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ABSTRACT  
Plasma Waves may propagate in different frequency levels. This study justifies the reason for the difference in dispersion curve at low 

and high frequencies of plasma wave propagations. At low frequencies i.e. ( 𝜔 ≪ Ω𝑖 ), the right handed and the left handed waves tend 
to the Alfven wave. The fast and slow Alfvén waves are indistinguishable for parallel propagation whereas the shear-Alfvén wave does 
not propagate perpendicular to the magnetic field. At high-frequency the right-handed waves, propagating parallel to the equilibrium 

magnetic field, and oscillating at the frequency Ω𝑒 are absorbed by electrons. By this paper it is proved that the low-frequency branch 
of the dispersion curve differs fundamentally from the high-frequency branch, because the former branch corresponds to a wave which 
can only propagate through the plasma in the presence of an equilibrium magnetic field, whereas the high-frequency branch corresponds 
to a wave which can propagate in the absence of an equilibrium field.  
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INTRODUCTION 
In plasma physics, waves in plasmas are an interconnected set of 
particles and fields which propagate in a periodically repeating 
fashion. Plasma is a quasi neutral, electrically conductive fluid. In 
the simplest case, it is composed of electrons and a single species 
of positive ions, but it may also contain multiple ion species 
including negative ions as well as neutral particles. Due to its 
electrical conductivity, a plasma couples to electric and magnetic 
fields. This complex of particles and fields supports a wide variety 
of wave phenomena [1].  
Waves in plasmas can be classified as electromagnetic or 
electrostatic according to whether or not there is an oscillating 
magnetic field. Applying Faraday's law of induction to plane 

waves, I find 𝑘 × 𝐸 = 𝜔𝐵 implying that an electrostatic wave 
must be purely longitudinal. An electromagnetic wave, in contrast, 
must have a transverse component, but may also be partially 
longitudinal [2]. 
Waves can be further classified by the oscillating species. In most 
plasmas of interest, the electron temperature is comparable to or 
larger than the ion temperature. This fact, coupled with the much 
smaller mass of the electron, implies that the electrons move much 
faster than the ions. An electron mode depends on the mass of the 
electrons, but the ions may be assumed to be infinitely massive, 
i.e. stationary. An ion mode depends on the ion mass, but the 
electrons are assumed to be mass less and to redistribute 
themselves instantaneously according to the Boltzmann relation. 
Only rarely, e.g. in the lower hybrid oscillation, will a mode 
depend on both the electron and the ion mass [1, 3]. 
The various modes can also be classified according to whether 
they propagate in an un magnetized plasma or parallel, 
perpendicular, or oblique to the stationary magnetic field. Finally, 
for perpendicular electromagnetic electron waves, the perturbed 
electric field can be parallel or perpendicular to the stationary 
magnetic field. Hence this paper reviews the comparison between 
plasma wave propagations parallel and perpendicular to the 
magnetic field in the magnetized plasma. 

The Wave Equation 
I can start with Maxwell’s equations, which I can write as [8]. 

          ∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡
                                                     1 

                 ∇ × 𝐵 = 𝜇0 (𝑗 + 𝜀0
𝜕𝐸

𝜕𝑡
) 

= 𝑖𝜇0𝜔𝜀0 (
𝑗

𝑖𝜔𝜀0

− 𝐸) 

                             = −𝑖𝜇0𝜔𝜀0 (𝐼⃡ +
𝑖𝜎⃡  

𝜔𝜀0
) 𝐄 

                                = −𝑖𝜇0𝜔𝜖 𝐄                                 2 

Where I have used the relation 𝑗 = 𝜎 𝐸  (Ohm’s law for high 
frequency behavior). To generate the wave equation, I take the curl 
of Eq. 1 and substitute from Eq. 2. : 

∇ × ∇ × 𝐸 = −
𝜕

𝜕𝑡
∇ × 𝐵 

                                                    = 𝜇0𝜔2𝜀0𝐾 ∙ 𝐸 

                                               =
𝜔2

𝑐2 𝐾 ∙ 𝐸                                         3 

Where  

𝐾 ≡
𝜖

𝜀0

= 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑒𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑒𝑛𝑠𝑜𝑟 

For plane wave solutions the wave equation gives  

               𝑖𝑘 × (𝑖𝑘 × 𝐸) −
𝜔2

𝑐2 𝐾 ∙ 𝐸 = 0                                             4 

Or  

                      𝑛 × (𝑛 × 𝐸) + 𝐾 ∙ 𝐸 = 0                                                5 
Where  

                       𝑛 =
𝑐

𝜔
𝑘                                                                             6 

is the refractive index vector. 

The dielectric Susceptibility Tensor 
The dielectric tensor for the plasma can be expressed as 

           𝜀 = 𝜀0(𝐼⃡ +
𝑖

𝜀0𝜔
𝜎)                                                                           7 

       𝜖 = 𝜀0 (

𝜖1 𝜖2 0
𝜖2 𝜖1 0
0 0 𝜖3

)                                                                     8 
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With 

         𝜖1 = 1 +
𝑖

𝜔𝜀0
𝜎⊥                                                                                   9 

        𝜖2 =
𝑖

𝜔𝜀0
𝜎𝐻                                                                                          10 

    𝜖3 = 1 +
𝑖

𝜔𝜀0
𝜎0                                                                                   11 

From equation 8 and equation 11 we can write the dielectric 
susceptibility tensor in the form 

                    𝐾⃡   = (
𝑆 −𝑖𝐷 0
𝑖𝐷 𝑆 0
0 0 𝑃

)                                                             12 

Where the reason for using the nomenclatures S, P, D as opposed 

to  𝜖1,  𝜖2𝑎𝑛𝑑 𝜖3  will be apparent later. 

                   𝑆 = 1 +
𝑖

𝜔𝜀0
𝜎⊥                                                                            13 

                 𝐷 = ∓
𝑖

𝜔𝜀0
𝜎𝐻                                                                                  14 

                𝑃 = 1 +
𝑖

𝜔𝜀0
𝜎0                                                                               15 

Where the minus sign is for ions and positive for electrons and 
where we use the conductivity components for high frequency 
electric field are defined as 

        𝜎⊥ = 𝜎0
𝑣2

𝑣2+𝜔2
𝑐
                 Perpendicular conductivity 

                       𝜎𝐻 = 𝜎0
∓𝑣𝜔𝑐

𝑣2+𝜔2
𝑐
                   Hall conductivity 

                       𝜎∥ = 𝜎0 =
𝑛𝑒2

𝑚𝑣
                      Longitudinal conductivity 

 With v replaced by – 𝑖𝜔. 
Thus for S, I obtain (for electrons) 

𝑆 = 1 +
𝑖

𝜔𝜀0

𝑖𝑛𝑒2

𝑚𝑒𝜔

𝜔2

𝜔2 − 𝜔2
𝑐𝑒

 

= 1 + (
𝑛𝑒2

𝑚𝑒𝜀0

)
1

𝜔2 − 𝜔2
𝑐𝑒

 

= 1 −
𝜔2

𝑝𝑒

𝜔2 − 𝜔2
𝑐𝑒

 

Including both ions and electrons gives 

                    𝑆 = 1 − ∑
𝜔2

𝑝

𝜔2−𝜔2
𝑐

𝑖,𝑒                                                              16 

In a similar way, we obtain 

                    𝐷 = ∑ ±
𝜔2

𝑝𝜔𝑐

𝜔(𝜔2−𝜔2
𝑐)𝑖,𝑒                                                               17 

              𝑃 = 1 − ∑
𝜔2

𝑝

𝜔2𝑖,𝑒                                                                       18 

Where the plus sign is for ions and minus for electrons. Let me 
now simplify the first term and so develop a dispersion relation for 

wave characterized by the tensor 𝐾 . I assume the wave is 

propagating at an angle 𝜃 to the ambient magnetic field 𝐵 = 𝐵0
k̂  

and without lose of generality, that the propagation vector lie in 

the 𝑥 − 𝑧 plane. 

The Dispersion Relations of parallel and perpendicular wave 

propagations 

Parallel Wave Propagation 
Let me now consider wave propagation, at arbitrary frequencies, 

parallel to the equilibrium magnetic field. When 𝜃 = 0, the Eigen 
mode equation, 
                                    

(
𝑆 − 𝑛2𝑐𝑜𝑠2𝜃 −𝑖𝐷 𝑛2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

𝑖𝐷 𝑆 − 𝑛2 0
𝑛2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 0 𝑃 − 𝑛2𝑠𝑖𝑛2𝜃

) (

𝐸𝑋

𝐸𝑌

𝐸𝑍

) = 0              19   

 
Simplifies to  
                                                      

(
𝑆 − 𝑛2 −𝑖𝐷 0

𝑖𝐷 𝑆 − 𝑛2 0
0 0 𝑃

) (

𝐸𝑋

𝐸𝑌

𝐸𝑍

) = 0                                               20  

One obvious way of solving this equation is to have  

                𝑃 ⋍
𝜋𝑒

2

𝜔2                                                                                  21   

With the eigen vector (0, 0, 𝐸𝑧) . This mode is longitudinal in 

nature, and, therefore, causes particles to oscillate parallel to 𝐵0. It 
follows that the particles experience zero Lorentz force due to the 
presence of the equilibrium magnetic field, with the result that this 
field has no effect on the mode dynamics [4]. 

The other two solutions to Eq. (20) are obtained by setting the 2 ×
2 determinant involving the – 𝑥 and 𝑦 - components of the electric 
field to zero. The first wave has the dispersion relation 

               𝜋2 = 𝑅 ⋍ 1 −
𝜋𝑒

2

(𝜔+Ω𝑒)(𝜔+Ω𝑖)
                                                      22          

And the eigen vector (𝐸𝑥 , 𝑖𝐸𝑥 , 0) .  This is evidently a right-
handed circularly polarized wave. The second wave has the 
dispersion relation 

           𝜋2 = 𝐿 ⋍ 1 −
𝜋𝑒

2

(𝜔−Ω𝑒)(𝜔−Ω𝑖)
                                                      23     

And the eigen vector (𝐸𝑥 , −𝑖𝐸𝑥 , 0) . This is evidently a left-

handed circularly polarized wave. At low frequencies. i.e. ( 𝜔 ≪
Ω𝑖  ), both waves tend to the Alfven wave. Note that the fast and 
slow Alfvén waves are indistinguishable for parallel propagation. 
Let me now examine the high-frequency behavior of the right- and 
left-handed waves. 

For the right-handed wave, it is evident, since Ω𝑒 is negative, that 

𝜋2 → ∞ as 𝜔 → |Ω𝑒|. This resonance, which corresponds to 𝑅 →
∞, is termed the electron cyclotron resonance. At the electron 
cyclotron resonance the transverse electric field associated with a 
right-handed wave rotates at the same velocity, and in the same 
direction, as electrons gyrating around the equilibrium magnetic 
field. Thus, the electrons experience a continuous acceleration 
from the electric field, which tends to increase their perpendicular 
energy. It is, therefore, not surprising those right-handed waves, 
propagating parallel to the equilibrium magnetic field, and 

oscillating at the frequency Ω𝑒 are absorbed by electrons [3, 5]. 

When 𝜔 is just above |Ω𝑒| I find that 𝜋2 is negative and so there 
is no wave propagation in this frequency range. However, for 
frequencies much greater than the electron cyclotron or plasma 

frequencies, the solution to Eq. (22) is approximately 𝜋2 = 1. In 

other words 𝜔2 = 𝑘2𝑐2: the dispersion relation of a right-handed 
vacuum electromagnetic wave. Evidently, at some frequency 

above |Ω𝑒|  the solution for 𝜋2 must pass through zero, and 

become positive again. Putting 𝜋2 = 0 in Eq. (22), I find that the 
equation reduces to 

         𝜔2 + Ω𝑒𝜔 − 𝜋𝑒
2 ⋍ 0                                                                      23     

assuming that 𝑉𝐴 ≪ 𝑐. The above equation has only one positive 

root, at 𝜔 = 𝜔1, where   

        𝜔1 ⋍
|Ω𝑒|

2
+ √(

Ω𝑒
2

4
+ 𝜋𝑒

2) > |Ω𝑒| .                                                24      

 Above this frequency, the wave propagates once again as in the 
following manner. 

Graphical representation of right handed parallel propagation 

to the magnetic field 
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Fig. 1 Dispersion relation for a right-handed wave propagating 
parallel to the magnetic field in magnetized plasma. 
This figure shows the sketch of dispersion curve for a right-handed 
wave propagating parallel to the equilibrium magnetic field. The 
continuation of the Alfvén wave above the ion cyclotron frequency 
is called the electron cyclotron wave, or sometimes the whistler 
wave. The latter terminology is prevalent in ionosphere and space 
plasma physics contexts. The wave which propagates above the 

cutoff frequency  𝜔1 , is a standard right-handed circularly 
polarized electromagnetic wave, somewhat modified by the 
presence of the plasma. Note that the low-frequency branch of the 
dispersion curve differs fundamentally from the high-frequency 
branch, because the former branch corresponds to a wave which 
can only propagate through the plasma in the presence of an 
equilibrium magnetic field, whereas the high-frequency branch 
corresponds to a wave which can propagate in the absence of an 
equilibrium field [6]. 
  The curious name ``whistler wave'' for the branch of the 
dispersion relation lying between the ion and electron cyclotron 
frequencies is originally derived from ionospheric physics. 
Whistler waves are a very characteristic type of audio-frequency 
radio interference, most commonly encountered at high latitudes, 
which take the form of brief, intermittent pulses, starting at high 
frequencies, and rapidly descending in pitch. Whistlers were 
discovered in the early days of radio communication, but were not 
explained until much later. Whistler waves start off as 
``instantaneous'' radio pulses, generated by lightning flashes at 
high latitudes [7, 8]. The pulses are channeled along the Earth's 
dipolar magnetic field, and eventually return to ground level in the 

opposite hemisphere. Now, in the frequency range Ω𝑖 ≪ 𝜔 ≪
|Ω𝑒|, the dispersion relation (22) reduces to 

           𝑛2 =
𝑘2𝑐2

𝜔2 ⋍
𝜋𝑒

2

𝜔|Ω𝑒|
                                                                    25          

As is well-known, pulses propagate at the group-velocity, 

𝑣𝑔 =
𝑑𝜔

𝑑𝑘
= 2𝑐

√𝜔|Ω𝑒|

𝜋𝑒

 

Clearly, the low-frequency components of a pulse propagate more 
slowly than the high-frequency components. It follows that by the 
time a pulse returns to ground level it has been stretched out 
temporally, because the high-frequency components of the pulse 
arrive slightly before the low-frequency components. This also 
accounts for the characteristic whistling-down effect observed at 
ground level.  
For a left-handed circularly polarized wave, similar considerations 
to the above give a dispersion curve of the form sketched in Fig. 2. 

In this case, 𝜋2 goes to infinity at the ion cyclotron frequency, Ω𝑖  

corresponding to the so-called ion cyclotron resonance (at 𝐿 → ∞) 
At this resonance, the rotating electric field associated with a left-
handed wave resonates with the gyro motion of the ions, allowing 
wave energy to be converted into perpendicular kinetic energy of 

the ions. There is a band of frequencies, lying above the ion 
cyclotron frequency, in which the left-handed wave does not 
propagate. At very high frequencies a propagating mode exists, 
which is basically a standard left-handed circularly polarized 
electromagnetic wave, somewhat modified by the presence of the 
plasma. The cutoff frequency for this wave is 

𝜔2 ⋍ −
|Ω𝑒|

2
+ √

Ω𝑒
2

4
+ 𝜋𝑒

2 

Graphical representation of left handed parallel propagation 

to the magnetic field 

 
Fig. 2 Dispersion relation for a left-handed wave propagating 
parallel to the magnetic field in magnetized plasma. 
The lower branch in Fig. 2 describes a wave that can only 
propagate in the presence of an equilibrium magnetic field, 
whereas the upper branch describes a wave that can propagate in 
the absence an equilibrium field. The continuation of the Alfvén 
wave to just below the ion cyclotron frequency is generally called 
the ion cyclotron wave. 

Perpendicular Wave Propagation 
Let me now consider wave propagation, at arbitrary frequencies, 

perpendicular to the equilibrium magnetic field. When 𝜃 =
𝜋

2
  the 

eigen mode equation (19 ) simplifies to   

   (
𝑆 −𝑖𝐷 0
𝑖𝐷 𝑆 − 𝑛2 0
0 0 𝑃 − 𝑛2

) (

𝐸𝑋

𝐸𝑌

𝐸𝑍

) = 0                                                26           

One obvious way of solving this equation is to have 𝑃 − 𝑛2 = 0 or  

           𝜔2 = 𝜋𝑒
2 + 𝑘2𝑐2                                                                                 27                  

with the eigenvector (0, 0, 𝐸𝑧). Since the wave-vector now points 
in the x -direction, this is clearly a transverse wave polarized with 
its electric field parallel to the equilibrium magnetic field. Particle 
motions are along the magnetic field, so the mode dynamics are 
completely unaffected by this field. Thus, the wave is identical to 
the electromagnetic plasma wave in an un magnetized plasma. 
This wave is known as the ordinary, or O-, mode [9].  

The other solution to Eq. (26) is obtained by setting the 2 × 2 
determinant involving the x and y components of the electric field 
to zero. The dispersion relation reduces to 

               𝑛2 =
𝑅𝐿

𝑆
                                                                                           28              

with the associated eigenvector 𝐸𝑥(1, −
𝑖𝑆

𝐷
, 0). Let me, first of all, 

search for the cutoff frequencies, at which 𝜋2 goes to infinity. 
According to Eq. (28 ), the resonant frequencies are solutions of  

              𝑆 = 1 −
𝜋𝑒

2

𝜔2−Ω𝑒
2 −

𝜋𝑖
2

𝜔2−Ω𝑖
2 = 0                                          29                

The roots of this equations can be obtained as follows. First, I note 
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that if the first two terms are equated to zero, I obtain 

            𝜔𝑈𝐻 = √𝜋𝑒
2 + Ω𝑒

2                                                                        30             

If this frequency is substituted into the third term, the result is far 

less than unity. I conclude that 𝜔𝑈𝐻  is a good approximation to 
one of the roots of Eq. (29). To obtain the second root, I make use 
of the fact that the product of the square of the roots is 

      Ω𝑒
2Ω𝑖

2 + 𝜋𝑒
2Ω𝑖

2 + 𝜋𝑖
2Ω𝑒

2 ⋍ Ω𝑒
2Ω𝑖

2 + 𝜋𝑖
2Ω𝑒

2                    31               

I, thus, obtain 𝜔 = 𝜔𝐿𝐻 where 

              𝜔𝐿𝐻 = √
Ω𝑒

2Ω𝑖
2+𝜋𝑖

2Ω𝑒
2

𝜋𝑒
2+Ω𝑒

2                                                                    32               

The first resonant frequency,  𝜔𝑢𝐻 is greater than the electron 
cyclotron or plasma frequencies, and is called the upper hybrid 

frequency. The second resonant frequency,𝜔𝐿𝐻, lies between the 
electron and ion cyclotron frequencies, and is called the lower 
hybrid frequency. 
Unfortunately, there is no simple explanation of the origins of the 
two hybrid resonances in terms of the motions of individual 
particles. At low frequencies, the mode in question reverts to the 
compressional-Alfvén wave discussed previously. Note that the 
shear-Alfvén wave does not propagate perpendicular to the 
magnetic field. 
Using the above information, and the easily demonstrated fact that 

                      𝜔𝐿𝐻 < 𝜔2 < 𝜔𝑈𝐻 < 𝜔1                                       33               
I can deduce that the dispersion curve for the mode in question 
takes the form sketched in Fig. 3.  

Graphical representation of perpendicular wave propagation 

to the magnetic field 

 
Figure 3: Dispersion relation for a wave propagating perpendicular 
to the magnetic field in a magnetized plasma. 
The lowest frequency branch corresponds to the compressional-
Alfvén wave. The other two branches constitute the extraordinary, 
or X- wave. The upper branch is basically a linearly polarized (in 
the y direction) electromagnetic wave, somewhat modified by the 
presence of the plasma. This branch corresponds to a wave which 
propagates in the absence of an equilibrium magnetic field. The 
lowest branch corresponds to a wave which does not propagate in 

the absence of an equilibrium field. Finally, the middle branch 
corresponds to a wave which converts into an electrostatic plasma 
wave in the absence of an equilibrium magnetic field. 
Wave propagation at oblique angles is generally more complicated 
than propagation parallel or perpendicular to the equilibrium 
magnetic field, but does not involve any new physical effects. 

 

CONCLUSION 
The dispersion curve that expresses the criteria of the wave in 
magnetized plasma is quite different at low and high frequency 
levels and for parallel and perpendicular propagations. At low 

frequencies i.e. ( 𝜔 ≪ Ω𝑖 ), the right and left handed waves tend 
to the Alfven wave. Note that the fast and slow Alfvén waves are 
indistinguishable for parallel propagation. At high frequency  the 
right-handed wave is termed the electron cyclotron resonance. At 
the electron cyclotron resonance the transverse electric field 
associated with a right-handed wave rotates at the same velocity, 
and in the same direction, as electrons gyrating around the 
equilibrium magnetic field. Thus, the electrons experience a 
continuous acceleration from the electric field, which tends to 
increase their perpendicular energy. Therefore those right-handed 
waves, propagating parallel to the equilibrium magnetic field, and 

oscillating at the frequency Ω𝑒 are absorbed by electrons. Hence 
we can conclude that the low-frequency branch of the dispersion 
curve differs fundamentally from the high-frequency branch, 
because the former branch corresponds to a wave which can only 
propagate through the plasma in the presence of an equilibrium 
magnetic field, whereas the high-frequency branch corresponds to 
a wave which can propagate in the absence of an equilibrium field. 
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