serves modified result set to the client. 

Alternatively, Plugin API can be used for custom inference as it allows for processing of data update statement 
(forward-chaining inference) as it looks for patterns containing specific predicates. It works as during 
initialization the plugin register the predicates it is interested in and then GraphDB filters updates for 
statements using these predicates and notifies the plugin. Filtered updates are not processed further by 
GraphDB, but the particular implementation of the Plugin API must handle insert or delete operation. 

Further documentation of how to implement Plugin API and provide plugin configuration can be found in 
GraphDB documentation17. 

                                                 
10 http://rdf4j.org/about/ 
11 http://www.sekt-project.com/  
12 http://www.tripcom.org/  
13 http://www.larkc.org/  
14 http://cordis.europa.eu/fp6/  
15 http://cordis.europa.eu/fp7/  
16 http://ontotext.com/knowledge-hub/  
17 http://graphdb.ontotext.com/documentation/standard/plug-in-api.html#making-a-plugin-configurable  

http://www.sekt-project.com/
http://www.tripcom.org/
http://www.larkc.org/
http://cordis.europa.eu/fp6/
http://cordis.europa.eu/fp7/
http://ontotext.com/knowledge-hub/
http://graphdb.ontotext.com/documentation/standard/plug-in-api.html#making-a-plugin-configurable
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4.2 RDF4J API EXTENSION OF GRAPHDB 

Programmatically, GraphDB can be used via the RDF4J18 Java framework of classes and interfaces. 
Documentation for these interfaces (including Javadoc19). Code snippets in the following sections are taken 
from (or are variations of) the developer-getting-started examples, which come with the GraphDB distribution.  

RDF4J comprises a large collection of libraries, utilities and APIs. The important components for this section 
are: 

• the RDF4J classes and interfaces (API), which provide a uniform access to the SAIL components from 
multiple vendors/publishers; 

• the RDF4J server application. 

With RDF4J 2, local repository configurations are represented as RDF graphs. To access remote repositories 
RDF4J server provides a Web application that allows interaction with repositories using the HTTP protocol. It 
runs in a JEE compliant servlet container, e.g., Tomcat, and allows client applications to interact with 
repositories located on remote machines. In order to connect to and use a remote repository, local repository 
manager must be replaced with a remote one. 

The RDF4J HTTP server is a fully fledged SPARQL endpoint - the RDF4J HTTP protocol is a superset of 
the SPARQL 1.120 protocol. It provides an interface for transmitting SPARQL queries and updates to a SPARQL 
processing service and returning the results via HTTP to the entity that requested them. 

4.3 GRAPHDB REMOTE NOTIFICATIONS 

Remote notifications are powerful mechanism for maintaining distributed inference, where changes in the 
remote instances notify the inference engine for changes on data level which affect the inferred facts and 
indexes. GraphDB’s remote notification mechanism provides filtered statement add/remove and transaction 
notifications for both local or remote GraphDB repositories. Subscribers for this mechanism use patterns of 
subject, predicate and object (with wildcards) to filter the statement notifications to only actionable ones in 
order to increase inference performance.  

Apart from the native GraphDB notifications21, RDF4J API provides such a mechanism implementing 
RepositoryConnectionListener which can be notified of changes in a NotifiyingRepositoryConnection. 
However, the GraphDB notifications API works at a lower level and uses the internal raw entity IDs for subject, 
predicate and object instead of Java objects. The benefit of this is that a much higher performance is possible. 
The downside is that the client must do a separate lookup to get the actual entity values and because of this, 
the notification mechanism works only when the client is running inside the same JVM as the repository 
instance. 

 

 
 

                                                 
18 http://rdf4j.org/about/ 
19 http://docs.rdf4j.org/javadoc/latest/ 
20 http://www.w3.org/TR/sparql11-protocol/ 
21 http://graphdb.ontotext.com/documentation/standard/notifications.html 
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5 SUMMARY 

 
Inference distribution is a topic that has been studied previously, however the reported results vary in terms of 
applicability to wide range of use cases. Reviewed literature, general methodology and individual tools for both 
distribution and parallelization provide valuable insights of possible options for applying distributed inference 
to BigDataGrapes project use-cases.  

Next steps will include pragmatic evaluation of the use case scenario, the level of complexity and distribution 
of related datasets and need for particular type of inference. This will allow us to experiment with state-of-the-
art tools and draw the roadmap for future implementations using one of the mechanisms for extending 
GraphDB build-in inference capabilities.  
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