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A B S T R A C T

Invasive species from the Suez Canal, also named “Lessepsian species”, often have an ecological and financial
impact on marine life, fisheries, human well-being and health in the Mediterranean Sea. Among these, the silver-
cheeked toad-fish Lagocephalus sceleratus (Gmelin, 1789) has rapidly colonised the eastern Mediterranean basin
and is currently moving westwards. This pufferfish has a highly opportunistic behaviour, it attacks fish captured
in nets and lines and seriously damages fishing gears and catch. It is a highly-toxic species with no immediate
economic value for the Mediterranean market, although it currently represents 4% of the weight of the total
artisanal catches. Consequently, the possible effects on Mediterranean fisheries and health require to enhance
our understanding about the future geographical distribution of this pufferfish in the whole basin.

In this paper, an overall habitat suitability map and an effective geographical spread map for L. sceleratus at
Mediterranean scale are produced by using cloud computing-based algorithms to merge seven machine learning
approaches. Further, the potential impact of the species is estimated for several Mediterranean Sea subdivisions:
The major fishing areas of the Food and Agriculture Organization of the United Nations, the Economic Exclusive
Zones, and the subdivisions of the General Fisheries Commission for the Mediterranean Sea. Our results suggest
that without an intervention, L. sceleratus will continue its rapid spread and will likely have a high impact on
fisheries. The presented method is generic and can be applied to other invasive species. It is based on an Open
Science approach and all processes are freely available as Web services.

1. Introduction

The number of species in the Mediterranean Sea arriving through
the Suez Canal (also named “Lessepsian” species) continues to increase
(Nader et al., 2012; Golani, 2010). Recent studies estimate that more
than 5% of the marine species are non-native and 13.5% are invasive,
including fish, invertebrates, and macrophytes (Galil, 2009; Zenetos,
2010; Fricke et al., 2015; Zenetos et al., 2015; Golani, 2010). These
“invasive species” (Shine et al., 2000) settle in the new habitat, increase
in number, and spread in the area, potentially threatening native bio-
logical diversity (Galil et al., 2015; Coll et al., 2010) and economy
(Galil, 2008). Thus, they require particular effort by supervising orga-
nisations in order to monitor and predict their spread.

Among these species, the silver-cheeked toad-fish Lagocephalus sce-
leratus (Gmelin, 1789) is of particular concern. The first reliable records

in the Mediterranean Sea date back to 2003, but the number of ob-
servations has rapidly grown so that it is considered one of the fastest
expanding invasive species in the basin (Akyol et al., 2005; Peristeraki
et al., 2006). It owes its success to the high growth and reproduction
rate, the lack of natural predators, the ability to exploit food resources,
and the capacity to tolerate a wide range of environmental conditions
(Yaglioglu et al., 2011).

It has a skin without scales, with dark spots on top, and lateral silver
bands. This species is common in the Red Sea, belongs to the
Tetraodontidae family, is extremely poisonous, and can be lethal to
humans if eaten, due to high level of Tetrodotoxin neurotoxin (TTX)
present in several organs (e.g. the liver) and excreted from the skin as a
repellent after swelling (Yaglioglu et al., 2011; Nader et al., 2012). It
usually prefers shallow waters and medium-high water temperature,
which is correlated to faster TTX uptake. Thus, climate change could be
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beneficial for this species, particularly in the Mediterranean Sea (Nader
et al., 2012).

Scientific studies have estimated the potential impact of L. sceleratus
on economic and human health in the eastern Mediterranean Sea (Ünal
et al., 2015, 2017). In this region this is now one of the most important
species (in biomass) on Posidonia oceanica meadows, being a major
problem to artisanal fisheries considering that it damages fishing gears
(e.g. nets and lines) and predates heavily on local stocks of squids and
octopuses (Kalogirou et al., 2010). However, these studies do not report
definitive ecological and economic future impact assessments and
usually involve more qualitative than quantitative predictions. Overall,
they indicate that the fish currently represents the 4% of the weight of
the total artisanal catches (Nader et al., 2012) and has already nega-
tively impacted the economy of some Mediterranean countries (Ünal
et al., 2017). Also, since 2003 several episodes of death and serious
illness have been recorded after fish consumption, since fishermen and
other people usually cannot identify this relatively new species (Bentur
et al., 2008; Kheifets et al., 2012).

This scenario calls for priority actions to prevent, detect and pos-
sibly eradicate L. sceleratus (Zenetos et al., 2016), especially considering
that the Suez Canal capacity is being enlarged (Searight, 2016) and
climate change is facilitating the invasion (Galil et al., 2014; ICES,
2007; FAO, 2007). One approach could be to use selective fishing
especially on big individuals and localised precautionary actions in
those areas where the pufferfish will possibly move and settle in the
next years (Ünal et al., 2017). Therefore, a map of the ongoing invasion
pattern could guide the development of preventive and corrective ac-
tions (Zenetos et al., 2015, 2016) and could also help filling a gap be-
tween research and management about this fish (Ünal et al., 2015).

In the past decade, there has been a growing interest in the appli-
cation of ecological niche models (ENMs) to predict the distribution of
invasive species (Guisan et al., 2014). Different approaches have been
used based on the evaluation of the niche differences between a species’
native region and the invaded region (Peterson, 2003; Barbosa et al.,
2012; Leidenberger et al., 2015). In some cases, these approaches also
take into account how climate change facilitates the species’ spread into
the invaded region (Sax et al., 2007; Thuiller et al., 2005). ENMs-based
approaches to invasive species modelling use a varied range of models,
including envelope-based (Sutherst, 2000; Jeschke and Strayer, 2008),
statistical (Ficetola et al., 2007; Bidegain et al., 2015), and machine
learning models (Peterson and Robins, 2003). Most of these models
estimate an association between a species’ presence and a number of
environmental parameters, and produce a probability distribution. This
is then projected onto a certain area (over time) to get a dynamic vi-
sualisation of the invasion (Mellin et al., 2016; Carlos-Júnior et al.,
2015). The most used ENM in this context is the “Genetic Algorithm for
Rule-set Production”, GARP (Stockwell, 1999), which uses a machine
learning approach (Peterson and Vieglais, 2001; Ganeshaiah et al.,
2003; Sanchez-Flores et al., 2008; Underwood et al., 2004). Another
widely used model is the Maximum Entropy presence-only model
(Ficetola et al., 2007; West et al., 2016), whereas presence-absence
models, e.g. Artificial Neural Networks (Kulhanek et al., 2011) and
Support Vector Machines (Pouteau et al., 2011; Sadeghi et al., 2012),
are less frequent because of the scarcity of reliable absence data.
Usually, alternative ENMs-based approaches have complementary fea-
tures which capture different characteristics of a species’ invasion (Elith
and Graham, 2009). Thus, it is common to compare or merge the output
of different models in order to produce a final spread estimate (Castelar
et al., 2015; Farashi and Najafabadi, 2015; Padalia et al., 2014; Sobek-
Swant et al., 2012).

Most of the cited studies assume climate niche conservatism
(Pearman et al., 2008; Peterson and Vieglais, 2001), i.e. the ENM cal-
culated using data from the species’ native environment is supposed to
successfully predict invasion in exotic areas (Petitpierre et al., 2012;
Strubbe et al., 2013; Castelar et al., 2015). However, other works have
highlighted that the climatic niche may change during the invasion

(Broennimann et al., 2007; Lauzeral et al., 2011), which can overturn
the conservatism assumption (Shabani and Kumar, 2015). Further,
ENMs usually do not account for the effects of species interactions and
possible geographical dispersal limitations, thus the results of ap-
proaches purely based on ENMs should be interpreted and used with
caution (Sax et al., 2007).

In this paper, an approach is proposed to estimate the potential
ecological niche and the potential geographical distribution of
L.sceleratus in the Mediterranean Sea: its spread is predicted up to a
stable distribution, based on the algorithmic merge of the output of
seven machine-learning models that each estimate the potential niche
or habitat suitability. Further, an effective geographical distribution is
estimated and a potential impact indicator is produced for different
subdivisions of the Mediterranean Sea, which include the major fishing
areas of the Food and Agriculture Organization of the United Nations
(FAO), the Economic Exclusive Zones (Attard, 1987), and the general
subdivisions of the General Fisheries Commission for the Mediterranean
Sea. The predictive value of the generated geographical distribution is
assessed in a comparison with real observation records in the Medi-
terranean Sea and with a dynamic model that simulates the spread of
the pufferfish over time. Our analysis follows an Open Science approach
(Hey et al., 2009), and all models are available as-a-Service under a
representational standard. Every step can be reproduced, repeated and
reused for other invasive species, or with different ancillary data.

2. Material and methods

In this section, the used technology and data (Section 2.1) and the
baseline models that constitute our method are described (Section 2.2).
Further, our method to estimate the geographical reachability distribu-
tion of L. sceleratus is presented (Sections 2.3 and 2.4). A dynamic model
is also described (Section 2.5), which is used in Section 3 as a reference
to assess the performance of our method. Moreover, the metrics used to
calculate the models’ performance, their mutual similarities, and a risk
indicator for the Mediterranean Sea are presented (Section 2.6). Finally,
the generality of our method and its applicability to other invasive
species is discussed (Section 2.7).

2.1. Technology and data

2.1.1. Computational and data access platform
Our method requires the training of machine learning models with a

large set of alternative parametrisations. The goal is to find the “op-
timal”model, i.e. the model with the best performance on a test set. The
experiment reported in this paper required to train ∼150,000 para-
metrisations, which was very time-consuming and computationally
demanding. To overcome this, a cloud computing platform was used to
train many alternative parametrisations of a given machine learning
model at the same time. In particular, the gCube DataMiner open-source
system1 (Coro et al., 2017) was used for this Big Data processing and to
interoperate with the services of the D4Science distributed e-Infra-
structure (National Research Council of Italy, 2016). D4Science facil-
itates data preparation and processing, and fosters collaboration among
scientists according to Open Science paradigms (Hey et al., 2009). This
set-up includes (Assante et al., 2016): (i) collaborative experimentation
spaces, where processes can be re-executed and parametrised several
times by others, (ii) services for data sharing between users, and (iii)
application of standards for data and processes representation. The
DataMiner represents and stores all the trained models and their re-
spective parametrisations in a standard and exportable ontological
format (Prov-O, Lebo et al., 2013), which summarises the set of input/
output data and metadata that enable any other authorised user to

1 Freely accessible and usable after registration at https://services.d4science.org/
group/biodiversitylab/data-miner.
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reproduce and repeat the experiment (provenance of the computation).
All models are published in the D4Science e-Infrastructure as open-
source and free-to-use Web services under the Web Processing Service
standard of the Open Geospatial Consortium (WPS, Schut and
Whiteside, 2007). This maximises re-usability, because WPS standar-
dises the representation of input, parameters, and output through XML
descriptions of their types and expected contents.

DataMiner parallelises models training on a network of 100 ma-
chines, choosing the best computational configuration among a range of
powerful multi-core virtual machines (Ubuntu 14.04.5 LTS ×86 64
with 16 virtual CPUs, 16 GB of random access memory, 100 GB of disk)
and more “lightweight” virtual machines (Ubuntu 14.04.5 LTS ×86 64
with 2 virtual CPUs, 2 GB of random access memory, 10 GB of disk).
Apart from its high performance (Coro et al., 2017), this platform was
selected because we wanted our method to be used by other scientists,
possibly on other invasive species, through the repeatability, reprodu-
cibility, and re-usability of each step of our method.

2.1.2. Occurrence records
Occurrence records of L. sceleratus were retrieved and harmonised

through the Species Product Discovery (SPD) service of the D4Science
e-Infrastructure2 (Candela et al., 2015) from biodiversity data collec-
tions such as OBIS (Vanden Berghe et al., 2010), GBIF (Lane and
Edwards, 2007), and the Catalogue of Life (Wilson, 2003). The SPD
attaches additional information to presence coordinates, i.e: the own-
ership of the observation, its source (e.g. human observation, specimen
etc.), and a flag stating if the record underwent expert review. This
allows retrieving only data having “good” quality because they were
checked by an expert. SPD produced a set of 284 expert-reviewed re-
cords for L. sceleratus, from its native habitat environment (Fig. 1a).
Locations in the Mediterranean Sea were excluded, because this data set
was used in model training and could not contain locations in the
projection/testing area.

The SPD records for the Mediterranean Sea were combined with re-
cords collected from a manual literature review of published articles and
grey literature (Fig. 1b). A total of 263 Mediterranean records, sometimes
referring to several individuals, was obtained, where the first reliable re-
cords dated back to 2003. In order to build up our definitive distribution of
L. sceleratus, 20% of these data were used, whereas the remaining 80%
were used to validate the model (Sections 2.2 and 3). This choice was due
to the fact that we wanted to use the Mediterranean observations to
evaluate the performance of our models rather than to train the models. In
fact, this approach makes the models less sensitive to prior information
about the distribution of the species in the invaded region, and it also
makes our approach applicable to other species for which few observations
are available in the invaded area.

2.1.3. Estimating absence locations
Some models used by our method require to estimate locations of

habitat unsuitability of L. sceleratus. To this aim, a DataMiner process to
estimate pseudo-absence locations was used3 (Coro et al., 2016a). This
process performs a statistical analysis on scientific survey data in the
OBIS data collection (Grassle, 2000). It accesses OBIS through REST
APIs and uses four input parameters: (i) a time frame for the observa-
tions, (ii) a “spatial resolution” for the estimated absence locations, (iii)
the geographical area where to estimate the absence locations, and (iv)
an “observation frequency threshold”. This last parameter is used to
retrieve all the surveys hosting species’ experts on the vessels, who
observed L. sceleratus in specific locations with higher monthly fre-
quency than this value. In these surveys, locations where the experts

reported only other species than the target one are recorded. By in-
tersecting all the surveys’ trails, pseudo-absences are estimated as those
locations (i) where no expert ever reported the target species presence,
(ii) whose distance is higher or equal to the “spatial resolution” para-
meter, and (iii) that are non-overlapping with presence locations at this
resolution. This process is reliable especially when a high number of
survey data is available. In the case of L. sceleratus, it estimated 184
absence locations in its known native range (Fig. 1a).

2.1.4. Environmental data
The biotic and abiotic characteristics possibly associated to the L.

sceleratus preferred habitat were not known a priori, although sugges-
tions about some parameters were found in scientific papers (Nader
et al., 2012; Yaglioglu et al., 2011). In such uncertainty scenarios, the
AquaMaps Consortium advises to use a set of 18 eco-geographical en-
vironmental parameters (Table 1), whose combination is likely to be
associated to species environmental preferences and thus to suitable
habitat (Corsi et al., 2000). These parameters include those indicated by
literature studies for L. sceleratus, e.g. depth, distance from land, and
water temperature etc. Further, the AquaMaps ecological niche model
is constrained to this set of 18 features and is part of our method. For
these reasons, all the environmental parameters listed in Table 1 were
taken into account.

The values of these parameters in the Mediterranean Sea were re-
trieved through the D4Science geospatial catalogue4 (Assante et al.,
2016), and belong to (i) the AquaMaps Consortium, (ii) the Copernicus
Marine Environment monitoring service, and (iii) the National Oceanic
and Atmospheric Administration (NOAA). Estimates for the same 18
parameters in 2050 were available too, as produced by the AquaMaps
Consortium using the ECHAM model (Roeckner et al., 1992).

Environmental data were attached to both the retrieved presence
and pseudo-absence locations of L. sceleratus at 0.5° resolution, which is
the minimal resolution of all the models used by our method. This
operation was realised by means of the DataMiner “occurrence-en-
richment” process5 that associates environmental information to a
number of locations, producing a CSV file containing an “enriched”
data set.

2.2. Modelling

2.2.1. AquaMaps
The AquaMaps ecological niche models (Kaschner et al., 2006) es-

timate species habitat suitability under different environmental sce-
narios. These presence-only models incorporate scientific expert
knowledge to account for known biases and limitations of marine
species occurrence record data sets (Ready et al., 2010). AquaMaps
includes two models to estimate the actual (named native) distribution
of a species today (2017) and in 2050, and other two models to estimate
potential habitat suitability in locations where the species has never
been observed. These models estimate species’ habitat at global scale
with 0.5° resolution, calculating the association between the observed
locations and a predefined number of environmental variables
(Table 1). This association is estimated by multiplying 18 envelope
functions, each traced on one environmental variable, and by succes-
sively applying mechanistic assumptions (in the form of rule-based al-
gorithms) to produce a species-presence probability distribution.
AquaMaps is reliable if compared to other more complex approaches,
although its accuracy decreases when expert knowledge is missing
(Ready et al., 2010). The AquaMaps native and potential algorithms for
the 2050 scenarios use information about expected modifications in the

2 https://services.d4science.org/group/biodiversitylab/species-discovery.
3 https://services.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.

gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.transducerers.
ABSENCE_GENERATION_FROM_OBIS.

4 https://services.d4science.org/group/biodiversitylab/geo-visualisation.
5 https://services.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.

gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.transducerers.
OCCURRENCE_ENRICHMENT.
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global FAO major fishing areas and in the overall change of the oceans
water surface level. These two processes rely on environmental vari-
ables estimations for 2050 under the IPCC SRES A1B scenario
(Nakicenovic and Swart, 2000) of a future of rapid global economic,
population, and technological growth, where the average surface tem-
perature increases, the ice concentration decreases and the salinity in-
creases globally but decreases in some locations (Reyes, 2015). An
AquaMaps potential habitat suitability model for L. sceleratus in 20176

was trained using presence data in its native environment and the 18
environmental variables mentioned above, and was projected on the
Mediterranean Sea.

2.2.2. Artificial Neural Networks
Artificial Neural Networks (ANNs) are machine learning models

made up of interconnected digital representations of neurons (Minsky,
1963). These models have been used for long time in many domains
(Patterson, 1998), including ecological modelling (Lek and Guégan,
1999; Olden et al., 2004; Lek et al., 1996; Gevrey et al., 2003), because
they allow to model non-linear functions between an input vector of
Real numbers and an output vector of Real numbers. ANNs can also
simulate automatic classifiers (Bishop, 1995) that associate an input
vector to one category among several. In Feed-Forward Neural Net-
works (Bebis and Georgiopoulos, 1994), the digital neurons of an ANN
are organised into “layers”, where the first layer receives and processes
the input vector directly and the last layer produces the output vector,
and intermediate layers are named “hidden layers”. One layer is fully
connected only to the next layer by means of weighted edges, i.e. each

Fig. 1. (a) Presence (brighter points) and pseudo-absence (darker points) locations of L. sceleratus in its known inhabited/native environment, used to train our models. (b) Reported
observation records in the Mediterranean Sea collected from published articles, grey literature, and from the GBIF data and OBIS providers, with indication of abundance and extension.

6 https://services.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.
gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.generators.
AQUAMAPS_SUITABLE.
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neuron in one layer has edges only towards neurons in the next layer.
An ANN can be trained to simulate a function on known data by means
of a learning algorithm (e.g. the “backpropagation”, Rumelhart et al.,
1986). The training algorithm adjusts the weights of the networks edges
to produce expected output on the training data. Thereafter, the ANN is
used with known input data that had not been included in the training
set, and the performance of the trained model is evaluated (test session).
The number of hidden layers and neurons of the ANN with the highest
performance on the test set (i.e the best topology) can be found by
running the learning algorithm multiple times and by testing every
topology more than once in order to avoid local minima issues (Özesmi
et al., 2006). One approach to find the best topology is the “growing”
strategy (Bishop, 1995), where neurons and layers are added as far as
the error on the training set decreases down to a certain threshold,
which is empirically set to avoid overfitting of the ANN to the training
data. Although ANNs are powerful models, one disadvantage in using
them is that they do not provide the analytical form of the simulated
function, thus it is not possible to understand how the input variables
are really combined within the network.

For the scopes of this paper, an ANN was trained7 on the same
environmental features used by AquaMaps, extracted at the collected
presence and absence records sets of the pufferfish in its native en-
vironment. Thus, the ANN had 18 input features, one for each en-
vironmental parameter, and one output neuron conceptually associated
to a habitat suitability score, ranging between 0 (absence) and 1 (pre-
sence). In the training phase of the ANN, the environmental features
associated to the presence locations were used as positive cases on
which the ANN output was forced to output 1, whereas those associated
to absence locations were used as negative cases with ANN output
forced to 0. Topologies ranging between one and three hidden layers
containing a variable number of neurons were explored using a
“growing” strategy, which required training ∼100,000 models. The
training and testing phases were based on a 80% (train) – 20% (test)
cross-validation, since data outside the Mediterranean Sea were used in
this phase. Eventually, the best model was identified as an ANN con-
taining one hidden layer with 100 neurons.

2.2.3. Maximum Entropy
Maximum Entropy (MaxEnt) is a presence-only machine learning

model commonly used in ecological modelling (Phillips et al., 2006,
2004; Phillips and Dudik, 2008; Baldwin, 2009; Coro et al., 2015).
MaxEnt approximates a probability density function defined on a vector
space of environmental features, with the constraint that this function is
compliant with predefined mean values at presence locations and that
the overall entropy of the probability distribution is maximum (Elith
et al., 2011). During the model's training phase, MaxEnt performs a
relative maximisation of the entropy function = − ∑H π x π x( ) ln( ( )),
defined on the environmental features x at the provided presence lo-
cations, with respect to the entropy function applied to the features of
random points taken all over the area under study (Phillips et al.,
2006). Presence points are taken as constraints during this maximisa-
tion and the model uses a linear combination of the features as π
function, where the coefficients of the combination are changed to re-
flect the influence of each variable in predicting the distribution of the
species. After the training phase, these coefficients can be used to select
the most influential environmental parameters given the known pre-
sence locations. Thus, MaxEnt can also be used to select the features
that carry the highest quantity of information about the species ac-
cording to the entropy maximisation process. These features can be
possibly used into other models to obtain new habitat projections (Coro
et al., 2015). One drawback of MaxEnt, is that it is very sensible to bias
in the data, thus its performance increases if the presence records are
reliable (Elith and Leathwick, 2009).

MaxEnt was trained on the environmental features associated to the
occurrence records of L. sceleratus in its native environment8 and was
projected on the Mediterranean Sea. Afterwards, the variables having
highest association with the presence data of L. sceleratus were identi-
fied and another MaxEnt model was trained using only these variables.
In particular, only variables with a coefficient value in the estimated π
function higher than 5% of the maximum coefficient value were used in
this model.

2.2.4. Support Vector Machines
Support Vector Machines (SVM, Boser et al., 1992), a machine

learning method also used in ecological modelling (Brown et al., 1999;
Guo et al., 2005; Drake et al., 2006), can be used to build a binary
classifier (Vapnik, 2013; Schölkopf et al., 1999) by projecting the input
data onto a higher dimensional, “simpler”, features space through a
kernel function, and then by searching for a linear separation of this
space. In most of the applications, this process consists in finding an
optimal separation hyperplane that maximises the distance (margin)
from the closest training instances (support vectors). Thus, training a
SVM usually requires maximising the margin by solving an optimisation
problem constrained by linear relations. These constraints may be re-
laxed allowing some classification error in order to avoid overfitting
(Cristianini and Shawe-Taylor, 2000). SVM can also be used to select
the input features that carry the highest quantity of information, for
example through a leave-one-out (LOF) process that records when the
SVM performance decreases during a cross-validation assessment after
one of the features is removed in turn (Chang and Lin, 2011; Vilas et al.,
2014).

Three binary (presence-absence) SVM training processes, based on a
Sequential Minimal Optimisation (SMO) algorithm9 (Chang and Lin,
2011), were executed on three different environmental features subsets
associated to presence and absence locations of L. sceleratus in its native
range. The first model used the complete set of 18 environmental

Table 1
The complete set of environmental features used in our method. The values are calculated
on 0.5° cells and annual averages are used for time-dependent variables. The two columns
on the right side report the features selected by MaxEnt and SVM respectively, as carrying
the most important information to assess the habitat of L. sceleratus.

Environmental parameters MaxEnt-selected SVM-LOF

Mean Depth (m) × ✓
Maximum Depth (m) × ×
Minimum Depth (m) ✓ ×
Depth Standard Deviation × ✓
Distance from Land (m) ✓ ✓
Ocean Area (m2) × ×
Annual Mean Ice Concentration (percentage) ✓ ×
Annual Mean Primary Production (g Cm−2 yr−1) × ×
Annual Mean Sea Surface Temperature (° C) × ✓
Maximum Annual Sea Surface Temperature (°C) × ×
Minimum Annual Sea Surface Temperature (°C) ✓ ×
Sea Surface Temperature Standard Deviation × ×
Sea Surface Temperature Range (°C) × ×
Annual Mean Sea Bottom Temperature (°C) ✓ ×
Annual Mean Salinity (PSU) × ✓

Minimum Salinity (PSU) × ×
Maximum Salinity (PSU) ✓ ×
Annual Mean Bottom Salinity (PSU) × ×

7 https://services.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.
gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.modellers.FEED_
FORWARD_ANN.

8 https://services.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.
gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.transducerers.
MAX_ENT_NICHE_MODELLING.

9 https://services.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.
gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.transducerers.
SUPPORT_VECTOR_MACHINES_MODELLING.
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features; the second model used only the environmental variables se-
lected by a leave-one-out process; and the third model used the en-
vironmental features selected by the MaxEnt process presented in the
previous section. The SVM-selected variables were not used to feed the
other models because a LOF selection process is usually beneficial only
for a linear binary classifier. All models were configured (through
“pairwise coupling”, Wu et al., 2004) to give a continuous value be-
tween 0 (absence) and 1 (presence) in order to simulate a probability
distribution. A weighted SVM training process (Suykens et al., 2002)
was used for each SVM to account for imbalance between the number of
absence and presence data, and the environmental features were nor-
malised between 0 and 1. As kernel function, the Gaussian Radial Basis
function (RBF) was adopted because it is often used when the features
space is large (Camps-Valls and Bruzzone, 2005) and uses a lower
number of initialisation parameters (gamma and C) with respect to
other kernels (Hsu et al., 2003). Using a 10-fold cross-validation on our
training set (Chang and Lin, 2011), gamma=22 and C=40 were
found optimal values for these parameters. The three binary SVMs were
trained and consequently projected10 on the Mediterranean Sea.

2.3. Merging the habitat models

The baseline ENM models were merged together in order to take
advantage of possible complementary indications about the species’
habitat distribution. Complementarity between these models was ex-
pected because they are complex by construction and their analytical
forms are likely to be very different from each other, due to the dif-
ferent training processes used and the involvement of random variables.

In order to obtain one overall merged probability distribution for
the Mediterranean Sea at 0.5° resolution, the normalised sum of the
distributions was used, i.e.:

∝ + +

+ +

+

+

P x P x P x P x
P x P x

P x

P x

( ) ( ) ( ) ( )
( ) ( )

( )

( )

Overall Habitat AquaMaps ANN MaxEnt

MaxEnt with ME-selected variables SVM

SVM with ME-selected variables

SVM with SVM-LOF variables

where P x( )Overall Habitat is the overall merged probability function of ha-
bitat suitability defined on the features domain =X x{ }, normalised
between 0 and 1. The involved distributions are those from the previous
sections, i.e. respectively AquaMaps, ANN, MaxEnt, MaxEnt using
MaxEnt-selected variables, SVM using all the environmental variables,
SVM using MaxEnt-selected variables, and SVM using variables selected
with the leave-one-out process. The formula above gives the same
weight to all models, using the rationale that high suitability in a cer-
tain location could be due even just to one distribution estimating high
probability there. On the contrary, using a multiplication between the
functions would have led to very low or zero probability in most of the
locations, since there are only few locations where all models estimate
non-zero probability at the same time. The resulting function represents
the overall estimated habitat suitability of L. sceleratus at 0.5° resolution
in the Mediterranean Sea. However, a suitable habitat does not ne-
cessarily indicate a reachable habitat, because of possible geographical,
survival, and reproduction barriers. Thus, the merged distribution
needs to be converted into a more realistic geographical reachability
map.

2.4. Estimating the actual geographical reachability distribution

Explicitly modelling all constraints that prevent L. sceleratus to co-
lonise suitable habitat is challenging. Our model starts by using real
observations in the Mediterranean Sea as references. It selects 20% of

the species records in the Mediterranean Sea (Fig. 1b) as anchor points
to trace several Gaussian functions, each centred on one recording site,
having maximum height equal to 1 and value decreasing with distance
from the point. The decrease rate of the functions depends on their
widths and thus on their standard deviation. One standard deviation
was used for all the function and was set to the maximum distance
between a 0.5° cell and all recording sites, which was calculated to be
∼17°. This means that also the farthest points in the Mediterranean Sea
could be reached with a certain probability, because these would have a
Gaussian value higher than 0.5 by construction. In summary, the
Gaussian functions represent a potential movement of the fish from one
record site to another location and their decreasing trends simulate
inertia to reach far locations, possibly due to heterogeneous barriers.

Finally, the overall geographical reachability distribution was esti-
mated by combining the Gaussian functions and the overall habitat
suitability distribution. In particular, each habitat suitability value at
the 0.5° locations was multiplied by the value of a Gaussian function
centred on the closest record location, providing the distance from this
point as an argument to the function (Fig. 3):

=

=

= =P x P x d
d x

( ) ( )*Gaussian ( )
where min(distance(location( ), observations))

μ σGeographical Distribution Overall Habitat 0, 17

This distribution combines the species’ habitat suitability with the
inertia in moving from real records. It indicates high presence prob-
ability for a real observation only if also habitat suitability is high in
that location. Indeed, equal weight was given to Gaussian functions and
habitat suitability because they carry equally important information. In
fact, a real observation refers to a sure event at certain time instant that
could be even temporary or occurred by chance, whereas habitat suit-
ability indicates environmental conditions suited for the species to
persist over time in that location. Further, also locations far from these
observations are allowed to have high presence probability if habitat
suitability is high, because locations as distant as the full width at half
maximum of the Gaussian function 1.177σ (i.e. ∼20°) have 0.5 value.
The resulting half-degree distribution is referred to as the geographical
reachability distribution.

2.5. Benchmark dynamic model

The stability and the performance of the geographical reachability
distribution was checked against an alternative model (referred to as
the dynamic distribution). This model is more compliant with common
approaches to invasive species modelling (Section 1), where the native
habitat of a species is allowed to evolve in time up to a convergence
status.

In particular, an iterative process was created which goes through
the following steps:

1. Produce a “native” habitat map according to a niche modelling al-
gorithm;

2. Apply Gaussian distance function weighting, using a σ value re-
presenting the geographical extent that can be reached at each step
of the dynamic evolution;

3. Apply a 0.5 cut-off threshold to the geographical reachability dis-
tribution to produce new pseudo-presence locations;

4. Produce and project a new niche model after adding the new
pseudo-presence locations to the training set;

5. Start a new cycle from point 2;
6. End the process when the distribution does not change after four

cycles.

This loop requires two parameters to be fixed before the start: the
niche modelling algorithm to use and the σ of the Gaussian function. To
find the best combination of these parameters, the accuracy of all the
baseline models was calculated at the variation of σ on the 20% of the
observation records in the Mediterranean Sea. The combination of

10 https://services.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.
gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.transducerers.
SUPPORT_VECTOR_MACHINES_PROJECTOR.
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σ=2 and the SVM using variables selected with the leave-one-out
process provided the best parametrisation of the loop. This σ value
indicates that locations up to 2.35° (equal to 1.177σ, i.e. ∼200 km)
from the observations at one step can become new pseudo-presence
locations in the next step. The dynamic model converges to a stable
distribution after 26 steps11 (Fig. 4d).

Each step of the loop could be interpreted as a time interval, but it is
not easy to establish how much time corresponds to a maximum
movement of about 2° of L. sceleratus. However, based on the average
yearly distances between first observations in the Mediterranean Sea, a
∼2° distance may correspond to the movement of the pufferfish in one
year.

2.6. Agreement, performance, and impact measurements

In order to numerically estimate the agreement between the trained
models, an automatic maps comparison process was used12 (Coro et al.,
2014, 2016b), which calculates the agreement between two maps at a
time. A 0.2 probability threshold was used on the maps to indicate
when two models assessed together that a species was present (or ab-
sent) in a certain comparison location. This threshold was selected as
the one resulting in the highest coverage by all models of the 20% of the
complete set of expert-reviewed pufferfish Mediterranean records
(Section 2.1.2). Thus, the threshold represents a sensibly non-zero
probability of habitat suitability or presence. The result of this maps
comparison process is a matrix reporting pairwise agreement percen-
tages.

In order to estimate the accuracies of the models, 80% of the expert-
reviewed pufferfish Mediterranean records were used. In particular, a
model's accuracy was calculated as the percentage of records on which
it reported sensibly non-zero probability (> 0.2).

Finally, an impact (or risk) indicator for a Mediterranean area was
calculated, similar to other studies (McGeoch et al., 2006), as the
normalised density of sensibly non-zero probability locations falling
into the area.

2.7. Applicability to other species

The presented method is in principle applicable to other invasive
species, in order to monitor their spread in any given region. In fact, our
general process can be summarised in a number of steps that are in-
dependent of the selected species:

1. Retrieve presence data for the species in its native habitat;
2. Estimate absence locations for the species in its native habitat;
3. Enrich the presence/absence data set with environmental variables

information;
4. Train different habitat suitability models, using the enriched data

set as a training set;
5. Merge the models using a normalised sum of their projections on the

invaded area;
6. Retrieve observation records in the invaded area;
7. Produce a geographical reachability distribution by multiplying the

merged habitat model for a set of distance-based Gaussian functions,
each centred on the observations in the invaded area;

8. Assess the resulting model's performance with independent ob-
servations in the invaded area;

9. Project the model onto official subdivisions of the invaded area, in
order to estimate impact indicators.

This process is complex and requires access to species data, com-
putational facilities, and storage of intermediate and final results. Thus,
it requires an e-Infrastructure oriented to Open Science that guarantees
fast data retrieval, direct feeding of models with data, and fast esti-
mation of the best models.

3. Results and discussion

In this section, the projections of the models developed for the
pufferfish are presented. The models’ performance is quantitatively
assessed on known Mediterranean records of the species, and the dis-
crepancies between the geographical reachability and the dynamic dis-
tributions are highlighted and checked against previous studies. Finally,
an impact indicator is reported for different subdivisions of the
Mediterranean Sea.

3.1. Models projections

The projection of the AquaMaps model on the Mediterranean Sea
predicts suitable habitat especially in coastal areas (Fig. 2a). Likewise,
in the ANN model coastal proximity influences high habitat suitability
but the resulting distribution is different from the AquaMaps one due to
a more complex combination of environmental variables in the Neural
Network (Fig. 2b). The MaxEnt model using all environmental variables
estimates high suitability for the eastern Mediterranean basin (Fig. 2c).
The variables having highest association with the presence data ac-
cording to MaxEnt are reported in Table 1. The MaxEnt model trained
only with these variables agrees with the previous MaxEnt model about
the habitat suitability of the eastern basin, and additionally reports
westwards suitability especially around the southern Italian coasts
(Fig. 2d). Discrepancies between these two MaxEnt models are visible
off the Libyan and Turkey coasts and in the centre of the Mediterranean
Sea. The three SVM models are different from each other. The model
trained with all environmental variable reports high suitability in the
Black Sea (Fig. 2e); the model using environmental variables selected
by a leave-one-out process (Table 1), estimates high suitability in a
large part of the Mediterranean Sea except in the northern Adriatic Sea
and in the southern France coasts (Fig. 2f); the model using the en-
vironmental variables selected by the MaxEnt process, estimates high
suitability in Greece and Turkey coasts and in the western Mediterra-
nean coasts around the strait of Gibraltar (Fig. 2g).

It can be visually recognised that the trained baseline models pre-
dict high probability in complementary locations (Fig. 2). This is con-
firmed by the calculation of the agreements between the models, which
never reaches 100% (Table 2a). Since all the compared maps have
complementary aspects, it is not possible to select a priori one map
instead of the other as definitive habitat estimation. Thus, the pro-
duction of a merged distribution representing the overall habitat suit-
ability of L. sceleratus in the Mediterranean Sea is justified. This merged
distribution indicates suitable habitat in most of the Mediterranean Sea
except in some areas in the centre and in the western basin (Fig. 4a).

The geographical reachability distribution presents complementary
aspects with respect to the baseline habitat distributions (Fig. 4b and
Table 2b). Another geographical reachability map was produced by
training the model with environmental data projected in 2050 (Section
2.1.4) and by using currently known locations in the Mediterranean Sea
to build Gaussian functions. The resulting distribution is very similar to
the previous one (Fig. 4c). Thus, the first produced geographical reach-
ability distribution represents a stable average scenario for L. sceleratus.

The techniques used in our experiment mostly belong to the class of
correlative approaches to niche modelling (Pearson, 2012), and thus do
not explicitly model the bio-physiological characteristics of L. sceleratus.
Nevertheless, an a posteriori statistical analysis was made across all
models, focussing on the 18 environmental variables values in the
highest probability locations (> 0.8). This analysis helps inferring the
environmental conditions the species prefers. In particular, it reveals

11 An animation representing this convergence process is available at http://data.
d4science.org/
WG1QTFhsS1k2Qy90WXE5NVNaZnRoRUQ4bk44Y05NVWdHbWJQNStIS0N6Yz0.

12 https://services.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.
gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.evaluators.MAPS_
COMPARISON.
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that for all models the average surface temperature is around
(19 ± 0.2)° and the average difference with sea bottom temperature is
5°. Average sea surface salinity is 34.5±0.3 PSU except for AquaMaps
(38± 0.03 PSU), and the average difference between sea surface sali-
nity and sea bottom salinity is always around 2%. Primary production is
averagely 530 g Cm−2 yr−1 with high values (∼1100 g Cm−2 yr−1)
reached by few locations. Distance from land is always below 200 km,
with 80 km average for all models except for ANN (32 km) and Aqua-
Maps (31 km). Finally, average water column depth is 1150m except
for ANN (207m) and AquaMaps (407m). However, all models also
include high probability locations in shallow waters (down to 1m) and
averagely deep waters (up to 3000m).

3.2. Performance evaluation

Accuracy was calculated for all models as described in Section 2.6
(Table 3). The geographical reachability distribution gains the highest
performance in predicting the Mediterranean records (98%), whereas
the dynamic model reaches lower performance (83%). All the baseline
models have high performance on predicting observation records.
However, a visual comparison (Fig. 2) suggests that most of these
models possibly overestimate the presence locations. Nevertheless,
there is useful information in this overestimation; for example, the SVM
distribution in Fig. 2f assigns non-zero values to most of the Medi-
terranean Sea half-degree locations and may seem uninformative, but
this distribution also includes a westward decreasing gradient, which is
crucial information when introduced in the merged model.

Overall, the percentages in Tables 2 and 3 suggest that the geographical
reachability distribution (i) is complementary to the other maps, (ii)

presents stability with respect to a 2050 scenario, and (iii) has high per-
formance at predicting real observations in the Mediterranean Sea.

3.3. Discrepancies evaluation

The dynamic distribution has overall 83% agreement with the geo-
graphical reachability distribution and is generally similar to this dis-
tribution (Fig. 4b and d). However, the overall performance of the dy-
namic model on known records in the Mediterranean Sea is lower and
there are specific discrepancy areas (highlighted in Fig. 4d) that need
further analysis. Overall, unlike the geographical reachability distribu-
tion, the dynamic distribution predicts species invasion also up to the
continental edge, where currently there are very few records (Çinar
et al., 2014).

The geographical reachability distribution predicts medium-to-high
occurrence probability (0.4–0.6) in eastern Mediterranean (e.g. Aegean
Sea and Cyprus Sea), southern Ionian Sea (Albanian coasts), and
southern Tyrrhenian Sea (Sicily, Tunisian and Libyan coasts), whereas
it predicts the highest probability (> 0.8) in several coastal areas (e.g.
south Turkey, south Greece and east Libya). Indeed, the highest abun-
dance of L. sceleratus has been recorded in the eastern Mediterranean
(Nader et al., 2012; Michailidis, 2010). Also, in the southern Tyrrhenian
Sea, between Malta and the Tunisian coast, more than 80 individuals
have been reported in the last 5 years (Azzurro et al., 2014b). In the
Bosporus, few records have been officially reported (Vacchi et al.,
2007), which agrees with the geographical reachability distribution on a
possible future presence in this area, despite the opposite indication by
the dynamic distribution. As for the Italian coasts, observations have
been increasingly reported around Sicily (Azzurro et al., 2014a, 2016),

Fig. 2. Projections on the Mediterranean Sea of all the baseline ecological niche models involved in our method: (a) AquaMaps, (b) Artificial Neural Networks, (c) Maximum Entropy
(MaxEnt), (d) MaxEnt trained with influential environmental variables selected by the previous MaxEnt model, (e) Support Vector Machines (SVM), (f) SVM trained on influential
environmental variables selected using a leave-one-out process, and (g) SVM trained on the environmental variables selected by MaxEnt. The legend is the same for all the maps.
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in the central Tyrrhenian Sea (Jribi et al., 2012), and in the southern
Adriatic Sea (Dulčić and Dragičević, 2014; Nader et al., 2012), still in
agreement with the geographical reachability distribution. On the con-
trary, although both the compared distributions indicate lower invasion

probability in the western Mediterranean Sea, the fish has been ob-
served very recently along the Algerian and southern Spanish coasts
(Dailianis et al., 2016; Katsanevakis et al., 2014), but it still early to
assess a population establishment.

Fig. 3. Complete work flow of our method:
the baseline models are projected on the
Mediterranean Sea and are merged together
through a normalised sum of the distribu-
tions (overall habitat distribution). A geo-
graphical reachability map is estimated by
multiplying habitat suitability for a de-
creasing geographical reachability Gaussian
function, based on the minimum distance
from known observations (image of L. sce-
leratus retrieved from fishbase.org). The
overlaid dark dots represent the observa-
tions in the Mediterranean Sea used to train
the geographical reachability model. The le-
gend is the same for all the maps.
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3.4. Impact indicators

The impact indicator described in Section 2.6, was calculated for the
geographical reachability distribution after its projection onto three re-
ference subdivision sets of the Mediterranean Sea corresponding to
different ecological and economical criteria. A coloured gradient was
used to give direct visual understanding of the impact of the pufferfish
on these areas.

A first indicator was calculated on the official major fishing areas in

the Mediterranean Sea of the Food and Agriculture Organisation of the
United Nations (FAO). This indicator (Fig. 5a) has a westward de-
creasing gradient and estimates low-medium impact (0.2–0.6) in the
Tyrrhenian and Ionian Seas (Italian, Tunisian, and Libyan coasts) and
high impact (0.8–1) around the coasts of Greece, Turkey, Lebanon, and
Egypt.

A second indicator was calculated on the Exclusive Economic Zones
associated to the United Nations Convention on the Law of the Sea
(Lowe, 1990), which define the regions where a state has special rights

Fig. 4. Comparison between several distributions estimated for L. sceleratus in the Mediterranean Sea: (a) overall potential habitat map, obtained by merging the baseline models, (b)
geographical reachability distribution calculated by applying a Gaussian spatial weighting operation to the overall potential habitat map, (c) geographical reachability distribution estimated
for 2050, and (d) distribution estimated by means of a dynamic model. The overlapping points indicate the real observations of the pufferfish in the Mediterranean Sea that were used to
tune the spatial models. The circles in figure (d) indicate the highest discrepancy areas with respect to the distribution in figure (b). The overlaid dark dots represent the observations in
the Mediterranean Sea used to train the geographical reachability model. The legend is the same for all the maps.

Table 2
Agreements between all the estimated distributions of L. sceleratus in the Mediterranean Sea. AquaMaps – AquaMaps ecological niche model; ANN – Artificial Neural Networks; MaxEnt –
Maximum Entropy; MaxEnt-sel –Maximum Entropy model trained with features selected as carrying most of the information according to MaxEnt; SVM – Support Vector Machines; SVM-
MaxEnt – SVM trained using MaxEnt-selected features; SVM-LOF – SVM trained with features selected as carrying most of the information according to SVM.

AquaMaps ANN MaxEnt MaxEnt-sel SVM SVM-MaxEnt

(a) Agreement between all the trained baseline habitat suitability distribution models of L. sceleratus in the Mediterranean Sea
ANN 80%
MaxEnt 57% 42%
MaxEnt-sel 58% 43% 90%
SVM 70% 93% 46% 47%
SVM-MaxEnt 48% 47% 51% 52% 52%
SVM-LOF 49% 52% 55% 56% 61% 83%

AquaMaps ANN MaxEnt MaxEnt-sel SVM SVM-MaxEnt SVM-LOF

(b) Agreement between the geographical reachability distribution of L. sceleratus and the baseline models
Geographical Reachability Distribution 69% 58% 77% 76% 60% 53% 55%
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for the exploration and use of marine resources. Although EEZs are not
accepted by several international organisations (including FAO), they
may give insight on how the Mediterranean countries could be eco-
nomically impacted by the L. sceleratus invasion. In particular (Fig. 5b),
highly impacted areas are highlighted in the eastern Mediterranean Sea
(e.g. in Greece and Cyprus, whose situation is already known to be
alarming) and in the south (i.e. Malta and Tunisia).

Finally, a third indicator, with higher resolution, was calculated on
the general subdivisions of the General Fisheries Commission for the
Mediterranean Sea (GSAs). These areas are commonly used to monitor
and manage marine fishery resources in the Mediterranean Sea and can
better highlight the impact of L. sceleratus on smaller areas (Fig. 5c).
Again, a westward decreasing gradient is observed and high impact
zones are now highlighted in southern Sicily, in the Ionian Sea, and in
southern Adriatic Sea. Further, impact in Greece is reported to be
higher in the Aegean Sea than in the Ionic side.

4. Conclusions

In this paper, a method to estimate the spread of the silver-cheeked
toad-fish L. sceleratus in the Mediterranean Sea has been presented.
Seven niche models based on machine learning algorithms were trained
and merged together. The method generates an overall geographical
reachability distribution by means of a distance weighting process that
takes real observations into account. The reliability of this method has
been assessed with respect to a reference dynamic model and
Mediterranean observation records of the pufferfish.

A risk estimate of the invasion has been reported as the density of
non-zero probability locations falling in different subdivisions of the
Mediterranean Sea related to marine resources exploitation. A general
westward decreasing impact pattern has been highlighted, but high risk
zones have been predicted also in the middle and in the south of the
Mediterranean Sea (e.g. Sicily, Malta, and Tunisia). The overall de-
picted scenario is that L. sceleratus is a great risk for fisheries (and
consequently on health security) of many Mediterranean countries in
the near future. Further, our estimated distribution foresees the inva-
sion by the pufferfish of the Bosporus, which could enable it to spread
in the Black Sea. Thus, strategies such as selective fishing to decrease its
population should be considered, especially in the most likely future

impacted areas, in order to stem this spread and prevent severe eco-
nomic damages. In this context, our maps can support these strategies
and can also help fisheries researchers to advise managers and decision
makers.

This experiment used an e-Infrastructure for every step of the
method, from data retrieval to models’ training and projection. The e-
Infrastructure enabled the authors in their collaboration and every step
of the experiment has been made repeatable, because it is published as-
a-Service under a standard representation (WPS) and all the data,
processes, and results are freely accessible on-line.13 Finally, the pre-
sented approach is general enough to be applied to other invasive fish.
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