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Abstract - Engineering field usually requires 

having the best design for an optimum 

performance, thus optimization plays an important 

part in this field. The vehicle routing problem 

(VRP) has been an important problem in the field 

of distribution and logistics since at least the early 

1960s. Hence, this study was about the application 

of ant colony optimization (ACO) algorithm to 

solve vehicle routing problem (VRP). Firstly, this 

study constructed the model of the problem to be 

solved through this research. The study was then 

focused on the Ant Colony Optimization (ACO). 

The objective function of the algorithm was studied 

and applied to VRP. The effectiveness of the 

algorithm was increased with the minimization of 

stopping criteria. The control parameters were 

studied to find the best value for each control 

parameter. After the control parameters were 

identified, the evaluation of the performance of 

ACO on VRP was made. The good performance of 

the algorithm reflected on the importance of its 

parameters, which were number of ants (nAnt), 

alpha (α), beta (β) and rho (ρ). Alpha represents the 

relative importance of trail, beta represents the 

importance of visibility and rho represents the 

parameter governing pheromone decay. The route 

results of different iterations were compared and 

analyzed the performance of the algorithm. The 

best set of control parameters obtained is with 20 

ants, α = 1, β = 1 and ρ = 0.05. The average cost and 

standard deviation from the 20 runtimes with best 

set of control parameters were also evaluated, with 

1057.839 km and 25.913 km respectively. Last but 

not least, a conclusion is made to summarize the 

achievement of the study. 

Keywords: Vehicle Routing Problem, Ant Colony 

Optimization, ACO, VRP, Swarm Algorithm 

I.   INTRODUCTION 

The study is about solving vehicle routing problem (VRP) 

using ant colony optimization (ACO) algorithm. This is a 

software-based project. VRP generalizes the well-known 

travelling salesman problem (TSP). The study can be 

divided into two parts, vehicle routing problem (VRP) and 

ant colony optimization (ACO) algorithm. 

The vehicle routing problem (VRP) has been an important 

problem in the field of distribution and logistics since at 

least the early 1960s [1]. VRP research accelerated during 

the 1990s [2]. Researchers could develop and implement 

more complex search algorithms due to the improvement of 

microcomputer capability and availability. During this era 

the term meta-heuristics was introduced to name a number 

of search algorithms for solving these VRPs as well as other 

combinatorial optimization problems [3].  

The technical definition of vehicle routing problem (VRP) 

states that m vehicles initially located at a depot are to 

deliver discrete quantities of goods to n customers. The aim 

of a VRP is to determine the optimal route used by a group 

of vehicles when serving a group of users. The objective of 

VRP is to minimize the overall transportation cost. The 

solution of the classical VRP is a set of routes which all 

begin and end in the depot, and which satisfies the 

constraint that all the customers are served only once. The 

transportation cost can be improved by reducing the total 

travelled distance and by reducing the number of the 

required vehicles. 

Two important classes of population-based optimization 

algorithms are evolutionary algorithms and swarm 

intelligence-based algorithms [3]. In this research, swarm 

intelligence-based algorithm is chosen to be applied on VRP. 
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Swarm intelligence-based algorithms is obtained by 

studying collective intelligence which exist in nature such a 

cockroach, fish, ant, bee, birds and so on. The pattern of 

their survival can be presented with algorithm.  

When the task is about the optimization within complex 

domains of data or information, the solutions are methods 

representing successful animal and micro-organism team 

behavior, such as swarm or flocking intelligence (birds 

flocks or fish schools inspired Particle Swarm Optimization), 

artificial immune systems (that mimic the biological one), 

ant colonies (ants foraging behaviors gave rise to Ant 

Colony Optimization), or optimized performance of bees, 

etc. [3].  

The study is focused on the general vehicle routing problem 

(VRP). There are many other methods regarding VRP as 

discussed earlier in this section while this project is focusing 

on ant colony optimization (ACO) algorithm. 

II. RELATED WORKS 

A. Vehicle Routing Problem 

Vehicle routing problems (VRPs) are an extension of the 

classic travelling salesman problem (TSP). In this problem, 

one or more vehicles travel around a network, leaving from 

and returning to a depot node. The customers are located on 

the network and each customer must be visited by exactly 

one vehicle once. Customers are usually located at network 

nodes. 

The objective of the VRP is to find the vehicle routing(s) of 

minimum cost or in other word, to minimize the total route 

length [3]. It is described as finding the minimum distance 

or cost of the combined routes of a number of vehicles m 

that must service a number of customer n [4]. 

Mathematically, the system of the VRP is described as a 

weighted graph G = (V, A, d) where the vertices are 

represented by V= {v0, v1 ... vn} and the arcs are 

represented by A= {(vi, vj) : i≠j}. A central depot where 

each vehicle begins its route is located at v0 and each of the 

other vehicles represents the n customers [4]. The distance 

connected with each arc are represented by the variable dij, 

which are associated with each arc (vi, vj), represent the 

distance (or the travel time or the travel cost) between vi and 

vj [5]. 

The VRP is solved under a few constraints as follows: 

1. Each customer is visited only once by a single vehicle. 

2. Each vehicle must start and end its route at the depot, v0. 

3. For each vehicle route, total route length does not exceed 

maximum route length, Lm, which includes a service 

distance δ for each customer on the route.    

4. VRP studied here is symmetrical where dij= dji for all i 

and j. 

 

B. Ant Colony Optimization (ACO) Algorithm 

Ant colony optimization (ACO) metaheuristic, a novel 

population-based approach was proposed by Dorigo et al. to 

solve several discrete optimization problems [6]. ACO is 

one of the techniques for approximate optimization. The 

inspiring source of ACO algorithms are real ant colonies. 

ACO algorithm mimics the way real ants find the shortest 

route between the food source and their nest. The ants’ 

foraging behavior is the main idea of the algorithms. The 

indirect communication between the ants is the core of this 

behavior.  

The communication between ants is done by depositing a 

chemical substance called pheromone. As an ant travels, it 

deposits a constant amount of pheromone that other ants can 

follow. However, the continuous random selection of paths 

by individual ants helps the colony to discover alternate 

routes when they meet a new decision point. The ants can 

choose to follow the pheromone trail which will reinforce 

the path and increase the probability of the next ant 

following the trail, or they can select a new path. Pheromone 

trails enables them to find short paths between their nests 

and food sources.  

The path with higher concentration of pheromone is more 

likely to be chosen and thus reinforced. More and more ants 

are soon attracted to the path and hence the optimal route 

from the nest to food source and back is very quickly 

established. In the meantime, the pheromone intensity of the 

other paths that are not chosen is decreased through 

evaporation. The unchosen paths become difficult to detect 

and thus further decreases their use. This phenomenon is 

called stigmergy, which is defined as a mechanism of 

indirect coordination, through the environment, between 

agents or action.  

The principle of stigmergy is that the trace left in the 

environment by an action stimulates the performance of a 

next action, by the same or a different agent [7]. This 

characteristic of real ant colonies is exploited in ACO 

algorithms in order to solve VRP.  

Fig. 1 shows how real ants find the shortest path. In Figure 

1(A), the ants arrive at a decision point. In Figure 1(B), 

some ants choose the upper path and some the lower path 

(the choice is random). In Figure 1(C), given the ants move 

at approximately a constant speed, the ants that choose the 

lower path which is shorter reach the opposite decision point 

faster than those which chose the upper path which is longer. 

The ants then go back to the starting point using the same 

path and thus reinforce the pheromone of the route. In 

Figure 1(D), pheromone accumulates at a higher rate on the 

shorter path which is represented by number of dashed lines 

in the figure. 
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Fig. 1. Real Ant Action [8] 

III. METHODOLOGY 

The section discusses the implementation of Ant Colony 
Optimization (ACO) algorithm to solve vehicle routing 
problem (VRP). Fig. 2 shows the overall flow chart for the 
methodology of this work. 

A. Ant Colony Optimization (ACO) Algorithm 

ACO are divided into two main phases, which are ants’ 

route construction and the pheromone update [3]. In the first 

phase, which is tour construction phase, M ants concurrently 

chosen in the network of N customer nodes (plus the depot 

node)? At each construction step, ant k currently at node i 

applies a probabilistic random proportional rule to decide 

which node to go to next. It selects the move to expend its 

tour by taking into account the following two values, 

heuristic function ηij and the level of pheromone on the arc 

(i, j), denoted τij. The ηij represents the attractiveness of the 

move, usually calculated as the inverse of the distance/cost 

on the arc from the node i to node j. The τij indicates how 

useful it has been in the past to traverse this particular arc. 

Probabilistic random proportional rule are shown below:  

 

(1) 

Where 

Ni
k
 = the feasible neighbourhood (i.e. the nodes which are 

directly accessible from node i and not previously visited); 

α and β = heuristic parameters;  

α = relative importance of trail, α≥0, and;  

β = relative importance of visibility, β≥0. 

 

Equation (1) is the probabilistic random proportional rule 

that calculate the probability that the ant k chooses to go to 

node n next. 

For first phase, which is during route construction, ant k 

located at node i moves to node n chosen according to the 

Eq. (1). Then, after ant k moves to the next node, the new 

node become the node i while another new node n is chosen 

again according to the probabilistic random proportional 

rule. 

This phase is repeated with the condition that the same node 

cannot be chosen twice, which means that every node will 

only undergo this phase once. For second phase, pheromone 

updates of ACO are very critical to achieve optimum 

solution. The pheromone updating formula was meant to 

stimulate the change in the amount of pheromone due to 

both the accumulation of new pheromone deposited by ants 

on the visited edges and the pheromone evaporation [8]. 

ACO algorithm uses two types of pheromone updates, 

namely global pheromone update and local pheromone 

update. 

The local pheromone update is performed every time an ant 

transverses an arc (i, j) by using Eq. 2 below; 

 
(2) 

Where: 

τ0= 1/(NLnn),    

τ0 = the initial pheromone value, and   

Lnn = the length of the nearest neighbor tour (a tour in 

which each move is to the nearest unvisited node; this is 

used as a baseline tour length). 

The global pheromone update is only carried out by the ant 

that produced the best tour so far and is implemented by Eq. 

3 for each arc of the tour.  

    bsijbsijij Tji,,ρΔτ+τρτ  1  (3) 

Where 

Δτijbs = Q/Lbs  

ρ = parameter governing pheromone decay,  

Q = constant, and  

Tbs = the best found tour so far with Lbs as its length. 

B. Control Parameters of ACO Algorithm 

Since the optimization problem involved in this study 

consists of four different control parameters that can affect 

the output of the algorithm, the algorithm will be evaluated 

according to the different combinations of these parameters. 

Table 1 shows the setting for these control parameters that 

are used to evaluate the performance and output of the 

algorithm. 

 

 

 

 
Fig. 2  Flowchart design methodology 
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C. Comparative Study on Cost Function and Stopping 

Criteria 

The objective function was Equation 1. To decide the 

stopping criteria, the algorithm was executed at maximum 

of 500 iterations at first. Then, to determine the termination 

condition, one-third or two-third of the iterations executed 

were taken as the maximum iterations for the algorithm or in 

other words, when a steady cost value was obtained.  

After the suitable stopping criteria were selected, several 

sets of control parameters were selected. The algorithm was 

executed with the selected set of control parameters. The 

data output of the algorithm was extracted and compared. 

The number of runtimes was one of the stopping criteria in 

this algorithm. The algorithms were executed with 20 

runtimes for each set of control parameters. Each runtime 

was an independent experiment which did not affect the 

other experiments. 

Results obtained from the 20 runtimes were tabulated and 

compared to check the robustness of the algorithm. The 

comparison and analysis of the different sets of control 

parameters can lead to the best set of control parameters 

among all. 

The average cost value was calculated by summing up the 

values of cost values from runtime 1 to runtime 20 and 

divided by the total number of runtimes which was 20 

runtimes. The average cost values were tabulated. 

Theoretically, the cost values were significantly reduced 

through iterations and finally converged to a final best 

value.  

As the algorithm found the final best value, the cost value 

was the optimal solution and will be constant throughout the 

rest of the iterations. The solutions can be said to be 

improving in the next iteration. To visualise the convergence 

of cost values, the graph of average cost function against 

number of iterations was plotted. Besides, error bars were 

plotted in both graphs to indicate the variability of data. 

The plots were compared for ACO algorithms with different 

set of control parameters. The results of the algorithm were 

compared in terms of computational time, cost function 

values and converges. The combination of different control 

parameters were tested to find the best combination of the 

control parameters. 

IV. RESULT 

A. Construction of VRP 

In ant colony optimization (ACO) algorithm, the VRP was 

represented by using a graph while the customers were 

represented by using the nodes on the graph. The range of 

graph was set to be from 0 to 100 for both x-axis and y axis. 

In order to evaluate the performance of the algorithm, the 

fixed coordinates were used in the algorithm. The number of 

the nodes (aka the customers) was set to 100. Fig. 3 shows 

the fixed coordinates that were used for the rest of the study. 

 

B. Selection of Stopping Criteria 

The stopping criteria of the algorithm were the number of 

iteration. In order to determine the suitable number of 

iteration, the algorithm was first executed with 500 

iterations. The parameters used for the evaluation are 20 

ants, alpha, α = 1, beta, β =1, rho, ρ = 1 & 0.05. The 

optimum result obtained and reviewed to determine the 

termination condition. 

Fig. 4 shows the result for 500 iterations. The graph 

indicated that the algorithm achieved the optimum result 

around 100-150 iterations. Thus, the stopping criteria of the 

algorithm for the rest of the thesis was set to be 150 iterations 

as it was good enough to obtain the optimum result required 

without wasting too much execution time and accumulate too 

much excessive data to be reviewed. 

 

Fig. 3 Coordinates of customers 

TABLE I. SETTING OF PARAMETERS 

Parameters Settings 

nAnt 5, 20, 30 

alpha (α) 0.5, 1, 5 

beta (β) 0.5, 1, 5 

rho (ρ) 0.05, 0.5, 0.99 
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C. Selection of Best Set of Control Parameters 

The algorithm will be executed with different set of control 

parameters. Table 2 shows the control parameters that will 

be considered. Meanwhile, the stopping criteria (number of 

iterations) were set to be constant as discussed in previous 

session. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) Parameter 1: Number of Ant (nAnt) 

The ants in the ant colony algorithm (ACO) algorithm 

represented the vehicles in the vehicle routing problem 

(VRP). The number of vehicle was one of the control 

parameters that affect the performance of the algorithm. 

According to Table 2, the number of ants was set to 5, 20 

and 30. The algorithm was executed 30 times each with 

different number of ants. The performance of the algorithm 

was the best when the number of ants was set to be 20 (Case 

1(b)). The number of iteration required to obtain the optimal 

result was shortest and was within two-third of the stopping 

criteria. The result was more accurate as compared to Case 

1(a) and Case 1(c). 

2) Parameter 2: rho (ρ) 

The parameter rho (ρ) was used in most of the formulas in 

the ACO algorithm. The parameter was limited at range of 

(0<ρ<1). According to Table 2, rho was set to 0.05, 0.50 and 

0.99. The algorithm was executed 30 times each with 

different value of rho. The performance of the algorithm was 

the best when the value of rho was set to be 0.05 (Case 2(a)). 

The average time elapsed for the algorithm was shortest 

among Case 2. The number of iteration required to obtain the 

optimal result was in the acceptable range which was around 

two-third of the stopping criteria. Furthermore, the result was 

more accurate as compared to the other two value of rho as 

the range of result obtained was smaller and more precise. 

Table 3 shows the comparison of data obtained in Case 2. 

The constant best cost value after the optimal result was 

obtained became the proof that there was no further best 

cost value. The best cost value for each case was almost the 

same and thus it did not affect the choice too much. 

3) Parameter 3: Alpha (α) and Beta (β) 

Alpha (α) and beta (β) were control parameters that affect 

the performance of the algorithm. According to Table 2, five 

pairs of alpha and beta were either 0.5, 1 or 5. The algorithm 

was executed 30 times each with different combination of 

alpha and beta. 

 

 

 

 

 

 

 

 

 

 

 

 

The performance of the algorithm was compared with the 

tabulated data. From Table 4, the performance of the 

algorithm was the best when the value of the alpha and beta 

was set to 1 respectively (Case 3(a)). The average time 

elapsed for the algorithm was the shortest among Case 3. The 

average best cost value of Case 3(a) was slightly larger than 

that in Case 3(c), but there was significant improvement in 

terms of averaged time elapsed. Case 3(b), case 3(d) and case 

3(e) were not suitable for the study because the average best 

 

Fig. 4 Result for 500 iterations  

 

TABLE II. SETS OF CONTROL PARAMETERS 

Case nAnt  alpha (α)  beta (β) rho (ρ) 

1(a) 5 1 1 0.05 

1(b) 20 1 1 0.05 

1(c) 30 1 1 0.05 

2(a) 20 1 1 0.05 

2(b) 20 1 1 0.5 

2(c) 20 1 1 0.99 

3(a) 20 1 1 0.5 

3(b) 20 1 0.5 0.5 

3(c) 20 1 5 0.5 

3(d) 20 0.5 1 0.5 

3(e) 20 5 1 0.5 

 

TABLE III. DATA OF CASE 2 

 Max-iteration Min-iteration Range  

Case 2(a) 148 65 83 

Case 2(b) 146 34 112 

Case 2(c) 106 20 86 

 

TABLE IV. DATA OF CASE 3 

Case  Parameters Average 
elapsed time 

(s) 

Average best 
cost value 

Average 
iteration 

3(a) α=1,  β=1 16.700 1054.61 111.7 

3(b) α=1,  β=0.5 18.951 1404.17 119.75 

3(c) α=1,  β=5 22.725 892.01 81.25 

3(d) α=0.5,  β=1 16.759 1823.48 110.35 

3(e) α=5,  β=1 22.023 1627.08 9.6 
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cost value was obviously higher when compared to that of 

case 3(a). 

D. Comparative Study on Best Cost Value of ACO 

The algorithm was executed 30 times with the parameter 

settings as follow: nAnt = 20, α=1, β=1, ρ=0.05 and 1 

vehicle. The best cost per iteration of each runtime was 

tabulated for analysis. The result of Runtime 16 was shown 

for discussion as the elapsed time and best cost value were 

below average. 

Fig. 5 shows the optimum route result while Fig. 6 shows 

the graph of best cost per iteration. Both of the results were 

taken from Runtime 16. The optimum route results were 

never exactly the same with one another as every runtime 

was independent with others. 

In Fig. 6, the best cost values against iteration are plotted in 

the graph. The minimum cost was informed in the title of the 

graph. The data implied that the total distance travelled by 

the vehicle to reach all the customers once was 1043.3716 

km. 

 

 

1) Route Analysis 

Five route results were taken from the same runtime to show 

the progress of the route construction as the number of 

iteration increases. The graphs were taken from Runtime 1. 

The route results were taken at first iteration (Fig. 7) and 

then when the optimal results were reached (Fig. 8). The 

algorithm was proven to obtain new best cost value and 

minimum route in increasing iteration until the optimal 

result is achieved. 

2) Cost Value Analysis 

The average cost value and standard deviation for each 

iteration was calculated and tabulated. The data was used to 

plot the graph of average cost versus iteration. 

Table 5 tabulates the minimum, maximum average and 

standard deviation of the cost; whilst error bars plot in Fig. 9 

shows the standard deviation per iterations. The standard 

deviation shows how spreads out the cost values are and 

reflects the confidence of cost value evaluated by the 

algorithm. Considering the graph, it can be seen that the 

standard deviation decreased significantly from the previous 

iterations. 

 

V. CONCLUSION 

In conclusion, the objectives of this study have been 

achieved. This study aims to solve vehicle routing problem 

using swarm algorithm. The swarm algorithm used in this 

study was ant colony optimization (ACO) algorithm. To 

achieve this aim, stopping criteria and four control 

parameters were outlined in the earlier stage of research to 

present the best possible algorithm for the vehicle routing 

problem. It can be deducted that the application of ACO for 

VRP are successfully conducted. The overall performance 

of the algorithm is as good as expected. Further study can be 

 

Fig. 5 Optimal route found on runtime 16 

 

FIG. 6. Cost against iteration for Runtime 16 

 

FIG. 7. Best route for iteration = 1 in runtime 1 
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TABLE V, AVERAGE COST AGAINST ITERATION FOR 20 SIMULATION-RUN 

Iteration 

Minimum 

(km) 

Maximum 

(km) 

Average 

(km) 

Standard 

Deviation 

1 3141.2 3553.019 3350.555 119.742 

11 2347.564 2691.498 2527.852 104.025 

21 1719.119 2061.113 1950.31 87.872 

31 1552.155 1720.585 1658.041 45.433 

41 1309.96 1525.934 1437.864 64.485 

51 1170.272 1374.362 1314.668 50.888 

61 1170.272 1301.922 1236.99 33.008 

71 1151.41 1255.537 1205.323 27.945 

81 1092.951 1214.471 1176.467 27.24 

91 1041.209 1206.047 1147.783 36.961 

101 1041.209 1169.585 1120.121 34.649 

111 1041.209 1146.934 1103.741 23.095 

121 1009.804 1125.585 1089.898 28.012 

131 1009.804 1113.072 1071.576 32.861 

141 1009.804 1103.887 1060.663 27.975 

150 1009.804 1103.887 1057.839 25.913 

 

 

made to apply different swarm algorithm to VRP. The 

advantages of ACO algorithm should be exploited to solve 

different optimization problems. The study of ACO 

optimization can also be synchronized with the internet to 

be used in real life. 
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