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Abstract - As a system becomes more complex, the 

uncertainty in the operating conditions increases. 

In such a system, implementing a precise failure 

analysis in early design stage is vital. However, 

there is a lack of applicable methodology that 

shows how to implement failure analysis in the 

early design phase to achieve a robust design. The 

main purpose of this paper is to present a 

framework to design a complex engineered system 

resistant against various factors that may cause 

failures, when design process is in the conceptual 

phase and information about detailed system and 

component is unavailable. Within this framework, 

we generate a population of feasible designs from a 

seed functional model, and simulate and classified 

failure scenarios. We also develop a design selection 

function to compare robust score for candidate 

designs, and produce a preference ranking. We 

implement the proposed method on the design of an 

aerospace monopropellant propulsion system. 

Keywords: failure analysis; robust design; design 

complex systems; conceptual design; cost-risk 

analysis 

I.   INTRODUCTION 

The number of parts in complex engineered systems is 

increasing rapidly. For instance, the components only in an 

integrated system is expected to be double every year as 

Gordon Moore predicted properly. Therefore, the interaction 

between various parts of the system, and between the system 

and external factors gets more complicated as technology 

and market demand is changing. The complicated 

interactions cause different type of uncertainties, and 

unexpected uncertainties can cause undesired behavior of 

the system or even catastrophic failures.  

An important concept in designing complex engineered 

systems, is to ensure that the behavior of the system in 

undesired and uncertain situations is determined early in the 

design phase, prior to the manufacturing and operational life 

of the system.  It requires to conduct a failure analysis in the 

conceptual design phase when the component model of the 

system and design specifications have not been developed 

yet. Failure analysis in early design phase help the designers 

to find strategies to improve the design to enable the system 

cope with the uncertainties during the operational life, as 

well as reduce the design revisions in further design steps 

shapers [1] 

To study the failure behavior of a system in the early design 

stage, modeling and simulation of the failure scenarios are 

the necessary steps. In many complex engineered systems, 

the characterization of the system is represented using a 

component model. However, when developing a new design, 

or in the early design phase, there is no component-level 

model available, and typically the set of components is not 

selected. Because of this, we came up with the idea of using 

functional model to study the system’s failure behavior in 

early design phase, to achieve a robust design. 

An overall description of our proposed design methodology 

is provided as follows. Developing a functional model is the 

first step. To develop a functional model for a complex 

engineered system, all the functions and flows and 

operational modes should be defined based on the system 

requirements and expert knowledge. Each function can have 

different operational modes: nominal, degraded, and failed. 

Next step is simulation of the system failure behavior. We 

have developed an open access tool in Python to simulate 

failure scenarios using functions, flows, and modes. The 
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unique failure scenarios provide information on the 

probability of having undesired end states. Applying the 

cost-risk model, the designer evaluates the cost of a design 

versus the robustness of the design against a failure. If the 

design fulfills the requirements, the process ends. Otherwise, 

a new design is generated by modifying the functional 

model. The program runs until the search algorithm 

achieves the design with the optimal robust score. Fig. 1 

shows the flowchart for our proposed method. Green boxes 

represents the steps that are required to be done by designers 

and blue boxes are produced by software. 

Domain Functions, 
Flows, Modes and 

Conditions 

Functional Model 
for Conceptual 

Design  
Python Input File 

Fault Scenarios 
Generation 

Software   

Resilience Scoring 
Function 

Alternative 
Functional Topology 

Generator   

IBFM Toolkit 

Cost Model to 
Balance Design 
and Risk Cost 

Green: User
Blue: Software

Does the Design 
Meet 

the Termination 
Condition ? 

No

User Knowledge 

End Yes

 

Fig. 1. Proposed framework for robust design in 

conceptual phase 

This paper provides an applicable framework that shows the 

designers how to implement failure analysis and achieve a 

robust design in early design phase, when information about 

components is not available. We illustrate how to develop a 

functional model, simulate failure behavior of the system, 

and evaluate robustness of a design in early design phase. 

We implement the proposed approach in early design phase 

of an aerospace monopropellant propulsion system and 

achieve the design with optimal cost and resistance against 

failure.  The material of this paper is organized as follows: 

Section 2 proposes a clear and consistent definition of 

robust design, and carefully disentangles it from reliability 

and resilient design. Section 3 describes different failure 

analysis methods and our logic to select functional model to 

study the failure behavior of the system. Section 4 illustrates 

how to represent a design applying a functional model. 

Section 5 proposes a cost-risk function to evaluate cost of a 

design and it’s robustness against failure. Section 6 presents 

generating different designs and search algorithm. In section 

7, we apply the proposed method to find the robust design 

for an aerospace monopropellant propulsion system. Section 

8 is the result and finally, section 9 provides conclusion and 

summary. 

II. ROBUST DESIGN 

Failure analysis is the first step to design a complex 

engineered system and the strategies to make it a robust 

system must be designed into the system from the beginning, 

because as we go forward in the design process making 

changes is more complicated and expensive [1]. 

Design strategies used for advancing reliability are 

implemented for the purpose of advancing robustness in a 

system; however, there is meaningful difference between 

these concepts. Reliability is the ability of a system to 

perform nominally for a specific period of time. In fact, 

reliability is the probability of success or availability of a 

component/system for a specified period of time [2]. 

Reliability concentrates more on “why and how” components 

or systems may fail or have failed. Fault Tree Analysis 

(FTA), Failure Modes and Effects Analysis (FMEA), and 

event tree analysis are known techniques to study reliability 

[3]. Practice has shown that the main issue of these 

techniques is the requirement of the component-level detail 

of the system from the beginning of the design process.  

Robustness is where the system’s performance is minimum 

sensitive to internal and external uncertainties that can cause 

failure [4-6]. The ability to overcome such uncertainties 

should be embedded into the system from the beginning. 

Uncertainty is the lack of ability to determine something 

precisely [7, 8]. Uncertainty management is an important 

concept in the design process of complex engineered systems. 

Reducing uncertainty when designing a system results in 

more efficient system with less cost.  

Resilience can be defined as a system’s ability to recover 

from a failure. Recovery from a failure is an alternative to 

reducing uncertainty. There are different ways to recover 

from uncertain events, including flexibility, Monitoring and 

Automated Contingency Management (ACM).  

Flexibility is the ability of a system to respond to changes in 

initial requirements and objectives, after it starts operating, in 

a timely and cost-efficient way [9]. Keshavarzi et al, 

developed a strategy to apply flexibility in designing a 

complex engineered system to cope with epistemic 

uncertainty during the system operation lifetime [10, 11]. An 

ACM system adapts automatically and allows some 

degradation in the system performance when failure occurs 

with the goal of still achieving the mission [12-15]. For 

example, taking photos with less resolution is applying ACM 

when the mission dictates possessing an image. Yodo et al. 

provide a literature survey of existing studies in engineering 

resilience from a system design perspective, with the focus 

536 



    537 
 

 

IJRE | Vol. 5 No. 9 | September-October 2018 | E. Keshavarzi et al. 

on engineering resilience metrics and the strategies to 

quantify those metrics [16]. To improve reliability, 

robustness or resiliency of a design, failure analysis is a 

necessary step. In most existing failure analysis methods, 

system designers need a precise model of system 

components to be able to study complex behavior of the 

system. However, in early phase of design process, specific 

set of components have not yet been selected and such 

detailed models of the complete system is not available. 

Because of this lack of methods to study failure behavior in 

the early design phase, the idea of representing the complex 

system by only its intended functionality is proposed as part 

of our methodology. The following section discusses failure 

analysis using functional models. 

 

III. FAILURE ANALYSIS 

An engineered system is defined as an assemblage of sub-

systems, hardware/software components, and people 

designed to perform a set of tasks to satisfy specified 

functional requirements and constraints [17]. The traditional 

approach for designing an engineered system is to establish a 

pre-defined set of requirements based on market studies and 

best estimate extrapolations of the current state and then find 

the optimal design to satisfy the requirements [18]. However, 

these approaches are inadequate to respond to changes in 

initial requirements and uncertain events. This can lead to 

failure if the system is faced with significantly different 

conditions than the ones predicted.  

As a system becomes more complex, the uncertainty in the 

operating conditions increases. In such a system, 

implementing a precise failure analysis in early design stage 

is vital [19]. There are different types of failure analysis 

techniques for complex systems [20-27], like probabilistic 

methods [28, 29], or reliability techniques [30, 31], or 

approaches based on observations analysis [32]. Studies have 

shown that the early design stage is the best time to catch 

potential failures and anomalies [33]. However, in the early 

design phase, decisions about the specific set of components 

is not made, and a component model is not available. The 

idea of using functional model, instead of component model, 

to design a complex system is of increasing interest. A 

functional model in systems engineering is a structured 

representation of the functions to meet system requirements. 

The goal of developing a functional model is to describe the 

system behavior and determine vulnerable parts of the design, 

resulting in potential system improvement, particularly 

helpful in the early design stage when the detailed 

component model of the system is not available.  

Methods have been developed to combine functional 

modeling with failure analysis. Stone and Tumer developed 

the Function Failure Design Method (FFDM) which was the 

bridge between failure analysis and functional modeling. 

They applied functional models to represent the system 

design and identify potential failure states for each function 

[34, 35]. Grantham et al., estimated the failure likelihood for 

each functional in the system. Lough et al., classified 

functions to high-risk to low-risk based on the consequence 

of failures [36, 37]. The idea of providing function-based 

failure analysis provided some improvements in the design 

of complex engineered systems; however, these methods 

limit the designers of the system to considering only one 

single-fault impact analysis at a time.  

To overcome this restriction and to enable the designer to 

consider multiple function failures effect, the Function 

Failure Identification and Propagation (FFIP) method was 

presented [38-47]. The FFIP method identifies failure 

propagation paths by defining states of function health. This 

approach uses a separate behavioral model simulation to 

show failure propagation paths and failure effects. Typically, 

the modeling language Modelica is applied to simulate 

failure scenarios [48, 49]. However, system models cannot 

be automatically constructed from a description of the 

functional structure of a system and therefore it may not be 

useful in FFIP where multiple designs are investigated.  

McIntire et al. have created IBFM tool (Inherent Behavior of 

Functional Models), to simulate failure scenarios applying 

functions, modes, flows between the functions and 

conditions for transition between the functions. With this tool, 

designers can create a functional model of the system in the 

early design stage and simulate the failure propagation paths 

for the system without developing a separate behavioral 

model [50].  

In our presented framework, we apply the IBFM tool to 

simulate the failure scenarios for different design topologies. 

The following section describes the method to develop a 

functional models to represent a system. 

IV. CONSEPTUAL PHASE 

Fig. 1. The first step in the proposed method is to study the 

requirements and expectations from the system and define 

the functions and flow. We use a graph to represent the 

system functionality and its interaction with the environment. 

We implement the method in Python, because Python is free 

access and provides other tools like NetworkX which can be 

utilized to represent the functional model graphically. Graphs 

provide the designers the ability to represent functional 

models with complicated structure [51].  

Fig. 2. Each graph edge (arrow) represents a flow of material, 

energy, or information within the system and each graph 

node (rectangle) represents a function that acts on the flows 

intersecting it. Fig. 2 provides an example of a graph 
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representation of a functional model consisting of a single 

internal function and three functions. 

Fig. 3. In this paper, the flow has a direction, and uses two 

variables to define the flow: an effort variable, and a rate 

variable. For example, a liquid flow can be modeled as either 

a liquid pressure (effort) or a liquid volume flow rate (rate). 

The function at one end of the flow controls the effort state, 

while the function at the other end controls the flow rate. In 

our approach effort and rate variables take qualitative values, 

such as Zero, Low, Nominal, and High.  

Fig. 4. Each function consists of a set of modes. Mode 

definitions show the different levels of functionality for a 

function, which are usually categorized as operational, 

degraded and failed modes. Conditions determine how the 

flows go from one function to another and basically provide 

the conditions to generate the failure paths. Conditions define 

the transition between modes, e.g. the transition from a 

nominal to degraded state, or from a degraded to failed state. 

In the IBFM approach, all modes and conditions are 

qualitative, rather than quantitative. The conditions that 

regulate a function transitioning from one mode to another 

mode are also flow specific. For example, the operational 

mode of the function “Regulate Gas Pressure” has a “Gas 

High-Pressure” condition that leads to a failed mode. The 

“Gas High-Pressure” condition is only used by functions that 

have a “Gas” flow. Functions, flows, modes, and conditions 

are defined to construct a functional model to be fed to the 

IBFM tool to simulate all system failure scenarios. 

Fig. 5. Our IBFM tool can be applied to simulate failure 

scenarios for a functional model. The IBFM tool is hosted on 

GitHub at https://github.com/DesignEngrLab/IBFM. The 

repository contains the module ibfm.py, and a user guide. 

The simulation of each fault scenario begins at the nominal 

state, and then changes the mode of one or more functions to 

a degraded or failed mode. The end state of each scenario is 

recorded for further analysis. The number of unique paths 

that have a particular undesired end state is used in the cost-

risk model described in the following session. 

 

Fig. 2. Graphical representation of a functional model 

 

V. ROBUST VALIDATION 

In this part, a cost-risk model is proposed to evaluate the 

robustness of different designs for a complex engineered 

system. The idea of this cost-risk model is rooted in the risk-

based utility theory [52]. This model studies the tradeoffs 

between cost of designing a system that is resistant against a 

failure, versus the cost of designing the system without 

robustness while accepting the inherent risk of failure. The 

key element is that the “cost of risk” can be quantified, such 

that the trade-off between adding system cost versus 

accepting risk can be made. The proposed model is 

composed of three cost elements: the baseline cost of the 

design, the cost of mitigation, and the cost of risk, given by 

Equation (1). 

Min            ∑ 
                                (1) 

CD: Baseline cost of the design 

CO: Operation cost 

CM: Cost of mitigation 

CR: Consequential cost of the risk 

PR: Probability of risk 

PM: Probability of mitigation 

      : Probability of mitigation failure 

N: Number of undesirable end states 

CD is the cost of design when there are no strategies to make 

the design robust. CM, represents the cost of changing the 

design to make it robust to a particular failure. In the next 

section, we describe four strategies to change a functional 

model to represent different designs for a system. 

Independent of the quality of performance, there is a certain 

cost to operate a system, defined as operation cost, CO.  

With respect to defining the “cost of risk”, we define a risk 

as a triplet of its impact or consequence, its probability of 

failure occurrence, and it’s probability of being mitigated. 

In Equation (1), CR is the impact or consequential cost of the 

risk; in our approach, it is quantified as the cost of having a 

failure (in units of dollars). Secondly, PR is the probability 

of having a specific undesired end state or failure behavior 

and is quantified using the results of failure simulation. It is 

quantified as the number of unique scenarios with a 

particular undesired end state (or fault) divided by total 

number of unique scenarios. Lastly, PM is the probability 

that a design resist against a failure due to a mitigation 

action (a mitigation action is assumed to have a cost of CM). 

Probability of mitigation is also calculated from the failure 

simulation result by adding the mitigation action to the 

functional model and rerunning the simulation. N is the 

number of system undesired end states or failure behavior 

that the system is designed to resist. Except for the nominal 

scenario when all functions perform nominally, other end 

states are failure scenarios and undesired. However, an 

undesired end state does not imply that a failure is present, it 
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may just reflect an end state that prevents the system from 

nominal operation or from completing a mission. For 

instance, when designing a car, having a flat tire is 

undesirable, but may not be classified as a safety hazard or 

failure of the system; however, an engine fire is both an 

undesirable state and a safety hazard. 

Applying the cost-risk model, the designer can determine 

the tradeoff between robustness and cost of a design; the 

cost-risk model is treated as an objective function in an 

optimization framework. In the optimization formulation, 

the objective is to minimize total cost (i.e., Equation (1)), 

subject to any system-level constraints. Treating the search 

for the best system-level design as an optimization problem 

necessitates identifying a termination condition for the 

search. In application, the search would most likely be done 

by a heuristic or stochastic search method, given the discrete 

nature of the functional model representation of the system. 

Since these methods cannot be guaranteed to converge to 

the optimum in finite time, the search must be ended based 

on a heuristic [53]. Termination Conditions for the proposed 

framework can be defined as: 

• An upper limit on the number of evaluations 

(designs) is reached. 

• An upper limit on the time of evaluations of the 

fitness function (cost-risk model) is reached. 

• The chance of achieving significant changes is very 

low. 

If the design meets one or more of the termination 

conditions, it gets selected, otherwise a new design is 

generated and evaluated. 

VI. GENERATE ALTERNATIVE DESIGN 

As noted in previous part, the cost-risk approach is 

implemented as a search problem, in which the objective is 

to find the lowest cost design. An issue to address is how to 

change/modify a functional model to produce other feasible 

designs in the search process. The challenge is identifying 

alternate functional models which are technically feasible, 

i.e., functional models which preserve the key system 

functions and the associated flows. Therefore, a method is 

needed to ensure that functional models evaluated in the 

search process are technically feasible. We propose four 

strategies to generate new design based upon a few simple 

rules used by designers of aerospace systems. The design 

modification rules can be placed into four categories as 

follows: 

A. Redundancy and Health Management   

In this technique, redundancy or health management is 

added to the functional model. The redundancy could be the 

addition of a redundant function, or it could be added in the 

form of partial redundancy. In the case of partial redundancy, 

we may be able to fulfill the needed functionality using 

secondary functions. For example, we may be able to use a 

pressure sensing function to also indirectly fulfill a flow rate 

sensing function in the case that the flow rate sensing 

function is faulted. Adding redundancy or health 

management will affect CM and PM in Equation (1). The 

tradeoff will in general be one in which mitigation cost is 

added to increase the probability of mitigation (and thus 

reduce the cost of risk). 

B. Conceptual Order 

Changing the order of functions is another way to generate a 

new design at the conceptual level of the design. This 

change affects the probability of the risk, PR, by focusing on 

failure avoidance; i.e., arranging the functions is such a way 

that failure propagation path is changed and thus the 

probability of a risk is changed.  

C.  Utilizing Wasted Flows 

In this method, any flows that transfer material or energy to 

the environment (i.e., are not used by the system directly) 

are utilized as additional inputs for other functions where 

applicable. This improves the failure avoidance aspect of the 

design. For example, one could use waste heat to 

supplement a heating function as a mitigation function (CM 

and PM), or one could lower the cost of design of a heating 

function (CD) by coupling waste heat from a different 

function with the heating function.    

D.  Combining/Splitting Functions 

Two or more functions can be combined (or split) to make a 

new design and potentially improve the failure avoidance of 

a system. This could affect both CD and PR. whether 

combining two or more functions into a single function (or 

splitting a single function into two or more functions) 

improves or worsens the cost-risk objective function must 

be determined by the results of failure simulation. 

Combining functions may lead to elimination of a failure 

path (thus reducing PM), or may make the new combined 

function more likely to fail (thus increasing PM). 

We can generate a large space of alternative models by 

using the functions, however a small portion of the space 

can be technically feasible. For instance, by having every 

possible order of functions from initial mono propellant 

propulsion system model, we can generate a large space of 

designs, however having thrust function before heating gas 

is meaningless. Therefore, we narrow down the design space 

to small number of models that could be considered for the 

system. In the following section, we apply the proposed 

approach in early phase of designing a monopropellant 

propulsion system. The goal is to design the system to be 
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robust to events that can cause failure while managing the 

cost. 

VII. CASE STUDY: MONOPROPELLANT 

PROPULSION SYSTEM 

A monopropellant propulsion system refers to a chemical 

propulsion fuel which does not require a separate oxidizer 

and thus can be used in space. Monopropellant designs are 

typically used in the aerospace industry because they make 

the engine lighter, less expensive, and more reliable. In this 

case study, the monopropellant is hydrogen peroxide (    ).  

It is important when designing a monopropellant propulsion 

system to consider environmental condition in space. With 

no gravity assistance, the system should be able to push the 

propellant towards the catalyst. The concept for this system 

design is to apply expanded gas to push the monopropellant 

over a catalyst and produce thrust. This system can be 

divided into three main subsystems: gas, propellant, and 

catalyst. 

When there is a command for a change of the spacecraft 

velocity, the inert gas is heated to expand. The expanded gas 

is fed through regulation and control functions to reach the 

right quantity, pressure and temperature. The expanded gas 

places pressure on the propellant (hydrogen peroxide) and 

guides it to the catalyst. When the propellant passes the 

catalyst, combustion occurs and changes the velocity of the 

spacecraft. Fig. 3, presents the general idea for a 

monopropellant propulsion system design. 

 

Fig. 3. General design for a monopropellant propulsion system 

A. Failure Behavior   

Assume a spacecraft with monopropellant propulsion engine 

has a mission to travel to a planet in outer space and from 

external orbit to the middle orbit and then to the lower orbit 

and take some images and get back to earth. Fig. 4, shows 

different scenarios. When the thrust is commanded, if all 

functions are nominal, the system performs as expected. In 

Fig. 4, the green dot shows the spacecraft accomplished the 

mission. However, there are scenarios in which something 

can go wrong with one or more functions and the result is 

not as expected. Blue, yellow and red dot in Fig.4, 

represents the scenarios that spacecraft ended up with an 

undesired situation. This would cause the engine to provide 

too much (yellow dot), too little (blue dot) or no thrust (red 

dot). In practice, it means the aerospace system passes the 

commanded orbit, or does not reach it. In rare catastrophic 

failures, the system might explode (i.e. loss of system). 

Therefore, the final behavior of failure analysis for a 

monopropellant propulsion system is classified to 5 groups: 

● Mission Accomplished (Desired) 

● Too Much Thrust (Undesired) 

● Too Little Thrust (Undesired) 

● No Thrust (Undesired) 

● Loss of the System (Undesired) 

 

Fig. 4. End states of failure analysis for a monopropellant propulsion 

system 

The first step in our proposed approach is developing a 

functional model. This includes defining functions, and 

flows, failure modes and conditions from transitioning from 

one state to another state.  

Fig. 5, shows the graphical representation of our developed 

model for the monopropellant propulsion system. The boxes 

illustrate the functions required to produce thrust to change 

the velocity of the spacecraft when commanded. The blue 

boxed are the functions implemented by control software. 

The flows are represented by arrows; black arrows represent 

material flow between two function, the material can be 

solid, liquid or gas. The dot blue arrows illustrate flowing 

information or signal between two functions.  Dashed black 

arrow is energy. The definition of the system health states 

(including failure and non-failure modes) and conditions are 

not visualized in Fig. 5, to avoid too much information in 

one graph. The following session describes how to define 

the design in Python and simulate failure behavior. 
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 Fig. 5. Developed functional model for monopropellant system 

A. Functions Definition  

The monopropellant propulsion system model in Fig. 5, 

contains 29 functions and 129 modes. One example of our 

function and modes definition for the monopropellant 

propulsion system in Python is as follow: 

function ImportHeat 

 mode 1 Operational NominalHeatSource 

 mode 2 Degraded LowHeatSource 

 mode 3 Degraded HighHeatSource 

 mode 4 Failed NoHeatSource 

The first line contains the keyword function, followed by the 

desired name of the function. The indented lines contain all 

of the modes of the function. Each line describing a mode 

begins with the keyword mode, followed by a unique 

within-function alphanumeric identifier, followed by the 

function health associated with the mode, followed by the 

name of the mode. Available mode health states 

are Operational, Degraded, and Failed modes. Failed modes 

are the ways, in which the system might fail. A single mode 

in each function definition is followed by the keyword 

Nominal, which by default assigns that mode to be the 

initial mode of the function at the beginning of simulation. 

B.  Flows Definition 

Flows are defined in a single line. Our strategy to define a 

flow is to mention the keyword flow, then the type of flow, 

followed by the name of the category of the flow which can 

be Material, Energy, or Signal. All flows are derived from 

one of mentioned three categories of flows. 

flow Heat Energy 

C.  Modes Definition 

Modes definition is more complicated, as all of the mode’s 

behaviors must be explicitly described. Operational, 

degraded, and failed modes are required to be defined for 

each function. A simple mode definition example is the 

nominal gas source mode: 

mode NominalGasSource 

    InertGas output effort = Nominal 

The first line consists of the appropriate keyword, in this 

case mode, followed by the desired name of the mode. Each 

indented line consists of a single assignment statement. The 

expression to the left of the assignment operator = is 

evaluated to determine the flow variable being assigned to. 

The expression on the right of the assignment operator 

determines the state of the flow variable. Every flow in the 

statement must be referred to using three words: the flow 

type name, its direction, either input or output, and its 

variable, either effort or rate. More complex behaviors may 

be defined by using operators. A single unary operator is 

used in the definition of the “NoGasSource” mode: 

mode NoGasSource 

    InertGas output effort = Zero 
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This mode definition makes use of a constant state. 

Available states are Zero, Low, Nominal, High, and Highest. 

The definition of the drifting low pressure sensing mode 

uses two unary operators: 

mode DriftingLowPressureSensing 

    import NominalConductingRegulatedGas 

    SignalDesiredPressure output effort = RegulatedGas 

input effort - -          

The first one, the keyword import, copies all of the 

statements from the definition of the mode directly 

following the keyword. In this case, the two statements from 

the “NominalConductingRegulatedGas” mode are copied 

into “DriftingLowPressureSensing”. The second one, the 

decrement operator --, decreases the value of the state by 

one qualitative level. 

D.  Conditions Definition  

Condition definitions are similar to mode definitions. They 

name the condition being defined, and explicitly describe 

the behavior, but they only include a single behavior 

statement. Rather than being an assignment, the statement is 

a logical test. For example, the condition to test for a 

function being exposed to high temperature is: 

condition HighTemperature 

    Heat output effort > Nominal 

Logical operators may be combined to form more complex 

tests. All binary operators are evaluated from left to right.  

We simulate all failure scenarios using our developed IBFM 

tool. We tabulate the unique scenarios terminating with 

particular undesired end states. The final behavior of the 

system as shown in Fig. 4, is categorized into different main 

end states. The designers of the system decide what end 

states the system failures could cause.  In this case study, 

undesired end states are:  

• Pass the Mission Location  

• Do Not Reach to Mission Location 

• No System Movement when Needed 

• Loss of the System 

E.  Alternative System Designs  

The baseline design, shown in Fig. 3, represents a functional 

model developed for a monopropellant system in the early 

design phase. In this design, the desired final behavior is the 

mission accomplishment, in which all gas, propellant, and 

catalyst functions operate nominally. Any improvements in 

the functional model influence the final behavior of the 

system. In other words, the baseline model is not designed 

to be robust. Therefore, different system topologies with 

focusing on improvement the robustness of the system can 

be investigated. Improvement strategies include applying 

different levels of redundancy, re-configurability or 

integrated health management sensors in the system design. 

For each design, the failure scenarios can be classified into 

five end states. Fig. 6, represents the Pie Chart for a 

candidate design for monopropellant propulsion system.  

Fig. 6. Classification of failure scenarios for basic monopropellant design 

In this case study, we simulate the failure behavior of the 

initial design and compare it to six alternative functional 

models representing different designs for the 

monopropellant propulsion system. In each alternative 

design, changes are applied in the functional model to 

improve the robustness of the design against some particular 

failures.  

The first modification of the baseline design includes a 

redundant gas rate sensing function. In this design, if no 

signal is coming from the primary sensing function, a 

secondary sensing function can supply the required 

information. The second modification of the initial design is 

an identical system with redundant gas pressure sensing. 

The third modification of the initial design combines the 

adjusting pressure and rate into one function. The fourth 

design uses output heat to expand inert gas (by contrast, in 

the baseline, the heat is exported from the system and 

disappears into space). The fifth design incorporates the 

redundant sensing for propellant. The sixth design applies 

the output thrust heat to preheat the propellant. In this way, 

the propellant plays the role of a cooling system. The 

following section presents the result of failure simulation for 

all six alternative designs and evaluate them based on our 

proposed robust score function. 

VIII. RESULT 

Seven candidate designs for the monopropellant propulsion 

system are examined. In each design, the functional model 

has been modified to be more robust to a particular failure 

or undesired end state. Table 1 shows all the designs 

generated by the functional model modifications. 
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Failure behavior has been simulated for all six alternative 

designed in Table 1. The amount of CPU time required to 

simulate each scenario increases as the complexity and the 

number of faults injected to the model increases. For 

instance, the time of simulation for injecting two 

simultaneous faults is less than the time of simulation for 

injecting three simultaneous faults. In this study, we 

investigate injecting up to 3 faults (all possible three failures) 

in each one of the functional models. Fig. 7, displays the 

classified simulated scenarios for the seed and the six design 

topologies is shown in Fig. 7. In this histogram, the number 

of successful and failed scenarios simulated for each design 

is demonstrated. 

 

Fig. 7. Failure simulation results for candidate monopropellant designs 

The probability of risk in each design is applied to the cost-

risk model of Equation (1). The mitigation cost CM is the 

cost of changing the basic design to make it more robust to a 

particular failure or undesired end state.  

The operation cost CO for all candidate designs is assumed 

to remain the same because on-ground systems cost is the 

main operation cost for a monopropellant propulsion system. 

It’s assumed that regardless of how the system is performing, 

there is an on-ground system to monitor, control and run the 

spacecraft. For other design studies, the operating cost may 

vary by design concept. It is assumed that the aircraft 

completes three missions per year, and for each mission the 

operation cost is $500 million. The number of failed 

scenarios versus the total number of scenarios for each 

design defines the probability of risk, PR.  

TABLE 2. Robust evaluation for monopropellant system candidate designs ($million) 

Cost-Risk Model  Basic Design Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 

Cost of Basic 

Design CD 
100 100 100 95 90 100 80 

Mitigation Cost 

CM 
0 10 10 0 0 20 0 

Operation Cost 

CO 
1500 1500 1500 1500 1500 1500 1500 

𝑪𝑹𝑷𝑹 𝟏 𝑷𝑴  
Cost of Risk  45.50 32.20 30.75 34.90 40.70 21.30 35.20 

Total Cost 1645.50 1642.25 1640.75 1629.90 1630.70 1641.30 1615.20 

Robust Score Rank 7 Rank 6 Rank 4 Rank 2 Rank 3 Rank 5 Rank 1 

 

TABLE 1. Generated designs for monopropellant system 

Basic Design  The original unaltered system model  

Design 1 Redundant gas rate sensing added 

Design 2 Redundant gas pressure sensing added 

Design 3 Combine adjusting gas pressure and rate into one function  

Design 4 Use output thrust heat to expand inert gas   

Design 5 Redundant propellant pressure sensing  

Design 6 Use output thrust heat to expand inert gas and preheat 

propellant  
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The probability of the mitigation, PM, is the probability that 

the mitigated part does not work when needed. These 

probabilities are quantified based on the IBFM simulation 

and cost numbers are estimated based on the space system 

cost models and data provided by Miller et al. [54]. The 

total cost reflects the tradeoff between designing a robust 

system and the cost of doing so. The lower the total cost, the 

higher the rank of the design would be.  

Table 2 represents the results of robust evaluation for 

developed designs for monopropellant propulsion system. It 

tabulates all the elements of Equation (1). Since there were 

only seven designs to consider, an exhaustive optimization 

algorithm was used; however, an evolutionary or other 

stochastic algorithm could be used to search larger design 

spaces.  

As shown the table, Design 6 has the optimal trade-off 

between robustness and cost. In this design the propellant 

acts as a cooling system. The heat produced by propulsion is 

used to preheat the propellant and expand the inert gas. 

Utilizing this source of energy helps the successful 

combustion process. This design was selected because it had 

the lowest value of the cost-risk objective function. The next 

best design is Design 3, which combines the gas pressure 

and rate control into a single function.  This may indicate 

that since both functions are critical to operation, and a 

failure of either function is highly detrimental to the system, 

it is better to address them with a single function with a 

single failure rate.   

IX. CONCLUSION 

This paper proposed a framework to design a complex 

engineered system in early design phase with the ability to 

resist against failure. We discussed the lack of current 

methods to address failure analysis and robustness of a 

system in the early design phase. Current design methods 

require a detailed component model of a system to be able 

to simulate and study the failure behavior of the system. 

However, such methods are not applicable in early design 

phase when the set of components is not selected yet and 

design is in the conceptual step. Ideally, the strategies to 

make a robust design should be implemented in early design 

phase, because as we go forward in the design process, 

making changes is more expensive and challenging. In our 

proposed method, we showed how to represent a complex 

engineered system with a functional model in early design 

phase. We illustrated how to define functions, modes, flows 

and conditions to simulate the failure behavior of the system 

and how to generate different designs for a system using a 

functional model. Finally, our developed robust score 

function provides the ability to evaluate the trade-off 

between cost and robustness of a particular design and 

search for the optimal one among candidate designs. 

We applied the proposed method in early phase of designing 

an aerospace monopropellant propulsion system. The results 

show that the presented method is a practical design 

framework to conduct failure analysis and develop robust 

complex engineered systems in the early design phase, when 

the complete knowledge of the system components and 

specifics is not available. A future research is needed to 

investigate the proposed approach in a design problem 

where the design space is large and there is a large number 

of feasible candidate designs. Graph grammars could be 

implemented to help generate a large number of design 

alternatives. 
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