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ABSTRACT 
Recently, graphene-based materials have engaged the attentiveness of all researchers doing 
research related to materials science, particularly related to gas sensing application. 
Graphene nanocomposites or nanohybrids are the modern inclusion to the marvel 
applications of graphene-based materials. One of the occupying utilisation of the graphene-
based nanocomposites is chemical detection which is beneficial for observing the explosive 
nature, harmfulness and inflammability of gases. Diversified metal oxides like tin oxide, 
ferric oxide, zinc oxide and indium oxide as soon as combined with graphene-based 
materials to form nanocomposites own enormous potentiality for detecting a minute amount 
of harmful gas. In this article, the various synthesising methods, preparation of composites, 
fabrication and gas sensing utilisation of graphene-based nanocomposites are depicted in 
detail. 
Keywords: Metal oxides, graphene oxide, reduced graphene oxide, nanocomposites, gas 
sensor. 

1. INTRODUCTION 

There is a growing state of affairs on metal oxide semiconducting gas sensors in beyond a long time 
regarding the view of human health and environmental protection. Many nanostructured metallic 
oxides with the high surface to volume region have appreciably investigated like sensing substances 
[1–5]. Between them, ordered mesoporous metal oxides hold enormous interest since their available 
pores advantage over diffusion of gas molecules for growing response rate, but additionally the 
reduction in aggregation and sintering for enhancing their thermal stability under immoderate 
temperature throughout the fabrication and operating procedure of gas sensor [6–12]. Tiemann and 
co-workers [13] perceived the increased sensitivity of mesoporous indium oxide for methane. Mao et 
al. [14]. Moreover, stated a tremendous sensitivity regarding hierarchically mesoporous hematite 
microsphere towards formaldehyde. Lai et al. [15] introduced a cost-effective synthesis of 
mesoporous indium oxide with tunable pore wall thickness with the aid of without delay using 
solvent-extracted mesoporous silica together with exclusive pore sizes as a template. The gas-sensing 
character over those mesoporous semiconducting metal oxide sensors could remain in extension 
enhance further thru doping noble metals.  
Tu et al. [16] observed that Pt-doped mesoporous indium oxide own an extensively superior response 
than those besides doping Pt. Lai et al. [17] suggested the greater suitable gasoline-sensing character 
on silver-doped mesoporous indium oxide towards formaldehyde. Even though, the growing cost 
resulted from noble metals may control their practical application. Detection of ammonia (NH3) 
within the atmosphere is of significant importance to environmental protection also from the chemical 
and automotive industries [18]. Surveys taken by the U.S. activity safety and health administration 
showed that exposure to NH3, of that concentration surpassing 50 ppm, could cause temporary vision 
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defect and irritations to human bodies [19]. Several works had been done regarding NH3 sensors, and 
ancient metal oxides supported most of them. However, the bulk of metal compound primarily based 
sensors will solely operate at elevated temperatures (more than 200˚C) [20, 21]. To comprehend the 
detection of NH3 at temperature, individuals have done numerous works and studied a range of 
sensitive materials [22–31]. Novel carbon materials like carbon nanotube and graphene are 
established to be ideal sensing materials to construct superior gas sensors, which will work at room 
temperature [32, 33].  
Graphene has been considered as a promising candidate for building electrically based gas sensors 
since its electronic properties can be strongly affected by the absorption and desorption of the gas 
molecules, which is attributed to high quality of crystal lattice leading to a quite low electronic noise 
and the two-dimensional structure providing great sensing area per unit volume [55]. 
SnO2, a useful n-type semiconductor material, is reported according to stay sensitive to many gases 
including reductive gases (e.g., acetone, hydrogen, ethanol, methanol) or poisonous gases (e.g., NO2, 
H2S), consequently is broadly used in commercial gas sensors [34-36]. Owing by the unique 
properties regarding SnO2 nanoparticles such as no toxicity, small dimension, low cost, and high 
theoretical capacity, the SnO2 gas sensor has been extensively studied and attracted large interest [37, 
38]. However, gas sensor based of pure SnO2 nanoparticles suffers mean sensitivity and long response 
recovery time [39, 40], because SnO2 nanoparticles tend imitation of total easily, as hampers the 
diffusion over gas molecules on the surface of the semiconductor. For SnO2 nanomaterials, that is 
known up to anticipate particle size, specific surface area; then equal dispersion radically influence 
the gas sensing overall performance [41, 42]. Specifically, small sized, widespread surface area and 
well-dispersed nanoparticles can easily adsorb gasoline molecules and enhance the gas sensing 
properties [43, 44]. 
Graphene and graphene-related materials are mostly conductors or insulators [45]. So, an uphill task 
of the graphene research community is to produce semiconducting graphene material for sensor and 
other electronic applications [46]. There has been substantial progress in this direction and doping of 
graphene by metal ions has been successfully achieved. However, the major contribution has been 
achieved through chemical modifications of graphene molecules, mostly by composite formation [47]. 
Graphene-metal oxide hybrid composite (GMO) is one such example [48, 49] for electrical and 
electrochemical applications including sensors. 
Among the transition metal oxides, haematite (α-Fe2O3), the foremost stable iron oxide part 
underneath ambient conditions with bandgap (Eg) of 2.1 eV, is especially engaging for gas sensors, 
catalysis, lithium-ion batteries, optical devices, and pigments owing to its high chemical stableness, 
mean cost, harmlessness, and high immunity to corrosion [50-54]. For gas-sensing Huang et al. [55] 
produced synthetical porous α-Fe2O3 nanoparticles by natural annealing of β-FeOOH base material 
derived from a flexible hydrothermal method for superior H2S identification. Tan et al. [56] with 
success created a network of porous α-Fe2O3 micro-rods that exhibited a higher response, ultra-fast 
response–recovery, and superior long stability than compact α-Fe2O3 nanoparticles. The nanoscale α-
Fe2O3 porous structure demonstrates high response worth, fast response, and sensible property 
compared with mesoporous α-Fe2O3 [57]. 
Nanoporous hematite nanoparticles show higher sensitivities than compact α-Fe2O3 nanoparticles as a 
result of the former’s standard structure [58]. The α-Fe2O3 gas sensors prepared from Fe3O4-chitosan 
with porous surface present a much superior response to hydrogen, carbon monoxide, ethanol, and 
ammonia compared with the device prepared from pure iron oxide [59]. Figure 1 shows potential 
applications areas of graphene. In this work, we are focusing on review of reduced graphene and 
metal oxide based nanocomposites, synthesising methods, fabrication process and sensing response 
related to gas sensing application. 

2. SYNTHESIS OF GRAPHENE-BASED NANOCOMPOSITES  

2.1 Synthesis of ZnO-RGO based nanocomposites 
Tao Wanga et al. [60] produced ZnO nanowires in a bulker way by a modified carbothermal 
reduction technique that was reported by Z.H. Zhou et al. [61]. Typically, 1.0 g ZnO powder and 1.0 
g graphite (500 mesh) were mixed and relocated into a quartz tube oven. Then the oven was heated 
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reaction. Above all, the most effective content of ZnO nanowires is 25 wt%. The combination of ZnO 
and RGO can form homogeneous heterojunction, which can promote the transfer of electrons and 
reduce the activation energy required for ammonia to react on the surface of the sensitive material. As 
a result, the sensor shows excellent properties of ammonia detection. 
Influencing factor in the ZnO-RGO based nanocomposites is because of resistance changes, reason is 
that after thermal annealing, Fermi level moves downwards away from the Dirac point, resulted in the 
lowered Fermi level thus the conductivity enhances [60]. The other reason is that when the annealing 
temperature gets higher, the contacts between graphene and ZnO nanowires become better and the 
surfactant remaining on the surface of the material is removed, leading to better electron transfer 
between two materials. 
4. 2 Gas-sensing properties on the SnO2-rGO composites 
Yanhong Chang et al. [75] fabricated a gas sensor based on SnO2-rGO composites then pure 
SnO2under the identical pilot conditions were investigated. The gas sensors had been examined for 
gases including different mean concentrations 0.56 x 10-6, 1.12 x 10-6 or 1.68 x 10-6 or the gas sensing 
testing temperature used to be 300˚C. At the attention over 1.12 x 10-6, the sensitivities of ethanol then 
H2S are 22 and 11, respectively, exhibits strong performance of SnO2-rGO gasoline sensor. However, 
the sensitivities regarding SnO2 gas sensor are 15 and 7, respectively. Obviously, the composites have 
greater sensitivity than luminous SnO2 for each ethanol yet H2S. SnO2-rGO has quick explanation 
excerpt time. For example, for ethanol on 1.12 x 10-6, the response and excerpt day over SnO2-rGO is 
solely 5 and 9 s, respectively. However, it was determined so much tidy SnO2 gas sensor is no longer 
absolutely touchy yet its response then recovery duration is 22 then 36 s, respectively. Besides, the 
stability concerning the gasoline sensor primarily based on SnO2-rGO used to be additionally 
examined. The sensing properties were investigated because of a hebdomad by means of consistently 
introducing the ethanol yet H2S along the equal concentrations. The significant decrease in gasoline 
sensing attribute used to be no longer observed, indicating the good over SnO2-rGO gas sensor. As a 
result, in the presence of rGO, the gas sensing properties have been greatly improved. It reveals that 
rGO plays a crucial role in the gas sensing system. Therefore, the as-prepared composites would be a 
novel highly efficient sensing material in the outstanding feature gas sensing application. Due to the 
excellent physicochemical properties of rGO sheets, the gas sensor will yield good sensing 
performance. 
4. 3 Gas-sensing properties on the In2O3 -rGO based nanocomposites  
Ping Xue et al. [76] did studies on mesoporous In2O3-reduced graphene oxide nanocomposite is 
employed as gasoline sensing substances and fabricated into the gas device for investigation its gas-
sensing ability. The natural mesoporous In2O3 nanoparticles are referred to assessment. The reaction 
of the gasoline sensor fabricated from mesoporous In2O3-reduced graphene oxide nanocomposite to 
one hundred ppm ethanol in the air became examined as performing of operative temperature; this is 
relatively low at under 230˚C. It reaches a maximum well worth at regarding three hundred degree 
Celsius then step by step decreases if greater increasing the operational temperature, the gasoline-
sensing mechanism of the gas tool is mainly supported a conduction modification deriving from the 
assimilation of oxygen at the surface of sensing materials and the response between pre-adsorbed 
element species and ethanol. As soon as the device is located in air, the pre-absorbed detail molecules 
may also capture electrons from the conductivity band of In2O3 and remodel into chemisorbed 
element species (O2-, O- and O2-), ensuring a lower in electron concentration and conductivity. As 
soon as ethanol is brought, it will react with the oxygen species and additionally, the captured electron 
can be injected back to the conductivity band, resulting in a rise in electron concentration and 
conduction. Once the operative temperature will increase, the pre-absorbed element molecules might 
also capture additional electrons [5, 78, 79], consequently resulting in a better reaction. Though, 
chemisorbed element species might have a tendency to drop from the surface of sensing materials as 
temperature increases, results in the downfall of response. The top-quality in operation temperature 
should be determined with the aid of the balance of these 2 strategies [80]. Consequently, the choicest 
operational temperature for the mesoporous In2O3-reduced graphene oxide nanocomposite-primarily 
based apparatus turned into 300˚C.  
The reaction to ethanol will boom quickly with the growing of gas absorption. The correlation among 
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the reaction and ethanol attention is just about linear in the range of 100–1,000 ppm, that indicates 
that those sensors region unit terribly appropriate for the recognition of ethanol throughout a broad 
choice. Unsaturation development to comparatively high ethanol absorption is also derived from the 
huge particular vicinity and sizable pore quantity of mesoporous In2O3 imparting a number of surface 
energetic sites and accommodating a massively wide variety of ethanol gas molecules. They also look 
at what the device fabricated from ordered mesoporous In2O3-reduced graphene oxide nanocomposite 
exhibited a reaction to ethanol over the entire examining out attention vary stronger than that of 
mesoporous In2O3 and additionally the response of the previous to at least one thousand ppm ethanol 
gasoline is sort of 23 instances above that of the concluding (2,778 and 119 respectively), that still 
possesses big advantages of the reaction towards ethanol even in comparison with one-of-a-kind 
In2O3-based totally sensing substances in accordance [81–87]. The reaction improvement is likewise 
defined by the exhibits the most critical response to plant product amongst all of the examine gases. 
Furthermore, the advent of rGO failed to extensively increase the reaction time (ninety-seven and 
ninety-eight s for the sensors supported mesoporous In2O3 and mesoporous indium oxide - reduced 
graphene oxide nanocomposite in the direction of 1,000 ppm ethanol) and inversely lessen the 
restoration time (sixty and thirty one’s for such 2 sensors respectively). All the previous outcomes 
suggest that the device supported mesoporous In2O3-rGO nanocomposite is probably helpful for 
sensing ethanol. 
Here influencing parameter is operating temperature as operating temperature increases; the pre-
absorbed oxygen molecules could capture more electrons thus result in a higher response. 
4.4 Gas-sensing properties on the Fe2O3-rGO based nanocomposites 
Nguyen Thi Anh Thua et al. [77] worked on the α-Fe2O3 nanoporous network for gas sensing 
application, they have tested the fabricated device to different gases, as well as CO (10–200 ppm), H2 
(25–1000 ppm), and NH3 (50–1000ppm). The obtained response to completely different CO gas 
concentrations at 350˚C, 400˚C, and 450˚C showed that the α-Fe2O3 nanoporous network was 
comparatively sensitive to CO gas [77]. Responses of the current sensors lightly varied at the working 
temperature vary from 350˚C–450˚C. The optimum operating temperature was also 400˚C that 
concurred with the results of the C2H5OH gas tests. The testing results with completely different CO 
gas concentrations additionally revealed that the sensor responses to10–200 ppm solely slightly 
increased at all operating temperatures. At the optimum temperature (400˚C), the response values to 
100 and 200 ppm CO gas were approximately 1.8 and 1.9, respectively. The ∝-Fe2O3 porous network 
additionally exhibited low sensitivities to H2 and NH3 gases. The response values of ∝-Fe2O3 porous 
network-based sensors to H2 gas (25–1000 ppm) and NH3 gas (50–1000 ppm) solely slightly 
increased from 1.2 to 1.9 respectively. Advantageous property to focus on gas is one of the crucial 
aspects of gas sensors. Response standards of Fe2O3 porous network-based sensors to C2H5OH, CO, 
H2, and NH3 were 9.5, 1.8, 1.5, and 1.1, respectively, indicating that the sensors presented good 
selectivity to C2H5OH. The response times were fast enough for practical applications but the 
recovery times were relatively long. This problem should be improved by several techniques such as 
UV radiation or pulsed heating at high temperatures. Therefore, the Fe2O3porous net-work is highly 
promising for use in high-quality sensor materials for alcohol breath analyzers [77]. 
Sensing properties also influenced by intrinsic porous structures originating from the oxidation of 
rGO, which could generate more active sizes and improve the gas diffusion coefficient. Future 
directions in graphene based metaloxide nanocomposites should have focus on new materials and the 
mechanism that governs the sensing performance. As new processing and fabrication techniques 
become available and allow designing complex structures. Several ways of enhancing the response, 
sensitivity and selectivity in nanostructured metal oxide based heterojunction materials by engineering 
of the potential energy barrier at the interface by using a second constituent, introduction of selective 
p-n and n-p-n response inversions. 

5. CONCLUSIONS & FUTURE OUTLOOK 

In conclusion, ZnO nanowire-reduced graphene oxide based nanocomposites can be prepared by a 
simple approach, wherever each ZnO nanowires and GO can be produced in large scales. On 
comparing with RGO or ZnO nanowire-based sensors, the ZnO NW-RGO based NH3 sensors 
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demonstrate glorious overall sensing performance with the greater response, shorter response, 
recovery time, good selectivity, and sensible stability. In addition, the sensor contains a very small 
size and low power consumption that is crucial for system integration and transportable equipment. 
The achievements of the sensors based on ZnO NW-RGO nanocomposites with exceptional 
performance are likely to supply a universal platform for the detection of harmful gases in the future. 
SnO2-rGO based nanocomposites found that SnO2 grew evenly on the surface on rGO layers. The 
introduction of rGO could prevent the agglomeration concerning SnO2 nanoparticles. The study 
related to SnO2-rGO gas sensor had higher sensitivities and shorter responding period in contrast to 
coherent SnO2, demonstrating an environment-friendly gas sensor based over SnO2-graphene. In2O3-
rGO based nanocomposites thru a combining hard templet and ultrasonic mixing method. The ensuing 
mesoporous In2O3 nanoparticle-rGO nanocomposite exhibited a considerable high response to ethanol 
as compared to those absolute mesoporous In2O3 while not rGO, that suggests the ability use of such 
unique nanostructured material for recognition ethanol gas. An analogous method is probably 
prolonged to different mesoporous metallic oxide–rGO nanocomposite gasoline materials with 
definitely exceptional compositions, pore structure, and volume. The evaluation would possibly open 
up new possibilities for preparing superior substances based on various ordered mesoporous metallic 
oxide–rGO nanocomposite for multipurpose applications. Synthesis of Fe3O4-rGO based composite 
can be done by simple approach. The gas-sensing characteristics indicated that the α-Fe2O3 porous 
network exhibited sensible sensitivity, outstanding selectivity, and high stability as an ethanol sensor. 
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