
International Journal of Research and Engineering
ISSN: 2348-7860 (O) | 2348-7852 (P) | Vol. 5 No. 9 | September-October 2018 | PP. 535-546

Digital Object Identifier DOI® http://dx.doi.org/10.21276/ijre.2018.5.9.7

Copyright © 2018 by authors and International Journal of Research and Engineering
This work is licensed under the Creative Commons Attribution International License (CC BY).

creativecommons.org/licenses/by/4.0 | |

ORIGINAL
ARTICLE

Failure Analysis in Conceptual Phase toward a Robust Design:

Case Study in Monopropellant Propulsion System

Author(s):
 1
*Elham Keshavarzi,

2
Kai Goebel,

3
Irem Y. Tumer,

4
Christopher Hoyle

Affiliation(s):
1,3,4

Dept. of Mechanical Engineering, Oregon State University

Corvallis, Oregon, USA
2
Dept. of Intelligent Systems Division, NASA Ames Research Center

Moffett Field, California, USA

*Corresponding Author: Keshavae@oregonstate.edu

Abstract - As a system becomes more complex, the

uncertainty in the operating conditions increases.

In such a system, implementing a precise failure

analysis in early design stage is vital. However,

there is a lack of applicable methodology that

shows how to implement failure analysis in the

early design phase to achieve a robust design. The

main purpose of this paper is to present a

framework to design a complex engineered system

resistant against various factors that may cause

failures, when design process is in the conceptual

phase and information about detailed system and

component is unavailable. Within this framework,

we generate a population of feasible designs from a

seed functional model, and simulate and classified

failure scenarios. We also develop a design selection

function to compare robust score for candidate

designs, and produce a preference ranking. We

implement the proposed method on the design of an

aerospace monopropellant propulsion system.

Keywords: failure analysis; robust design; design

complex systems; conceptual design; cost-risk

analysis

I. INTRODUCTION

The number of parts in complex engineered systems is

increasing rapidly. For instance, the components only in an

integrated system is expected to be double every year as

Gordon Moore predicted properly. Therefore, the interaction

between various parts of the system, and between the system

and external factors gets more complicated as technology

and market demand is changing. The complicated

interactions cause different type of uncertainties, and

unexpected uncertainties can cause undesired behavior of

the system or even catastrophic failures.

An important concept in designing complex engineered

systems, is to ensure that the behavior of the system in

undesired and uncertain situations is determined early in the

design phase, prior to the manufacturing and operational life

of the system. It requires to conduct a failure analysis in the

conceptual design phase when the component model of the

system and design specifications have not been developed

yet. Failure analysis in early design phase help the designers

to find strategies to improve the design to enable the system

cope with the uncertainties during the operational life, as

well as reduce the design revisions in further design steps

shapers [1]

To study the failure behavior of a system in the early design

stage, modeling and simulation of the failure scenarios are

the necessary steps. In many complex engineered systems,

the characterization of the system is represented using a

component model. However, when developing a new design,

or in the early design phase, there is no component-level

model available, and typically the set of components is not

selected. Because of this, we came up with the idea of using

functional model to study the system’s failure behavior in

early design phase, to achieve a robust design.

An overall description of our proposed design methodology

is provided as follows. Developing a functional model is the

first step. To develop a functional model for a complex

engineered system, all the functions and flows and

operational modes should be defined based on the system

requirements and expert knowledge. Each function can have

different operational modes: nominal, degraded, and failed.

Next step is simulation of the system failure behavior. We

have developed an open access tool in Python to simulate

failure scenarios using functions, flows, and modes. The

 536

IJRE | Vol. 5 No. 9 | September-October 2018 | E. Keshavarzi et al.

unique failure scenarios provide information on the

probability of having undesired end states. Applying the

cost-risk model, the designer evaluates the cost of a design

versus the robustness of the design against a failure. If the

design fulfills the requirements, the process ends. Otherwise,

a new design is generated by modifying the functional

model. The program runs until the search algorithm

achieves the design with the optimal robust score. Fig. 1

shows the flowchart for our proposed method. Green boxes

represents the steps that are required to be done by designers

and blue boxes are produced by software.

Domain Functions,
Flows, Modes and

Conditions

Functional Model
for Conceptual

Design
Python Input File

Fault Scenarios
Generation

Software

Resilience Scoring
Function

Alternative
Functional Topology

Generator

IBFM Toolkit

Cost Model to
Balance Design
and Risk Cost

Green: User
Blue: Software

Does the Design
Meet

the Termination
Condition ?

No

User Knowledge

End Yes

Fig. 1. Proposed framework for robust design in

conceptual phase

This paper provides an applicable framework that shows the

designers how to implement failure analysis and achieve a

robust design in early design phase, when information about

components is not available. We illustrate how to develop a

functional model, simulate failure behavior of the system,

and evaluate robustness of a design in early design phase.

We implement the proposed approach in early design phase

of an aerospace monopropellant propulsion system and

achieve the design with optimal cost and resistance against

failure. The material of this paper is organized as follows:

Section 2 proposes a clear and consistent definition of

robust design, and carefully disentangles it from reliability

and resilient design. Section 3 describes different failure

analysis methods and our logic to select functional model to

study the failure behavior of the system. Section 4 illustrates

how to represent a design applying a functional model.

Section 5 proposes a cost-risk function to evaluate cost of a

design and it’s robustness against failure. Section 6 presents

generating different designs and search algorithm. In section

7, we apply the proposed method to find the robust design

for an aerospace monopropellant propulsion system. Section

8 is the result and finally, section 9 provides conclusion and

summary.

II. ROBUST DESIGN

Failure analysis is the first step to design a complex

engineered system and the strategies to make it a robust

system must be designed into the system from the beginning,

because as we go forward in the design process making

changes is more complicated and expensive [1].

Design strategies used for advancing reliability are

implemented for the purpose of advancing robustness in a

system; however, there is meaningful difference between

these concepts. Reliability is the ability of a system to

perform nominally for a specific period of time. In fact,

reliability is the probability of success or availability of a

component/system for a specified period of time [2].

Reliability concentrates more on “why and how” components

or systems may fail or have failed. Fault Tree Analysis

(FTA), Failure Modes and Effects Analysis (FMEA), and

event tree analysis are known techniques to study reliability

[3]. Practice has shown that the main issue of these

techniques is the requirement of the component-level detail

of the system from the beginning of the design process.

Robustness is where the system’s performance is minimum

sensitive to internal and external uncertainties that can cause

failure [4-6]. The ability to overcome such uncertainties

should be embedded into the system from the beginning.

Uncertainty is the lack of ability to determine something

precisely [7, 8]. Uncertainty management is an important

concept in the design process of complex engineered systems.

Reducing uncertainty when designing a system results in

more efficient system with less cost.

Resilience can be defined as a system’s ability to recover

from a failure. Recovery from a failure is an alternative to

reducing uncertainty. There are different ways to recover

from uncertain events, including flexibility, Monitoring and

Automated Contingency Management (ACM).

Flexibility is the ability of a system to respond to changes in

initial requirements and objectives, after it starts operating, in

a timely and cost-efficient way [9]. Keshavarzi et al,

developed a strategy to apply flexibility in designing a

complex engineered system to cope with epistemic

uncertainty during the system operation lifetime [10, 11]. An

ACM system adapts automatically and allows some

degradation in the system performance when failure occurs

with the goal of still achieving the mission [12-15]. For

example, taking photos with less resolution is applying ACM

when the mission dictates possessing an image. Yodo et al.

provide a literature survey of existing studies in engineering

resilience from a system design perspective, with the focus

536

 537

IJRE | Vol. 5 No. 9 | September-October 2018 | E. Keshavarzi et al.

on engineering resilience metrics and the strategies to

quantify those metrics [16]. To improve reliability,

robustness or resiliency of a design, failure analysis is a

necessary step. In most existing failure analysis methods,

system designers need a precise model of system

components to be able to study complex behavior of the

system. However, in early phase of design process, specific

set of components have not yet been selected and such

detailed models of the complete system is not available.

Because of this lack of methods to study failure behavior in

the early design phase, the idea of representing the complex

system by only its intended functionality is proposed as part

of our methodology. The following section discusses failure

analysis using functional models.

III. FAILURE ANALYSIS

An engineered system is defined as an assemblage of sub-

systems, hardware/software components, and people

designed to perform a set of tasks to satisfy specified

functional requirements and constraints [17]. The traditional

approach for designing an engineered system is to establish a

pre-defined set of requirements based on market studies and

best estimate extrapolations of the current state and then find

the optimal design to satisfy the requirements [18]. However,

these approaches are inadequate to respond to changes in

initial requirements and uncertain events. This can lead to

failure if the system is faced with significantly different

conditions than the ones predicted.

As a system becomes more complex, the uncertainty in the

operating conditions increases. In such a system,

implementing a precise failure analysis in early design stage

is vital [19]. There are different types of failure analysis

techniques for complex systems [20-27], like probabilistic

methods [28, 29], or reliability techniques [30, 31], or

approaches based on observations analysis [32]. Studies have

shown that the early design stage is the best time to catch

potential failures and anomalies [33]. However, in the early

design phase, decisions about the specific set of components

is not made, and a component model is not available. The

idea of using functional model, instead of component model,

to design a complex system is of increasing interest. A

functional model in systems engineering is a structured

representation of the functions to meet system requirements.

The goal of developing a functional model is to describe the

system behavior and determine vulnerable parts of the design,

resulting in potential system improvement, particularly

helpful in the early design stage when the detailed

component model of the system is not available.

Methods have been developed to combine functional

modeling with failure analysis. Stone and Tumer developed

the Function Failure Design Method (FFDM) which was the

bridge between failure analysis and functional modeling.

They applied functional models to represent the system

design and identify potential failure states for each function

[34, 35]. Grantham et al., estimated the failure likelihood for

each functional in the system. Lough et al., classified

functions to high-risk to low-risk based on the consequence

of failures [36, 37]. The idea of providing function-based

failure analysis provided some improvements in the design

of complex engineered systems; however, these methods

limit the designers of the system to considering only one

single-fault impact analysis at a time.

To overcome this restriction and to enable the designer to

consider multiple function failures effect, the Function

Failure Identification and Propagation (FFIP) method was

presented [38-47]. The FFIP method identifies failure

propagation paths by defining states of function health. This

approach uses a separate behavioral model simulation to

show failure propagation paths and failure effects. Typically,

the modeling language Modelica is applied to simulate

failure scenarios [48, 49]. However, system models cannot

be automatically constructed from a description of the

functional structure of a system and therefore it may not be

useful in FFIP where multiple designs are investigated.

McIntire et al. have created IBFM tool (Inherent Behavior of

Functional Models), to simulate failure scenarios applying

functions, modes, flows between the functions and

conditions for transition between the functions. With this tool,

designers can create a functional model of the system in the

early design stage and simulate the failure propagation paths

for the system without developing a separate behavioral

model [50].

In our presented framework, we apply the IBFM tool to

simulate the failure scenarios for different design topologies.

The following section describes the method to develop a

functional models to represent a system.

IV. CONSEPTUAL PHASE

Fig. 1. The first step in the proposed method is to study the

requirements and expectations from the system and define

the functions and flow. We use a graph to represent the

system functionality and its interaction with the environment.

We implement the method in Python, because Python is free

access and provides other tools like NetworkX which can be

utilized to represent the functional model graphically. Graphs

provide the designers the ability to represent functional

models with complicated structure [51].

Fig. 2. Each graph edge (arrow) represents a flow of material,

energy, or information within the system and each graph

node (rectangle) represents a function that acts on the flows

intersecting it. Fig. 2 provides an example of a graph

 538

IJRE | Vol. 5 No. 9 | September-October 2018 | E. Keshavarzi et al.

representation of a functional model consisting of a single

internal function and three functions.

Fig. 3. In this paper, the flow has a direction, and uses two

variables to define the flow: an effort variable, and a rate

variable. For example, a liquid flow can be modeled as either

a liquid pressure (effort) or a liquid volume flow rate (rate).

The function at one end of the flow controls the effort state,

while the function at the other end controls the flow rate. In

our approach effort and rate variables take qualitative values,

such as Zero, Low, Nominal, and High.

Fig. 4. Each function consists of a set of modes. Mode

definitions show the different levels of functionality for a

function, which are usually categorized as operational,

degraded and failed modes. Conditions determine how the

flows go from one function to another and basically provide

the conditions to generate the failure paths. Conditions define

the transition between modes, e.g. the transition from a

nominal to degraded state, or from a degraded to failed state.

In the IBFM approach, all modes and conditions are

qualitative, rather than quantitative. The conditions that

regulate a function transitioning from one mode to another

mode are also flow specific. For example, the operational

mode of the function “Regulate Gas Pressure” has a “Gas

High-Pressure” condition that leads to a failed mode. The

“Gas High-Pressure” condition is only used by functions that

have a “Gas” flow. Functions, flows, modes, and conditions

are defined to construct a functional model to be fed to the

IBFM tool to simulate all system failure scenarios.

Fig. 5. Our IBFM tool can be applied to simulate failure

scenarios for a functional model. The IBFM tool is hosted on

GitHub at https://github.com/DesignEngrLab/IBFM. The

repository contains the module ibfm.py, and a user guide.

The simulation of each fault scenario begins at the nominal

state, and then changes the mode of one or more functions to

a degraded or failed mode. The end state of each scenario is

recorded for further analysis. The number of unique paths

that have a particular undesired end state is used in the cost-

risk model described in the following session.

Fig. 2. Graphical representation of a functional model

V. ROBUST VALIDATION

In this part, a cost-risk model is proposed to evaluate the

robustness of different designs for a complex engineered

system. The idea of this cost-risk model is rooted in the risk-

based utility theory [52]. This model studies the tradeoffs

between cost of designing a system that is resistant against a

failure, versus the cost of designing the system without

robustness while accepting the inherent risk of failure. The

key element is that the “cost of risk” can be quantified, such

that the trade-off between adding system cost versus

accepting risk can be made. The proposed model is

composed of three cost elements: the baseline cost of the

design, the cost of mitigation, and the cost of risk, given by

Equation (1).

Min ∑
 (1)

CD: Baseline cost of the design

CO: Operation cost

CM: Cost of mitigation

CR: Consequential cost of the risk

PR: Probability of risk

PM: Probability of mitigation

 : Probability of mitigation failure

N: Number of undesirable end states

CD is the cost of design when there are no strategies to make

the design robust. CM, represents the cost of changing the

design to make it robust to a particular failure. In the next

section, we describe four strategies to change a functional

model to represent different designs for a system.

Independent of the quality of performance, there is a certain

cost to operate a system, defined as operation cost, CO.

With respect to defining the “cost of risk”, we define a risk

as a triplet of its impact or consequence, its probability of

failure occurrence, and it’s probability of being mitigated.

In Equation (1), CR is the impact or consequential cost of the

risk; in our approach, it is quantified as the cost of having a

failure (in units of dollars). Secondly, PR is the probability

of having a specific undesired end state or failure behavior

and is quantified using the results of failure simulation. It is

quantified as the number of unique scenarios with a

particular undesired end state (or fault) divided by total

number of unique scenarios. Lastly, PM is the probability

that a design resist against a failure due to a mitigation

action (a mitigation action is assumed to have a cost of CM).

Probability of mitigation is also calculated from the failure

simulation result by adding the mitigation action to the

functional model and rerunning the simulation. N is the

number of system undesired end states or failure behavior

that the system is designed to resist. Except for the nominal

scenario when all functions perform nominally, other end

states are failure scenarios and undesired. However, an

undesired end state does not imply that a failure is present, it

 539

IJRE | Vol. 5 No. 9 | September-October 2018 | E. Keshavarzi et al.

may just reflect an end state that prevents the system from

nominal operation or from completing a mission. For

instance, when designing a car, having a flat tire is

undesirable, but may not be classified as a safety hazard or

failure of the system; however, an engine fire is both an

undesirable state and a safety hazard.

Applying the cost-risk model, the designer can determine

the tradeoff between robustness and cost of a design; the

cost-risk model is treated as an objective function in an

optimization framework. In the optimization formulation,

the objective is to minimize total cost (i.e., Equation (1)),

subject to any system-level constraints. Treating the search

for the best system-level design as an optimization problem

necessitates identifying a termination condition for the

search. In application, the search would most likely be done

by a heuristic or stochastic search method, given the discrete

nature of the functional model representation of the system.

Since these methods cannot be guaranteed to converge to

the optimum in finite time, the search must be ended based

on a heuristic [53]. Termination Conditions for the proposed

framework can be defined as:

• An upper limit on the number of evaluations

(designs) is reached.

• An upper limit on the time of evaluations of the

fitness function (cost-risk model) is reached.

• The chance of achieving significant changes is very

low.

If the design meets one or more of the termination

conditions, it gets selected, otherwise a new design is

generated and evaluated.

VI. GENERATE ALTERNATIVE DESIGN

As noted in previous part, the cost-risk approach is

implemented as a search problem, in which the objective is

to find the lowest cost design. An issue to address is how to

change/modify a functional model to produce other feasible

designs in the search process. The challenge is identifying

alternate functional models which are technically feasible,

i.e., functional models which preserve the key system

functions and the associated flows. Therefore, a method is

needed to ensure that functional models evaluated in the

search process are technically feasible. We propose four

strategies to generate new design based upon a few simple

rules used by designers of aerospace systems. The design

modification rules can be placed into four categories as

follows:

A. Redundancy and Health Management

In this technique, redundancy or health management is

added to the functional model. The redundancy could be the

addition of a redundant function, or it could be added in the

form of partial redundancy. In the case of partial redundancy,

we may be able to fulfill the needed functionality using

secondary functions. For example, we may be able to use a

pressure sensing function to also indirectly fulfill a flow rate

sensing function in the case that the flow rate sensing

function is faulted. Adding redundancy or health

management will affect CM and PM in Equation (1). The

tradeoff will in general be one in which mitigation cost is

added to increase the probability of mitigation (and thus

reduce the cost of risk).

B. Conceptual Order

Changing the order of functions is another way to generate a

new design at the conceptual level of the design. This

change affects the probability of the risk, PR, by focusing on

failure avoidance; i.e., arranging the functions is such a way

that failure propagation path is changed and thus the

probability of a risk is changed.

C. Utilizing Wasted Flows

In this method, any flows that transfer material or energy to

the environment (i.e., are not used by the system directly)

are utilized as additional inputs for other functions where

applicable. This improves the failure avoidance aspect of the

design. For example, one could use waste heat to

supplement a heating function as a mitigation function (CM

and PM), or one could lower the cost of design of a heating

function (CD) by coupling waste heat from a different

function with the heating function.

D. Combining/Splitting Functions

Two or more functions can be combined (or split) to make a

new design and potentially improve the failure avoidance of

a system. This could affect both CD and PR. whether

combining two or more functions into a single function (or

splitting a single function into two or more functions)

improves or worsens the cost-risk objective function must

be determined by the results of failure simulation.

Combining functions may lead to elimination of a failure

path (thus reducing PM), or may make the new combined

function more likely to fail (thus increasing PM).

We can generate a large space of alternative models by

using the functions, however a small portion of the space

can be technically feasible. For instance, by having every

possible order of functions from initial mono propellant

propulsion system model, we can generate a large space of

designs, however having thrust function before heating gas

is meaningless. Therefore, we narrow down the design space

to small number of models that could be considered for the

system. In the following section, we apply the proposed

approach in early phase of designing a monopropellant

propulsion system. The goal is to design the system to be

539

539

 540

IJRE | Vol. 5 No. 9 | September-October 2018 | E. Keshavarzi et al.

robust to events that can cause failure while managing the

cost.

VII. CASE STUDY: MONOPROPELLANT

PROPULSION SYSTEM

A monopropellant propulsion system refers to a chemical

propulsion fuel which does not require a separate oxidizer

and thus can be used in space. Monopropellant designs are

typically used in the aerospace industry because they make

the engine lighter, less expensive, and more reliable. In this

case study, the monopropellant is hydrogen peroxide ().

It is important when designing a monopropellant propulsion

system to consider environmental condition in space. With

no gravity assistance, the system should be able to push the

propellant towards the catalyst. The concept for this system

design is to apply expanded gas to push the monopropellant

over a catalyst and produce thrust. This system can be

divided into three main subsystems: gas, propellant, and

catalyst.

When there is a command for a change of the spacecraft

velocity, the inert gas is heated to expand. The expanded gas

is fed through regulation and control functions to reach the

right quantity, pressure and temperature. The expanded gas

places pressure on the propellant (hydrogen peroxide) and

guides it to the catalyst. When the propellant passes the

catalyst, combustion occurs and changes the velocity of the

spacecraft. Fig. 3, presents the general idea for a

monopropellant propulsion system design.

Fig. 3. General design for a monopropellant propulsion system

A. Failure Behavior

Assume a spacecraft with monopropellant propulsion engine

has a mission to travel to a planet in outer space and from

external orbit to the middle orbit and then to the lower orbit

and take some images and get back to earth. Fig. 4, shows

different scenarios. When the thrust is commanded, if all

functions are nominal, the system performs as expected. In

Fig. 4, the green dot shows the spacecraft accomplished the

mission. However, there are scenarios in which something

can go wrong with one or more functions and the result is

not as expected. Blue, yellow and red dot in Fig.4,

represents the scenarios that spacecraft ended up with an

undesired situation. This would cause the engine to provide

too much (yellow dot), too little (blue dot) or no thrust (red

dot). In practice, it means the aerospace system passes the

commanded orbit, or does not reach it. In rare catastrophic

failures, the system might explode (i.e. loss of system).

Therefore, the final behavior of failure analysis for a

monopropellant propulsion system is classified to 5 groups:

● Mission Accomplished (Desired)

● Too Much Thrust (Undesired)

● Too Little Thrust (Undesired)

● No Thrust (Undesired)

● Loss of the System (Undesired)

Fig. 4. End states of failure analysis for a monopropellant propulsion

system

The first step in our proposed approach is developing a

functional model. This includes defining functions, and

flows, failure modes and conditions from transitioning from

one state to another state.

Fig. 5, shows the graphical representation of our developed

model for the monopropellant propulsion system. The boxes

illustrate the functions required to produce thrust to change

the velocity of the spacecraft when commanded. The blue

boxed are the functions implemented by control software.

The flows are represented by arrows; black arrows represent

material flow between two function, the material can be

solid, liquid or gas. The dot blue arrows illustrate flowing

information or signal between two functions. Dashed black

arrow is energy. The definition of the system health states

(including failure and non-failure modes) and conditions are

not visualized in Fig. 5, to avoid too much information in

one graph. The following session describes how to define

the design in Python and simulate failure behavior.

 541

IJRE | Vol. 5 No. 9 | September-October 2018 | E. Keshavarzi et al.

 Fig. 5. Developed functional model for monopropellant system

A. Functions Definition

The monopropellant propulsion system model in Fig. 5,

contains 29 functions and 129 modes. One example of our

function and modes definition for the monopropellant

propulsion system in Python is as follow:

function ImportHeat

 mode 1 Operational NominalHeatSource

 mode 2 Degraded LowHeatSource

 mode 3 Degraded HighHeatSource

 mode 4 Failed NoHeatSource

The first line contains the keyword function, followed by the

desired name of the function. The indented lines contain all

of the modes of the function. Each line describing a mode

begins with the keyword mode, followed by a unique

within-function alphanumeric identifier, followed by the

function health associated with the mode, followed by the

name of the mode. Available mode health states

are Operational, Degraded, and Failed modes. Failed modes

are the ways, in which the system might fail. A single mode

in each function definition is followed by the keyword

Nominal, which by default assigns that mode to be the

initial mode of the function at the beginning of simulation.

B. Flows Definition

Flows are defined in a single line. Our strategy to define a

flow is to mention the keyword flow, then the type of flow,

followed by the name of the category of the flow which can

be Material, Energy, or Signal. All flows are derived from

one of mentioned three categories of flows.

flow Heat Energy

C. Modes Definition

Modes definition is more complicated, as all of the mode’s

behaviors must be explicitly described. Operational,

degraded, and failed modes are required to be defined for

each function. A simple mode definition example is the

nominal gas source mode:

mode NominalGasSource

 InertGas output effort = Nominal

The first line consists of the appropriate keyword, in this

case mode, followed by the desired name of the mode. Each

indented line consists of a single assignment statement. The

expression to the left of the assignment operator = is

evaluated to determine the flow variable being assigned to.

The expression on the right of the assignment operator

determines the state of the flow variable. Every flow in the

statement must be referred to using three words: the flow

type name, its direction, either input or output, and its

variable, either effort or rate. More complex behaviors may

be defined by using operators. A single unary operator is

used in the definition of the “NoGasSource” mode:

mode NoGasSource

 InertGas output effort = Zero

 542

IJRE | Vol. 5 No. 9 | September-October 2018 | E. Keshavarzi et al.

This mode definition makes use of a constant state.

Available states are Zero, Low, Nominal, High, and Highest.

The definition of the drifting low pressure sensing mode

uses two unary operators:

mode DriftingLowPressureSensing

 import NominalConductingRegulatedGas

 SignalDesiredPressure output effort = RegulatedGas

input effort - -

The first one, the keyword import, copies all of the

statements from the definition of the mode directly

following the keyword. In this case, the two statements from

the “NominalConductingRegulatedGas” mode are copied

into “DriftingLowPressureSensing”. The second one, the

decrement operator --, decreases the value of the state by

one qualitative level.

D. Conditions Definition

Condition definitions are similar to mode definitions. They

name the condition being defined, and explicitly describe

the behavior, but they only include a single behavior

statement. Rather than being an assignment, the statement is

a logical test. For example, the condition to test for a

function being exposed to high temperature is:

condition HighTemperature

 Heat output effort > Nominal

Logical operators may be combined to form more complex

tests. All binary operators are evaluated from left to right.

We simulate all failure scenarios using our developed IBFM

tool. We tabulate the unique scenarios terminating with

particular undesired end states. The final behavior of the

system as shown in Fig. 4, is categorized into different main

end states. The designers of the system decide what end

states the system failures could cause. In this case study,

undesired end states are:

• Pass the Mission Location

• Do Not Reach to Mission Location

• No System Movement when Needed

• Loss of the System

E. Alternative System Designs

The baseline design, shown in Fig. 3, represents a functional

model developed for a monopropellant system in the early

design phase. In this design, the desired final behavior is the

mission accomplishment, in which all gas, propellant, and

catalyst functions operate nominally. Any improvements in

the functional model influence the final behavior of the

system. In other words, the baseline model is not designed

to be robust. Therefore, different system topologies with

focusing on improvement the robustness of the system can

be investigated. Improvement strategies include applying

different levels of redundancy, re-configurability or

integrated health management sensors in the system design.

For each design, the failure scenarios can be classified into

five end states. Fig. 6, represents the Pie Chart for a

candidate design for monopropellant propulsion system.

Fig. 6. Classification of failure scenarios for basic monopropellant design

In this case study, we simulate the failure behavior of the

initial design and compare it to six alternative functional

models representing different designs for the

monopropellant propulsion system. In each alternative

design, changes are applied in the functional model to

improve the robustness of the design against some particular

failures.

The first modification of the baseline design includes a

redundant gas rate sensing function. In this design, if no

signal is coming from the primary sensing function, a

secondary sensing function can supply the required

information. The second modification of the initial design is

an identical system with redundant gas pressure sensing.

The third modification of the initial design combines the

adjusting pressure and rate into one function. The fourth

design uses output heat to expand inert gas (by contrast, in

the baseline, the heat is exported from the system and

disappears into space). The fifth design incorporates the

redundant sensing for propellant. The sixth design applies

the output thrust heat to preheat the propellant. In this way,

the propellant plays the role of a cooling system. The

following section presents the result of failure simulation for

all six alternative designs and evaluate them based on our

proposed robust score function.

VIII. RESULT

Seven candidate designs for the monopropellant propulsion

system are examined. In each design, the functional model

has been modified to be more robust to a particular failure

or undesired end state. Table 1 shows all the designs

generated by the functional model modifications.

86%

3%
4%

6% 1%

Mission Accomplished Too Much Thrust

Too Little Thrust No Thrust

Catastrophic Failure

 543

IJRE | Vol. 5 No. 9 | September-October 2018 | E. Keshavarzi et al.

Failure behavior has been simulated for all six alternative

designed in Table 1. The amount of CPU time required to

simulate each scenario increases as the complexity and the

number of faults injected to the model increases. For

instance, the time of simulation for injecting two

simultaneous faults is less than the time of simulation for

injecting three simultaneous faults. In this study, we

investigate injecting up to 3 faults (all possible three failures)

in each one of the functional models. Fig. 7, displays the

classified simulated scenarios for the seed and the six design

topologies is shown in Fig. 7. In this histogram, the number

of successful and failed scenarios simulated for each design

is demonstrated.

Fig. 7. Failure simulation results for candidate monopropellant designs

The probability of risk in each design is applied to the cost-

risk model of Equation (1). The mitigation cost CM is the

cost of changing the basic design to make it more robust to a

particular failure or undesired end state.

The operation cost CO for all candidate designs is assumed

to remain the same because on-ground systems cost is the

main operation cost for a monopropellant propulsion system.

It’s assumed that regardless of how the system is performing,

there is an on-ground system to monitor, control and run the

spacecraft. For other design studies, the operating cost may

vary by design concept. It is assumed that the aircraft

completes three missions per year, and for each mission the

operation cost is $500 million. The number of failed

scenarios versus the total number of scenarios for each

design defines the probability of risk, PR.

TABLE 2. Robust evaluation for monopropellant system candidate designs ($million)

Cost-Risk Model Basic Design Design 1 Design 2 Design 3 Design 4 Design 5 Design 6

Cost of Basic

Design CD
100 100 100 95 90 100 80

Mitigation Cost

CM
0 10 10 0 0 20 0

Operation Cost

CO
1500 1500 1500 1500 1500 1500 1500

𝑪𝑹𝑷𝑹 𝟏 𝑷𝑴
Cost of Risk 45.50 32.20 30.75 34.90 40.70 21.30 35.20

Total Cost 1645.50 1642.25 1640.75 1629.90 1630.70 1641.30 1615.20

Robust Score Rank 7 Rank 6 Rank 4 Rank 2 Rank 3 Rank 5 Rank 1

TABLE 1. Generated designs for monopropellant system

Basic Design The original unaltered system model

Design 1 Redundant gas rate sensing added

Design 2 Redundant gas pressure sensing added

Design 3 Combine adjusting gas pressure and rate into one function

Design 4 Use output thrust heat to expand inert gas

Design 5 Redundant propellant pressure sensing

Design 6 Use output thrust heat to expand inert gas and preheat

propellant

 544

IJRE | Vol. 5 No. 9 | September-October 2018 | E. Keshavarzi et al.

The probability of the mitigation, PM, is the probability that

the mitigated part does not work when needed. These

probabilities are quantified based on the IBFM simulation

and cost numbers are estimated based on the space system

cost models and data provided by Miller et al. [54]. The

total cost reflects the tradeoff between designing a robust

system and the cost of doing so. The lower the total cost, the

higher the rank of the design would be.

Table 2 represents the results of robust evaluation for

developed designs for monopropellant propulsion system. It

tabulates all the elements of Equation (1). Since there were

only seven designs to consider, an exhaustive optimization

algorithm was used; however, an evolutionary or other

stochastic algorithm could be used to search larger design

spaces.

As shown the table, Design 6 has the optimal trade-off

between robustness and cost. In this design the propellant

acts as a cooling system. The heat produced by propulsion is

used to preheat the propellant and expand the inert gas.

Utilizing this source of energy helps the successful

combustion process. This design was selected because it had

the lowest value of the cost-risk objective function. The next

best design is Design 3, which combines the gas pressure

and rate control into a single function. This may indicate

that since both functions are critical to operation, and a

failure of either function is highly detrimental to the system,

it is better to address them with a single function with a

single failure rate.

IX. CONCLUSION

This paper proposed a framework to design a complex

engineered system in early design phase with the ability to

resist against failure. We discussed the lack of current

methods to address failure analysis and robustness of a

system in the early design phase. Current design methods

require a detailed component model of a system to be able

to simulate and study the failure behavior of the system.

However, such methods are not applicable in early design

phase when the set of components is not selected yet and

design is in the conceptual step. Ideally, the strategies to

make a robust design should be implemented in early design

phase, because as we go forward in the design process,

making changes is more expensive and challenging. In our

proposed method, we showed how to represent a complex

engineered system with a functional model in early design

phase. We illustrated how to define functions, modes, flows

and conditions to simulate the failure behavior of the system

and how to generate different designs for a system using a

functional model. Finally, our developed robust score

function provides the ability to evaluate the trade-off

between cost and robustness of a particular design and

search for the optimal one among candidate designs.

We applied the proposed method in early phase of designing

an aerospace monopropellant propulsion system. The results

show that the presented method is a practical design

framework to conduct failure analysis and develop robust

complex engineered systems in the early design phase, when

the complete knowledge of the system components and

specifics is not available. A future research is needed to

investigate the proposed approach in a design problem

where the design space is large and there is a large number

of feasible candidate designs. Graph grammars could be

implemented to help generate a large number of design

alternatives.

ACKNOWLEDGMENT

This research was funded by NASA Grant and Cooperative

Agreement NNX15AQ90G. We really appreciate their

support.

REFERENCES

[1] Ullman, David G. "The mechanical design

process." (2003).

[2] O'Connor, Patrick, and Andre Kleyner. "Practical

reliability engineering." John Wiley & Sons, 2012.

[3] Barlow, Richard E. "Engineering reliability."

Society for Industrial and Applied Mathematics,

1998.

[4] Phadke, Madhan Shridhar. "Quality engineering

using robust design." Prentice Hall PTR, 1995.

[5] Taguchi, Genichi, Subir Chowdhury, and Shin

Taguchi. "Robust engineering." McGraw-Hill

Professional, 2000.

[6] Beyer, Hans-Georg, and Bernhard Sendhoff.

"Robust optimization–a comprehensive

survey." Computer methods in applied mechanics

and engineering 196.33 (2007): 3190-3218.

[7] Hund, Edelgard, D. Luc Massart, and Johanna

Smeyers-Verbeke. "Operational definitions of

uncertainty." Trac trends in analytical chemistry

20.8 (2001): 394-406.

[8] Milliken, Frances J. "Three types of perceived

uncertainty about the environment: State, effect,

and response uncertainty." Academy of

Management review 12.1 (1987): 133-143.

[9] Chen, Wei, and Kemper Lewis. "Robust design

approach for achieving flexibility in

multidisciplinary design." AIAA journal 37.8

(1999): 982-989.

[10] Keshavarzi, Elham, Matthew McIntire, and

Christopher Hoyle. "A dynamic design approach

using the Kalman filter for uncertainty

management." AI EDAM 31.2 (2017): 161-172.

[11] Keshavarzi, Elham, Matthew McIntire, and

Christopher Hoyle. "Dynamic Design Using the

543

544

 545

IJRE | Vol. 5 No. 9 | September-October 2018 | E. Keshavarzi et al.

Kalman Filter for Flexible Systems with Epistemic

Uncertainty." ASME 2015 International Design

Engineering Technical Conferences and Computers

and Information in Engineering Conference.

American Society of Mechanical Engineers, 2015.

[12] Ge, Jianhua, M. J. Roemer, and George

Vachtsevanos. "An automated contingency

management simulation environment for integrated

health management and control." Aerospace

Conference, 2004. Proceedings. 2004 IEEE. Vol. 6.

IEEE, 2004.

[13] Saxena, Abhinav, et al. "Automated Contingency

Management for Propulsion Systems." Control

Conference (ECC), 2007 European. IEEE, 2007.

[14] Fiksel, Joseph. "Designing resilient, sustainable

systems." Environmental science & technology

37.23 (2003): 5330-5339.

[15] Li, Junxuan, and Zhimin Xi. "Engineering

Recoverability: A New Indicator of Design for

Engineering Resilience." ASME 2014 International

Design Engineering Technical Conferences and

Computers and Information in Engineering

Conference. American Society of Mechanical

Engineers, 2014.

[16] Yodo, Nita, and Pingfeng Wang. "Engineering

Resilience Quantification and System Design

Implications: A Literature Survey." Journal of

Mechanical Design 138.11 (2016): 111408.

[17] Blanchard, Benjamin S., Wolter J. Fabrycky, and

Walter J. Fabrycky. "Systems engineering and

analysis." Vol. 4. Englewood Cliffs, NJ: Prentice

Hall, 1990.

[18] Siddiqi, Afreen, and Olivier L. de Weck.

“Modeling Methods and Conceptual Design

Principles for Reconfigurable Systems.” Journal of

Mechanical Design 130.10 (2008): 101102.

[19] Walsh, Hannah S., Andy Dong, and Irem Y. Tumer.

"The structure of vulnerable nodes in behavioral

network models of complex engineered systems."

ASME 2017 International Design Engineering

Technical Conferences and Computers and

Information in Engineering Conference. American

Society of Mechanical Engineers, 2017.

[20] Stone, Robert B., Irem Y. Tumer, and Michael Van

Wie. "The function-failure design method." Journal

of Mechanical Design 127.3 (2005): 397-407.

[21] Tamilselvan, Prasanna, and Pingfeng Wang.

"Failure diagnosis using deep belief learning based

health state classification." Reliability Engineering

& System Safety 115 (2013): 124-135.

[22] Hawkins, P. G., and David J. Woollons. "Failure

modes and effects analysis of complex engineering

systems using functional models." Artificial

intelligence in engineering 12.4 (1998): 375-397.

[23] Youn, Byeng Dong. "Advances in reliability-based

design optimization and probability analysis." Diss.

The University of Iowa, 2001.

[24] Standard, Military. "Procedures for performing a

failure mode, effects and criticality analysis." MIL-

STD-1629, November, AMSC Number

N3074 (1980).

[25] Zang, T. A., et al. "Needs and Opportunities for

Risk-Based Multidisciplinary Design Technologies

for Vehicles." NASA TM, July (2002).

[26] Backman, B. "Design Innovation and Risk

Management: A Structural Designer's Voyage into

Uncertainty." ICASE Series on Risk-based

Design (2000).

[27] Liu, Hu-Chen, Long Liu, and Nan Liu. "Risk

evaluation approaches in failure mode and effects

analysis: A literature review." Expert systems with

applications 40.2 (2013): 828-838.

[28] Smith, Natasha, and Sankaran Mahadevan.

"Probabilistic methods for aerospace system

conceptual design." Journal of spacecraft and

rockets 40.3 (2003): 411-418.

[29] Greenfield, Michael A. "NASA's use of

quantitative risk assessment for safety

upgrades." Space safety, rescue and quality 1999-

2000 (2001): 153-159.

[30] Choi, K. "Advances in Reliability-Based Design

Optimization and Probability Analysis-PART

II." ICASE Series on Risk-based Design (2001).

[31] Xi, Zhimin, and Ren-Jye Yang. "Reliability

analysis with model uncertainty coupling with

parameter and experiment uncertainties: a case

study of 2014 verification and validation challenge

problem." Journal of Verification, Validation and

Uncertainty Quantification 1.1 (2016): 011005.

[32] Ericson, Clifton A. "Hazard analysis techniques for

system safety." John Wiley & Sons, 2015.

 [33] Mahadevan, Sankaran, Natasha L. Smith, and

Thomas A. Zang. "System risk assessment and

allocation in conceptual design." (2003).

[34] Kurtoglu, Tolga, and Irem Y. Tumer. "FFIP: A

framework for early assessment of functional

failures in complex systems." ICED, Cite des

Sciences et de L’industrie, Paris, France (2007).

[35] Stone, Robert B., Irem Y. Tumer, and Michael E.

Stock. "Linking product functionality to historic

failures to improve failure analysis in

design." Research in Engineering Design 16.1-2

(2005): 96-108.

[36] Lough, Katie Grantham, Robert B. Stone, and Irem

Tumer. "Implementation procedures for the risk in

early design (red) method." J Ind Syst Eng 2.2

(2008): 126-143.

 [37] Lough, Katie Grantham, Robert Stone, and Irem Y.

Tumer. "The risk in early design method." Journal

of Engineering Design 20.2 (2009): 155-173.

545

545

 546

IJRE | Vol. 5 No. 9 | September-October 2018 | E. Keshavarzi et al.

[38] Jensen, David C., Irem Y. Tumer, and Tolga

Kurtoglu. "Modeling the propagation of failures in

software driven hardware systems to enable risk-

informed design." ASME 2008 International

Mechanical Engineering Congress and Exposition.

American Society of Mechanical Engineers, 2008.

[39] Jensen, D., Irem Y. Tumer, and Tolga Kurtoglu.

"Design of an electrical power system using a

functional failure and flow state logic reasoning

methodology." San Diego, CA (2009).

[40] Jensen, David, Irem Y. Tumer, and Tolga Kurtoglu.

"Flow State Logic (FSL) for analysis of failure

propagation in early design." ASME 2009

International Design Engineering Technical

Conferences and Computers and Information in

Engineering Conference. American Society of

Mechanical Engineers, 2009.

[41] Krus, Daniel, and Katie Grantham Lough.

"Applying function-based failure propagation in

conceptual design." ASME 2007 International

Design Engineering Technical Conferences and

Computers and Information in Engineering

Conference. American Society of Mechanical

Engineers, 2007.

[42] Kurtoglu, Tolga, and Irem Y. Tumer. "A graph-

based fault identification and propagation

framework for functional design of complex

systems." Journal of mechanical design 130.5

(2008): 051401.

[43] Kurtoglu, Tolga, Irem Y. Tumer, and David C.

Jensen. "A functional failure reasoning

methodology for evaluation of conceptual system

architectures." Research in Engineering

Design 21.4 (2010): 209-234.

[44] Papakonstantinou, Nikolaos, et al. "Capturing

Interactions and Emergent Failure Behavior in

Complex Engineered Systems at Multiple

Scales." ASME 2011 International Design

Engineering Technical Conferences and

Computers and Information in Engineering

Conference. American Society of Mechanical

Engineers, 2011.

[45] Sierla, Seppo, et al. "Early integration of safety to

the mechatronic system design process by the

functional failure identification and propagation

framework." Mechatronics 22.2 (2012): 137-151.

 [46] Tumer, Irem, and Carol Smidts. "Integrated design-

stage failure analysis of software-driven hardware

systems." IEEE Transactions on Computers 60.8

(2011): 1072-1084.

[47] Coatanéa, Eric, et al. "A framework for building

dimensionless behavioral models to aid in function-

based failure propagation analysis." Journal of

Mechanical Design 133.12 (2011): 121001.

[48] de Kleer, Johan, et al. "Fault augmented modelica

models." The 24th International Workshop on

Principles of Diagnosis. 2013.

[49] Quoilin, Sylvain, et al. "ThermoCycle: A Modelica

library for the simulation of thermodynamic

systems." Proceedings of the 10 th International

Modelica Conference; March 10-12; 2014; Lund;

Sweden. No. 96. Linköping University Electronic

Press, 2014.

[50] McIntire, Matthew G. From Functional Modeling

to Optimization: Risk and Safety in the Design

Process for Large-Scale Systems. Diss. 2016.

[51] Clauset, Aaron. "Five Lectures on Networks."

(2014).

[52] Van Bossuyt, Douglas, et al. "Risk attitudes in risk-

based design: Considering attitude using utility

theory in risk-based design." Artificial Intelligence

for Engineering Design, Analysis and

Manufacturing 26.04 (2012): 393-406.

[53] Hulse, Daniel, et al. "Towards a Distributed

Multiagent Learning-Based Design Optimization

Method." ASME 2017 International Design

Engineering Technical Conferences and Computers

and Information in Engineering Conference.

American Society of Mechanical Engineers, 2017.

[54] Miller, David W., Col John Keesee, and Mr Cyrus

Jilla. "Space systems cost modeling." (2003).

