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Abstract

Music similarity is used in many applications ranging from music recommendations

to media retrieval systems. Most of music similarity metrics are computed as dis-

tances between songs on a certain multidimensional feature space. This feature space

typically consists of audio descriptors that are extracted from raw audio (rhythm,

tonality, spectral features). By using similarity distances we can perform a query

in database, and it will return number of tracks with shortest similarity distances,

thus the most similar ones.

Intrinsically similarity is a subjective concept, because different listeners perceive

different things as similar. In the research of music similarity it had been defined

in different ways and various similarity measures had been proposed. Evaluation of

those metrics is a difficult task, and is usually done via objective metrics because it

requires less resources.

Similarity can be measured either subjectively by using relative comparison by hu-

man subjects or objectively by using music metadata such as artist, album, genre

and cultural context. Example of context usage is co-occurrence of the tracks on

radio broadcasts or compilation CDs. However, subjective evaluation of most simi-

larity metrics that are introduced in the research is usually performed with limited

number of participants due to nature of experiments. In this thesis we address this

problem and propose a system that can be used to perform subjective evaluation of

different similarity metrics at large scale.

AcousticBrainz is an online platform that aggregates music descriptors extracted

from audio with globally identifiable ID for each track. We use this platform for

implementation of state-of-the art similarity metrics as well as crowd-sourcing eval-

uation capabilities. Using user feedback as the evaluation source we are able to com-

pare performance of various algorithms at large scale. That is achieved by providing

means of similarity computation between any of millions of songs in AcousticBrainz

within acceptable time.



We also explore the possibility of allowing users to create their own hybrid similarity

metrics and evaluate their performance in the system. The system allows to compare

different metrics according to different similarity dimensions (timbre, rhythm) and

calculate the performance based on subjective evaluation by users.

Our results confirm the relative performance of algorithms from the previous research

based on subjective evaluation and the platform shows support for much larger scale

experiments and potential of being used for various practical purposes.

Keywords: Audio; Music; Music Similarity; Music Information Processing; Acous-

ticBrainz.



Chapter 1

Introduction

Music similarity is easily understood intuitively, however it is much more difficult

to define it in the research context. While average music listener can say that

track A is more similar to track B than track C, it is difficult to break down this

decision to lower levels. There are multiple aspects of music that humans usually

consider when performing similarity comparison: genre, instrumentation, melody,

mood, vocal, tempo, rhythm, cultural context, lyrics (if present) and much more.

And moreover, different people might perform this evaluation differently.

Historically, metadata has been used in research to objectively measure similarity

(i.e. same album, artist, genre, country, year). Indeed, tracks from the same album

usually are similar between each other in genre, instrumentation and overall feeling.

However this method is not perfect because album composition inherently relies

on diversity, and this type of similarity might be different from similarity that you

would expect from different covers of the same song (melody, key, rhythm; however

instrumentation and arrangement might be totally different).

Subjective similarity (relative) might be easy to measure, and it is typically similar

between different people. However when talking about the fine details there might

be differences in similarity perception between individuals. Reasons that pertain to

this include some people giving higher weight to particular dimension of similarity,

e.g. instrumentation, overall form and composition details, or using their gut feeling

1



2 Chapter 1. Introduction

or overall impression that is usually biased towards their personal experience.

A typical application of music similarity is the recommendation systems that are

one of the selling points of different music streaming services. If the algorithm

can provide good recommendations that the user enjoys, the engagement metrics

will grow and the service will be naturally more successful. More often than not,

collaborative filtering systems are used, which can be simply explained as: user is

recommended tracks that other users with similar taste listen to (large number of

common tracks listened), and which are missing from user’s listening history. While

this approach has proven successful, there are several problems with it:

• Cold-start problem, where if tracks don’t have any listening data, they

will not be recommended to anyone and thus have difficulties gaining more

listening data. So this cycle is difficult to break unless the tracks explicitly

will gain minimal amount of listening data to be recommended.

• Isolation bubble, where because users are recommended tracks based on

listening history of users with similar taste, the algorithm is trying to make

all users with similar taste to listen to similar music, exacerbating overall

segregation and clustering in the userbase.

A typical answer to the cold-start problem is content-based recommendation systems

that take advantage of the content instead of listening history and use whatever

information that can be extracted from it to bootstrap the listening. Isolation

bubble is more difficult to address, but a common approach is to add degree of

randomness to the algorithm to occasionally recommend something totally different

to increase diversity of recommendations.

Another application that emerged recently is automatic playlist generation (e.g.

Spotify RecSys 2018 challenge1). While recommendation systems might be tuned

for individual users, playlist generation is more general and context dependent (e.g.

playlists for party or chill evenings). Although the nature of playlist generation is
1https://recsys-challenge.spotify.com/

https://recsys-challenge.spotify.com/


1.1. Motivation 3

similar to track recommendations, thus similar techniques are often used, there are

slight differences that can be taken advantage of by algorithms to improve perfor-

mance.

In this thesis we explore the audio content similarity between tracks with the focus

on large-scale applications. Usually it is difficult to gather much data from subjec-

tive evaluation experiments due to human involvement and limited resources. We

address this issue by proposing a platform that can be used for large-scale evaluation

experiments.

This thesis is structured in the following way: the remainder of this chapter will

introduce the motivation behind the research question and problem statement. In

chapter 2 we will talk about state of the art and related research that had been al-

ready performed. In chapter 3 we talk about implementation options, what are pros

and cons of each and how did we choose the implementation framework. Chapter

4 talks about the methodology, system design, experiment design and results. The

implications of results, summary and future work are discussed in chapter 5.

1.1 Motivation

While there are number of commercial solutions and new research papers being

published on the topic of music similarity, there is always a gap between industry

and academia. Big companies can take advantage of large datasets of audio tracks

that are available internally, while research datasets are difficult to open because of

copyright issues. There are datasets available that can be used for music similarity,

i.e. MagnaTagATune [1], around 2.5k excerpts of 30s with subjective similarity an-

notations. However it is difficult to compete with companies like Pandora or Spotify

that have more than 30 million tracks available internally. Although similarity an-

notations are probably not available explicitly, they can be computed from listening

history and other data.

AcousticBrainz [2] (AB) is a platform with the goal of gathering audio descriptor

data in one place without storing audio itself, thus not being subject to limits of
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copyright. Users that own music can use a tool that is based on the Essentia library

[3] library that extracts the information from audio and submits it to AB. At the

moment of writing this thesis AB contains approximately 10 million submissions for

3.6 million unique tracks. The information is extracted with collection of Essentia’s

music extractor algorithms that are state-of-the-art in Music Information Retrieval

(MIR).

Although a number of attempts in recent research work with convolutional neural

networks (CNNs) that use spectrograms as input [4], the downside is that you need

actual audio or spectrogram excerpts of the tracks. While audio descriptors from

AB contain less information overall, we can take advantage of the huge amount of

data available on the platform.

1.2 Problem statement

The issue that we want to address, particularly in the area of music similarity, is

that subjective evaluation is done on a relatively small scale due to experiment

setup limitations and lack of resources. Thus using AB as the base for building

and evaluating different similarity metrics provides the platform that can be used

for large-scale evaluation. Moreover, with the number of different audio descriptors

stored in AB, it is possible to build new metrics that can be used for similarity with

potentially better performance.

Thus the problem that we address in this thesis is: how can we take advantage of

large-scale data available in AB to perform an evaluation of state-of-the-art simi-

larity algorithms and metrics? Moreover, can the evaluation platform based on AB

help in developing new and better similarity algorithms and metrics?



Chapter 2

Background and related work

In research, music similarity is usually defined as distance between tracks on the

multidimensional feature space. In this thesis we will focus on content-based fea-

tures. This section will introduce several works that are relevant to this thesis as

well as other state-of-the art approaches for computing music similarity.

2.1 Audio content descriptors

Essentia is a software library developed by Bogdanov et al. [3] that implements

numerous different state-of-the-art algorithms that are used for music information

retrieval (MIR), such as extraction of low-level audio features (temporal, timbre,

tonal etc.) as well high-level descriptors (genre, mood, instruments etc.). Its Mu-

sicExtractor collection of algorithms encompassest the extraction of a multitude of

MIR descriptors that are useful and descriptive for a music track.

The audio descriptors can be separated into several categories: timbral, rhythmic

and tonal. Audio descriptors are computed on per-frame basis as well as their

statistics over the whole track. While per-frame data is useful, it takes huge amount

of space to be stored and time to be processed, thus is usually discarded in storage-

sensitive applications. Moreover, by using a statistical summary of the frame-based

features: mean (first moment), variance (second moment) as well as higher moments

5



6 Chapter 2. Background and related work

it is much easier to compare different tracks using several numbers instead of using

long vectors of frame-based features. This approach is preferred due to space and

time efficiency, thus we mostly focus of statistical descriptors in this thesis.

AcousticBrainz [2] (AB) is a platform for aggregating audio descriptors extracted

by Essentia’s MusicExtractor in the online database. There are no actual audio

files present in the database due to copyright issues. AB is part of the MetaBrainz

foundation and is connected with the MusicBrainz [5] (MB) platform that provides

the unique ID for every track and metadata including artist name, album, name,

genre, etc. Anybody can make a submission if you have the audio data via pro-

vided software that performs extraction of descriptors and uploads them to AB.

Same tracks can have multiple submissions that are independent and share only the

reference track ID. Obviously, if the data between submissions is too distinct, that

means that either the track identification might have failed, or the audio might be

corrupted or modified.

2.2 Similarity metrics and algortihms

Music Information Retrieval Evaluation eXchange (MIREX) is an annual event that

evaluates performance of submitted algorithms on multitude of MIR tasks. The

Audio Music Similarity and Retrieval task1 (ASM) has been run since 2006. As the

name implies, the algorithms are expected to perform a query on the database of

music tracks and find tracks that are considered most similar to the reference track.

The evaluation is performed subjectively using 2 metrics: BROAD (3-point scale)

and FINE (from 0 to 100). The latest instance was run in 2014 and the ASM task

was not included in the subsequent iterations. We will take an overview of several of

the high-performing algorithms that had been evaluated in the context of MIREX

ASM as well as some meta studies.

There are several approaches that are typically used to tackle computation of music

similarity. Most common one is representing tracks as points on the multidimen-

sional space where distance metrics can be used to calculate similarity. Bogdanov
1http://www.music-ir.org/mirex/wiki/2016:Audio_Music_Similarity_and_Retrieval

http://www.music-ir.org/mirex/wiki/2016:Audio_Music_Similarity_and_Retrieval
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et. al. [6] have done extensive research and introduced several baseline metrics as

well as proposed some simple metrics and the combined hybrid metric. This paper

is the basis for this research, as the audio descriptors for this research are the same

ones that are stored in AB and most of the proposed metrics can be easily imple-

mented in the context of AB. The brief overview of metrics introduced in the paper

is presented in the following section (2.2.1). Moreover, we overview high performing

algorithms that had been submitted to MIREX in section 2.2.2.

2.2.1 Hybrid content-based similarity

The first baseline metric is an euclidean distance based on principal component

analysis (PCA) of number of timbral, temporal, and tonal descriptors (L2-PCA).

It follows work proposed by Cano et al. [7] and includes the manually selected

subset of musical descriptors (201 in total). The pre-processing of the data includes

normalization, and then principal component analysis (PCA) is performed to reduce

the number of dimensions to 25 variables.

The second baseline metric is an euclidean distance based on relevant component

analysis (RCA) of the L2-PCA manually selected subset: L2-RCA-1 ; as well as full

set of descriptors: L2-RCA-2. In both cases the number of output dimensions is

chosen to be 25.

The third and last of the baseline metrics is based on the timbre modeling with

Gaussian mixture models (GMM) of first 13 MFCC coefficients (1G-MFCC ). In

the paper authors used simplification of the timbre model using single Gaussian

with full covariance matrix. The distance is measured as a closed form symmetric

approximation of the Kullback-Leibler divergence:

d(X, Y ) =Tr(Σ−1X ΣY ) + Tr(Σ−1Y ΣX)+

Tr((Σ−1X + Σ−1Y )(µX − µY )(µX − µY )T )− 2NMFCC

(2.1)

where µ is a vector of means, Σ is covariance matrix and NMFCC is number of
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dimensions.

The first proposed metric is a tempo-based distance (TEMPO) that compares num-

ber of beats per minute (BPM) and onset rate (OR) defined as number of onsets

per second. It takes advantage of the assumption that BPM and OR values that are

integer multiples of each other are more similar:

dmetric(X, Y ) = min
i∈N

(αi−1
metric

∣∣∣∣max(Xmetric, Ymetric)

min(Xmetric, Ymetric)
− i
∣∣∣∣) (2.2)

wheremetric ∈ {OR,BPM}. The combined TEMPO metric is an equally weighted

linear combination of OR and BPM.

The second approach is a classifier-based distance (CLAS ) that is powered by 14

multi-class support vector machine (SVM) classifiers. They are split into 3 cate-

gories of “genre and culture” (GC, 4 classifiers), “moods and instruments” (MI, 8)

and “rhythm and tempo” (RT, 2). Each classifier has its own number of output

classes based on the dataset labels and training is performed on 14 ground-truth

collections with input being zero mean unit variance normalized low-level audio de-

scriptors. The output of a classifier is a probability vector of respective classes. Sim-

ilarity is computed as a distance between each classifier’s probability vectors. There

are multiple distance metrics considered, but the best performing one is Pearson

correlation distance manually weighted between 3 categories: 0.5 for GC, 0.3 for

MI, 0.2 for RT and equal weighting inside the categories: CLAS-Pears-WM .

The subjective evaluation of performance of the metrics is shown in Figure 1a. It

was done on the 5-song playlists, where users rated the similarity rating on 0 to 5

scale and inconsistency on a binary scale.

The last approach proposed by the authors involves linearly combining previously

introduced metrics into a hybrid one. Weights are manually assigned based on the

performance of the algorithms (see Figure 1): 0.7 for L2-PCA, 3.0 for 1G-MFCC, 1.2

for TEMPO and 3.0 for CLAS-Pears-WM . Final evaluation results of the HYBRID

approach are included in Figure 1b.
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(a) All metrics (b) HYBRID evaluation

Figure 1: Subjective evaluation of hybrid approach (taken from [6])

2.2.2 Other approaches (MIREX)

In this section we give an overview of several algorithms that have been submitted

to MIREX ASM in the recent years.

Figure 2: MIREX 2014 evaluation: FINE scores

Seyerlehner et al. [8] (SS on the figure 2) use auto-taggers as a intermediate step for

similarity computation. Auto-taggers, as the name implies, automatically provide

number of tags for the tracks. They are purely content-based and provide a trans-

formation from audio descriptors to semantic space that is used later for computing
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the similarity. Training is done on publicly available datasets: MagnaTagATune [1]

and RadioTagged with tags retrieved from Last.fm.

Two sets of tag classifiers are trained: low and high quality. Both are based on block-

level audio features [9] where the high quality includes two additional block-level

features. Low quality auto-tagger uses PCM to reduce dimensionality and SVM

for classifiers, while high quality one uses random forest (RF) directly on high-

dimensional input data. Similarity is computed as a Manhattan distance between

affinity vectors that contain tag classes.

Pohle et al. [10] (PS on figure 2) use the Fluctuation Patterns [11] (FP) audio de-

scriptor to compute similarity. FPs measure periodicities of the loudness in various

frequency bands, considering a number of psychoacoustic findings. Several exten-

sions of FPs: Onset Patterns (OPs) and Onset Coefficients (OCs) are introduced as

better metrics for rhythmic similarity. Moreover, the timbre information is added

to FPs for it to be used for general music similarity.

Both of these approaches are very successful in the multiple MIREX ASM task

submissions (see figure 2). Because block-level features as FPs are the definitive

strengths of the algorithms they cannot be efficiently implemented in the current

context of AcousticBrainz. However, the concepts introduced by the authors might

be useful in designing new metrics that use AB statistical features.

Another approach proposed by Gkiokas et al. [12] (GK, GKC on figure 2) uses Deep

Belief Networks (DBF) directly on audio descriptors as input. Their method consists

of three main parts, with the first step being feature extraction, which involves

the calculation of three feature sets that correspond to music timbre, rhythm and

harmony. Next, for each feature set a DBF is trained without supervision on a

large music collection. The respective distances of the output units of the Deep

Belief Networks between two music excerpts are computed, normalized and finally

combined to form the distance measure. The proposed method is also evaluated

in 2014 MIREX ASM task, however its performance is among the lowest ones (see

figure 2).
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Sequential complexity, introduced by Foster et al. [13] (FFMD on figure 2) takes

advantage of sequential frame data for a particular descriptor and tries to quantify

its complexity with feature complexity descriptors (FCD). The system models audio

as a track-wise summary of FCDs computed on frame-based features. Across con-

sidered audio features authors compute pairwise distance measures between FCDs

and to predict musical similarity, pairwise distances are linearly combined and then

normalized.

2.3 Issues with subjective evaluation of similarity

Subjective evaluation of music similarity is prevalent in MIREX ASM task, but

the performance and accuracy of the evaluation process is also important to con-

sider. Flexer et al. [14] investigates this question and shows that there are inherent

problems with this evaluation method.

Figure 3: Best MIREX performances vs upper bound

The authors argue that there is a low inter-rater agreement due to the coarse con-

cept of music similarity. One of the most important reasons is the vague definition

of similarity for the MIREX graders that participate in the evaluation of task sub-

missions. Thus each grader uses their own personal variation of music similarity
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concept to evaluate submissions. As a direct result of this there exists an upper

bound of the performance of the algorithms that compute music similarity. The

upper bound is derived from data on inter-rater agreements and is shown in Figure

3 along with top performances. From the figure it is evident that this upper bound

has already been achieved in 2009 and not been surpassed since.

One possible solution is to have more than one grader rate same query or candi-

date pairs of songs thus providing data to calculate inter-rater agreement and an

upper bound that can be used for normalization. Moreover, each rater has different

variance for scores, which also should be normalized on per-rater basis.

Several ideas from similarity evaluation of textural sounds can be applied to music

similarity, specifically introduction of dimensions. For example, for textural sounds

such qualities as “high-low”, “smooth-coarse”, “tonal-noisy” have been proven to be

useful to discern different sounds. A similar approach can be used for music, where

the inter-rater agreement can be increased by increasing dimensionality.

Last, but not least, is the importance of the context [15]. For example, similarity

that is used for building a playlist might be different from similarity used to recom-

mendation systems. Inclusion of the context will make the goal much clearer thus

improving the consistency of subjective evaluation.



Chapter 3

Implementation frameworks overview

There are number of frameworks and libraries that provide the functionality that

can be used for implementation of similarity subsystem for AB. In this chapter we

provide an overview and go through pros and cons of each one.

3.1 Gaia

Gaia1 is a general library to deal with multidimensional feature vectors built from

audio descriptors. As it was developed directly with Essentia integration in mind,

it is a first natural choice to be used for similarity computation. It is used for this

purpose in Freesound [16] where there are approximately 380 000 sounds as of the

moment of writing.

However one of the shortcomings of Gaia is that all of the audio descriptor data

needs to be stored in memory, so while it is very powerful and easy to use, it falls

short when dealing with large data. The number of tracks in AB is at least one order

of magnitude larger than Freesound, and apart from low-level descriptors that are

the direct output of MusicExtractor, there are also high-level descriptors available

(SVM classifier outputs) that are useful for the computation of high-level similarity.

While not all of the descriptors are used in the metrics that are to be implemented
1http://essentia.upf.edu/documentation/gaia/

13
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for similarity computation, only a small subset of them, eventually we want all the

descriptors to be available for construction of new metrics. So while Gaia is good

choice for implementation at the start, it might have some scalability issues further

down the development pipeline.

Figure 4: Gaia memory usage (N = 2514)

Figure 4 shows the memory usage of Gaia for the worst case where all descriptors

available in AB (2514) are loaded per each data point. While obviously a worst-case

scenario, it still shows the extent of scalability issues with Gaia. So for the custom

metric functionality where we want to let users build new metrics we need to have

all potential data available. The projected memory usage for dataset with size of 8

million points is more than 200 GB, and this is without distance metrics, just pure

data.

Another downside of Gaia is that the project has stopped being developed and is

currently outdated and no longer being improved. It requires number of updates

both security-wise and feature-wise that will take substantial development time that

is out of scope for this thesis. Thus in summary, there might be increasingly big

technical debt that would be difficult to deal with several years into the future,

unless the development and maintenance of Gaia will be addressed soon.
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So, to summarize, we can see while Gaia can be very effective, there are number of

possible issues with it, both in context of using it for such a large scale application

and being outdated and not actively developed.

3.2 PostgreSQL Cube extension

The database engine that AB uses is PostgreSQL, so naturally some of engine’s ca-

pabilities can potentially be used to implement similarity system. As of PostgreSQL

version 9.6 (released in September 2016), its Cube extension that was built to store

multidimensional cubes gained an functionality to perform k-nearest neighbours

(KNN) search on its multidimensional space. It implements GiST index [17] thus

achieving very good performance. This functionality is useful for performing simi-

larity queries, while different metrics can be represented as different GiST indexes

on the same table, and after initial testing proved to show adequate performance in

our context.

Table 1 shows the results of initial evaluation of query times with 12-dimensional

metric on the server with all AB data (NFS) and local machine (HDD). NFS server

had more computing power, however storage access was slow due to data being

hosted on a different virtual machine. HDD had better disk access and speeds,

however it had only subset of the data due to storage limitations.

#rows 1k 10k 100k 1m 8m
NFS cold start 1.7 1.9 12.1 209 -
NFS repeated 0.02 0.03 0.16 1.1 2.9
HDD cold start 0.05 0.8 1.2 40.7 -
HDD repeated 0.05 0.07 0.1 0.3 -

Table 1: PostgreSQL Cube performance (s)

Because Cube is a PostgreSQL extension and all data in AB is already stored in the

database, further data scaling is not a problem. If necessary, even advanced tech-

niques with distributed database systems can be used to optimize the performance.

Limitations include a soft limit on 100 dimensions on the vector space, however that

can be overridden if necessary. The distance functions that can be currently used
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with GiST index are limited to Euclidean (L2), Manhattan (L1) and Chebyshev

(L-inf). While there is not much work needed to introduce new metrics on already

existing data, the index creation takes some time. Introduction of new metrics that

operate on processed data might be costly due to computation of new vectors as

well as index.

3.3 Apache Lucene: Solr and ElasticSearch

Apache Lucene2 is a open-source project that develops Lucene Core subproject, that

provides Java-based indexing and search technology. Solr3 is a high-performance

search server built upon Lucene Core and is designed to work with large-scale data.

ElasticSearch (ES)4 is another open-source product that is build upon the Lucene

Core. The primary design principle of both Solr and ES is to provide effortless

full-text search as well as data analytics with complex queries.

There are multiple differences between ES and Solr, but for our purposes important

distinction is that ES typically works with JSON data, while Solr is more XML-

based. One of the prominent features is TF/IDF-based full-text search, but it is not

really usable for our purposes. Another built-in feature of distance measurement is

tailored towards geographical applications. So for similarity computation between

vectors we need to use custom distance-based implementation of ranking algorithm.

As it had to be implemented using ES scripts, it was sub-optimal.

Another issue is the data storage. The only practical solution that allows the ES be

used on top of PostgreSQL is an open-source project ZomboDB5 which at the time

of performing framework evaluation was only supporting PostgreSQL 9.5 and Elas-

ticSearch 5.6 which were outdated versions. Due to several practical difficulties in

utilizing ZomboDB for evaluation purposes, it was dropped out from consideration.

Thus if we would use ES directly, it would need the data to be stored in its own

2http://lucene.apache.org/
3http://lucene.apache.org/solr/
4https://www.elastic.co/products/elasticsearch
5https://github.com/zombodb/zombodb

http://lucene.apache.org/
http://lucene.apache.org/solr/
https://www.elastic.co/products/elasticsearch
https://github.com/zombodb/zombodb
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indexes, so we would need to essentially have copy of all descriptors in the ES

index in addition to ones already stored in database, which is a huge cost in space.

Moreover, we would need to take care of synchronization and importing additional

data from the database when it is available. All of this overhead is not feasible

given that it proved to be difficult to utilize advantages of ES/Solr for feature vector

similarity queries.

Thus ES/Solr have proven to be not the best solution for our problem given that

PosgreSQL cube extension requires much less overhead for comparable performance,

if not better one.

3.4 Google BigQuery

BigQuery6 is designed to deal with big data and has its own indexing capabilities,

but it is a commercial product and all the processing is done on the Google’s cloud.

This is the biggest issue of BigQuery - it is commercial. If we would to use this

solution, to deploy instance of AB developers would need register a Google Cloud

account and set up billing for BigQuery, thus having problems deploying AB as

an open-source project. While it is possible to separate similarity functionality

and make it optional for the AB project, it is generally not appropriate to require

commercial products for even some functionality of an open-source project.

Having said that, BigQuery is still powerful tool to be used for search and ranking in

such large-scale data as AB, and it is a good secondary optional candidate framework

to be used for similarity queries.

3.5 Results

After careful evaluation and initial experiments, we chose PostgreSQL cube exten-

sion as the most appropriate framework for the implementation of similarity search

in AB. Although BigQuery doesn’t conform to open-source nature of AB, it is good

secondary option, and while it is not used in the remainder of this thesis, it might
6https://cloud.google.com/bigquery/

https://cloud.google.com/bigquery/
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be very useful for running other experiments on AB data.



Chapter 4

Design and implementation of

similarity search

Given the advantages and limitations of the selected framework (PostgreSQL cube

extension), in this chapter we present our overall approach to similarity implemen-

tation based on previous research. The main idea is to define and utilize transfor-

mations that take audio descriptors and transform them into vector space where

simple distances work as well as complex distances on the original vector spaces.

We also define metrics as the transformed feature vectors that define a new vector

space where we can perform a similarity search using k-nearest neighbors algorithm.

In this thesis we work with statistical audio descriptors that are computed over all

frames, thus discarding fine-grained details of temporal evolution of the descriptors

over the track. The primary reason for that is that we don’t have frame data

available in AB. Although statistical descriptors are very useful and sufficient for

our needs, as we mentioned in chapter 2, there are multiple algorithms that can take

advantage of frame data that we are not discussing in this thesis as they are out of

scope due to limitations of data available from AB.

19
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4.1 Concept of transformations

As there are only several distance functions that are available for KNN search due to

selected framework (Euclidean, Manhattan and Chebyshev are the distances avail-

able in PostgreSQL 10), we propose the idea of transformations that are used to

transform the audio descriptors that are used in complex distance computations to

vector space where the distance computation is simple. This will move the com-

plexity from the distance computation to vector transformation that needs to be

performed only once when the metric is created, thus simplifying and increasing

performance of the similarity metric. It effectively takes advantage of GiST index-

ing and its fast KNN performance.

Figure 5: Distance comparison

Typical distances that are used in music similarity research are cosine distances.

As it is not an available option for implementation, we aim to normalize audio

descriptors to approach close to cosine distance (see Figure 5). The figure shows

all available distance metrics in PostgreSQL 10 and how they behave for the unit

vector rotating along the unit circle with its angle going from 0 to π. Obviously,

all distances monotonically increase until π except Manhattan distance. Euclidean

distance has advantage over Chebyshev by having much smoother and monotonic

difference from cosine distance, and not having a sharp corner at π/2. Moreover,

Euclidean distances are prevalent in MIR research along with cosine distances.

Thus important step is normalizing descriptors before them being used in similar-



4.1. Concept of transformations 21

ity calculation. Different normalization techniques should be applied depending on

the nature of the descriptor, but in the end we want to have vectors with similar

distributions. Thus we perform a feature standardization with zero mean and unit

variance. For example in the MFCC case, it would make sense if each coefficient

would be zero mean unit variance normalized individually, and then concatenated

into a transformed MFCC vector. Thus the resulting MFCC vector would be ap-

proximately distributed around unit hypersphere.

Another limitation is related to queries based on several distances being linearly

combined. Because we cannot aggregate distance metrics together to be used in

queries due to PostgreSQL cube extension limitations, one of the possible ways

to incorporate hybrid metric queries is to concatenate corresponding vectors. A

downside to this method is increased dimensionality and thus increased complexity

of queries. Although the concatenation approach is not ideal, it is the best solution

that works with our limitations. Based on equation 4.1 we see that we are essentially

replacing Manhattan distance for hybrid metric with Euclidean. While it has impact

on the ordering of results being returned, on large scale it has minimal impact.

dHY BRID(X, Y ) = w1d(x1, y1) + w2d(x2, y2)

dCONCAT (X, Y ) = d((w1x1, w2x2), (w1y1, w2y2)) = (4.1)

=
√
w2

1d(x1, y1)2 + w2
2d(x2, y2)2

To perform concatenation properly having equal importance in case of no weights,

individual vectors should be normalized around the unit hypersphere as discussed

above. Multiplying vectors that are being concatenated by weights works as ex-

pected with smaller weight corresponding to smaller importance.

Now we will introduce several transformations that are inspired by previous research.

While complex metrics that have been introduced cannot be directly mapped to

transformations, we take a trade-off between complexity of transformation and re-
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sulting precision.

4.1.1 Circular transformation

In their previous work Bogdanov et al. [6] introduced TEMPO metric that takes

advantage of the fact that for BPM and onset rate (OR) values that are integer

multiples of each other are perceived as very similar. Moreover because of large

weights being selected for integers that are powers of two, we assume that this

relationship is exponential. Indeed, because of overwhelming presence on square

hierarchical beat patterns humans are more likely to consider tempi similar if they

differ by factor that is power of two than other integers.

Figure 6: Circular transform: BPM

If we imagine a line with logarithmic scale with tempo values represented on it, we

would try to put values that are equally spaced close to each other. We can do that

by wrapping our tempo line onto the 2D circle with those points laying on top of

each other (see figure 6), or effectively being separated by 2π after scaling the circle

to be unit circle. Now we effectively have defined the transformation that takes

BPM or onset rate and transforms the value into 2D vector.

T (x) =

cos(2π log2 x)

sin(2π log2 x)

 (4.2)

So instead of calculating distance metric according to equation 2.2, we are calculating

transformed values according to 4.2 and then calculating Euclidean distance between
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them.

Some adjustments can be applied to this strategy if needed. If the multiples are

considered to be not completely the same, but some distance apart, the transfor-

mation can have spring-like output wrapped around cylinder or sphere in 3D with

subsequent strands of the spring separated apart by constant distance. However

depending on the typical transformed values (e.g BPM 70-140), it should be scaled

appropriately to match the unit sphere with average and deviation.

Figure 7: Circle of fifths
Just plain Bill / Wikimedia Commons / CC-BY-SA-3.0

While both BPM and OR can be used as individual metrics, we approximate the

original TEMPO metric with concatenation of transformed BPM and OR.

A circular transformation can also be applied to tonal similarity, specifically key/s-

cale taking advantage of musicological knowledge of how similar different keys are

based on circle of fifths (figure 7). The simplest approach would be to map combi-

nations of keys and scales to 2D vectors directly based on circle of fifths. A more

advanced approach would be to also incorporate the pitch proximity thus increasing

number of dimensions to properly represent both relations.
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4.1.2 Probability vectors

One of more successful metrics CLASS incorporates outputs of high-level SVM

classifiers. The same classifiers that had been used in the thesis are implemented

in AB and stored in database as probability vectors. So to approximate CLASS we

want to use those probability vectors. This data is considered high-level as opposed

to raw extracted data that is named low-level.

As we discussed before, we need to normalize the vectors before using them for

similarity computation. While it makes sense to use them as-is for simple similar-

ity based only on high-level data, thus reducing amount of computations for pre-

processing the data; to use them in hybrid metrics with low-level data we cannot

avoid normalization.

If left as-is they will take non-negative values, thus being clustered in tiny 1/2N part

of hypersphere space, where N is the number of dimensions. Pearson correlation

distance has been the best performing distance used successfully on probability vec-

tors [6] for similarity evaluation. Thus we introduce “pearsonization” transformation

(see equation 4.3) that after being applied to individual vectors reduces the Pearson

correlation computation to Cosine distance, as well as taking care of normalization

at the same time.

TPEARS(x) =
x− x̄
|x− x̄|

(4.3)

While resulting vectors are not actually zero mean unit variance normalized, it is

due to the nature of probability vectors, where the number of degrees of freedom

(DOF) is one less then number of its dimensions. Pearsonization brings both averare

down and increases the variance, but the values will be spread on hyper-plane that

crosses the hypersphere.

TBIN(x) = 2x1 − 1 (4.4)
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One limitation of pearsonization is that it is unusable for binary classifiers, because it

pushes vectors to one of two extremes: (0,1) or (1,0). However as there is effectively

only one DOF, we can extract it, normalize it (see equation 4.4) and concatenate

with others to form a feature vector. As the “moods and instruments” category

primarily consists of binary classifiers, this is the transformation that is used.

4.2 Similarity metrics

As work by Bogdanov et al. [6] is the base for this thesis, the initial implemented

metrics are inspired by it and listed in Table 2. Concatenation of more than 2

metrics is indicated by | symbol.

Category Descriptor Dimensions
Rhythm BPM 2
Rhythm BPM | OnsetRate (OR) 4
Rhythm BPM | OR | Key/Scale 6
Timbre MFCCs 12
Timbre MFCCs (weighted) 12
Timbre GFCCs 12
Timbre GFCCs (weighted) 12
High-level Genre (Dortmund) 9
High-level Genre (Rosamerica) 8
High-level Moods 5
High-level Instruments 3

Table 2: Base metrics

TEMPO metric is approximated by concatenation of BPM and onset rate (OR).

Individual BPM metric is also considered to investigate effect of presence of OR.

Moreover, while it is technically going outside of Rhythm category, we want to

evaluate concatenation of BPM with OR and Key/Scale. The expected results of

this similarity query are songs that might go well together in DJ mix, being similar

both in tempo and compatible in key.

Timbre metrics are inspired by usage of MFCC in 1G-MFCC metric. The 0th

coeficient is discarded, because it represents average energy, which is not useful

for timbre similarity. Individual coefficients are globally zero mean unit variance

normalized according to previously discussed strategy.
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We also consider GFCC coefficients that are based on ERBBands [18] instead of

Mel-frequencies because they are known to exhibit better performance on the classi-

fication tasks of non-speech audio signals than MFCCs [19]. Moreover, the weighted

versions of both of these metrics are considered, where coefficients with higher index

are scaled down to reduce their importance (see equation 4.5). The reasons behind

weighting is that typically higher-order MFCCs contain less useful information and

are more noisy.

Ci,MFCCW
= αi−1Ci,MFCC , where α = 0.95, i ∈ [1, 12] (4.5)

Genre metrics are composed of single classifier respectfully because of higher num-

ber of dimensions. Moods metric includes binary classifiers happy, sad, aggressive,

relaxed, party. Instruments includes acoustic, electronic, voice-instrumental.

4.3 Implementation

As we decided to use PostgreSQL Cube extension, for evaluation purposes we recre-

ated an instance of AB on a separate server with subset of 4.5 million tracks

(approximately half of the original data) due to server space constraints. According

to the metrics and transformations that have been described above, the transformed

vectors were computed from raw JSON data and stored in separate table.

While low-level metrics can be defined purely as indices with custom functions on

the table that contains all of low-level data, high-level data is stored separately, thus

complicating things. Having all data in one table simplifies index definitions and

while it is not the most space-efficient method, it is a good trade-off between space

and complexity.

Another advantage of this approach is that we can perform transformations at the

same time as we are moving the data. In the case of building indexes upon the un-

processed data the transformations should be defined as functions in the database

engine using languages such as PL/pgSQL that are limited and clunky for imple-
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mentation or PL/Python. Instead, we can use whatever language to transform

data as it is being moved (Python in our case) and have freedom in transformation

implementation.

Metric Data size (GB) Index size (GB)
BPM 0.16 0.7
Onset Rate 0.16 0.7
Key 0.16 -
BPM | OnsetRate - 0.5
BPM | Onset Rate | Key - 0.7
MFCCs 0.50 6.2
MFCCs (weighted) 0.50 3.8
GFCCs 0.50 3.1
GFCCs (weighted) 0.50 2.5
Genre (Dortmund) 0.40 1.7
Genre (Rosamerica) 0.36 0.8
Moods 0.26 2.9
Instruments 0.19 1.6

Table 3: Data and index size

Table 3 shows the size of the data and indexes. As it is evident, size of indices is

larger then size of the actual data. All of the indexes are of GiST type (generalized

search tree) [17] that allow for quick KNN lookup. Essentially the trees subdivide

the vector space for quick search, thus the size of the index is different for the vector

spaces with same number of dimensions, because it depends on the distribution of

feature vectors.

4.4 Evaluation

To evaluate metrics that we have introduced in the previous chapter we are using

the metric commonly used in MIREX: BROAD. It is a 3-point scale with values

being: not similar (0), somewhat similar (1), and very similar (2). As we implement

it as part of AcousticBrainz platform, it can be used for controlled experiments as

well as for slow crowd-sourcing of data and feedback.

In the context of this thesis we have picked 6 tracks (see table 4) that represent

different types of music and asked the users to evaluate how similar are the query



28 Chapter 4. Design and implementation of similarity search

Artist Track MBID
Queen - Bohemian Rhapsody ebf79ba5-085e-48d2-9eb8-2d992fbf0f6d
Amorphis - Drifting Memories 8d5f76cf-0fa1-45a1-8464-68053d03b46b

Blind Willie McTell - Low Rider’s Blues 919a494b-dccc-4801-8aff-779ba574afae
Skrillex - Scary Monsters and Nice Sprites 47974dfd-f37d-4f41-b952-18a86af009d2

The Beatles - Let It Be 0cdc9b5b-b16b-4ff1-9f16-5b4ba76f1c17
Howard Shore - The Three Hunters b7ffa922-7bb8-4703-aa51-3bcc6d9cc364

Table 4: Evaluation tracks

Figure 8: Evaluation interface

results made according to each of introduced metric (11 in total). The interface is

shown in figure 8. We have presented links to similarity search results for each track

with each metric (66 in total) to number of subjects for evaluation.

4.5 Results

As we mentioned before, the evaluation method was inspired by MIREX’s BROAD

metric. Number of participants varies from 5 to 10 depending on the track and

the metric, but in total we gathered 218 evaluations for 11 implemented metrics

over the 6 different tracks. Although subjects have been encouraged to evaluate

similarity results of other tracks that they are familiar with, we haven’t received



4.5. Results 29

any evaluations for other tracks. In figure 9 you can see the average rating with the

standard deviation for each metric, as well as the red dotted lines that indicate the

values of BROAD scale.

(a) Rhythm (b) Timbre

(c) High-level

Figure 9: BROAD evaluation of proposed metrics

Given the low amount of participation in this experiment, the performance of each

metric is not significantly different (T-test with p = 0.1) from other ones. However

we can still compare them based on the average rating.

It is very interesting seeing the BPM metric having the best performance in the

rhythm category with BPM together with OR being the worst. That proves that

people care more about tempo of the major beats as opposed to other onsets that

might be happening in the track.

From the timbral perspective, although weighting was supposed to improve the

similarity by putting more weight on lower-indexed coefficients, from the results of
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our experiment it had degraded the performance slightly. Moreover, looking at all

metrics across categories, MFCC metric had achieved the best performance overall

with average BROAD score being 1.25.

For the high-level metrics, comparing two genre-based metrics, Rosamerica and

Dortmund models, we see that performance of Dortmund in much higher than that of

Rosamerica, which signifies the better quality of the model. Moods metric performed

better than Rosamerica, and instruments’ average is similar to Rosamerica, alhough

as we mentioned before, there is no statistically significant difference between those.

Figure 10: Track bias of BROAD evaluation

Another interesting and important thing to look at is the rating bias towards partic-

ular tracks. The average similarity rating for each of the 6 tracks is shown in figure

10. And from the figure we can see that the difference between average ratings of

tracks is not smaller than differences between metrics in the same category, even

across categories. So the performance of the metrics is significantly influenced by

the query track.

That definitely has to do with amount of potentially similar tracks in the database.

Particularly, the Skrillex track has the lowest average similarity, which might be

attributed to lack of dubstep presence on the AB in comparison with other genres

like rock or pop. The bias towards higher evaluation rankings is present in the metal

track by Amorphis and the cinematic soundtrack from Howard Shore, which can be

attributed to higher availability of potentially similar tracks in the database.
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Discussion and future work

One of the most important results of this thesis is the introduction and implementa-

tion of the platform that can be used for building different similarity metrics as well

as large-scale evaluation. Although similarity metrics that are inspired by the latest

state-of-the art algorithms have been implemented, the evaluation hasn’t shown any

significant results due to lack of user participation. Moreover, the evaluation data

of proposed metrics that has been gathered is a good proof of the platform usability

and scalability.

5.1 System performance

The performance of the system is evaluated based on the query time. Because of

the way the database system handles indices, there are two states that have vastly

different performance: cold - when the index hasn’t been used in a while the database

unloads it from memory; and hot - when the index has been used recently, thus it is

partially loaded into the memory. In the cold state queries take additional time for

the relevant part of index to be loaded into memory, that is directly influenced by

reading speed of storage medium being used (HDD vs SSD). The amount of available

memory is also important as the indexes that are used will push out indexes that

are used less, however the OS caching mechanism speeds up this process comparing

to direct reading from the disk, which proves that keeping the database in hot state

31
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improves performance more than just memory vs storage read speed.

When the amount of requests sent to the server is not enough, the database will

spend most of the time in cold state, thus having much longer queue response time.

However, if the server is much more active with requests being much more regular,

performance will improve significantly with query time being much faster.

Because of query times being too long for the cold state of the database (more than

several minutes for bigger feature vectors such as MFCCs), we artificially added more

requests to simulate the database being in hot state for performance evaluation being

closer to real-world scenario.

In the hot state, the query time for most descriptors is less than 1 second, with

an exception of timbral (MFCC, GFCC) and genre (Rosamerica and Dortmund)

descriptors that sometimes take more, but still less than 10 sec. In the cold state the

loading of heavy indexes, such as MFCC or GFCC usually takes around 5 minutes

with occasional outliers. Indexes with smaller dimensionality take comparatively

short time to be loaded from cold state - generally less than 20 seconds, however

this performance is still not acceptable for a live system. Thus as we mentioned

before - it is important to keep the database in the hot state.

Query times are noticeably larger for vector spaces with large number of dimensions,

so our proposal of building hybrid metrics based on concatenation doesn’t work very

well, thus other options need to be explored, e.g. rank fusion or cascading. Rank

fusion would still take advantage of efficient KNN look-up, but would require large

number of returned tracks to effectively take advantage of intersection between the

sets. Cascading suffers from inner queries having to run sequential search instead of

taking advantage of indexes, thus its usefulness depends on its comparative perfor-

mance to high-dimensional hybrid queries.

5.2 Summary

To summarize, we can definitely say that the proposed system achieves acceptable

performance, which can be further improved by using faster storage drives as well as
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overall power of the server. The evaluations for the introduced metrics are promising

and prove the usability of the system, however the significance of our evaluation

results is not big enough due to lack of user participation.

5.3 Future work

The current usability of AcousticBrainz platform is limited for a casual user, as it

lacks functionality to get to track that you have in mind quickly. Currently the only

way to do this is to use MusicBrainz to find the MBID of the sought track, and use

it to access AB page of that recording. Thus we had no evaluations of tracks, other

that have been provided (6), because users had troubles accessing them on AB.

To address this issue, AB needs UI and UX improvements, primarily for browsing

experience of different recordings based on artist, album and track name.

In current state, similarity results can be only accessed and evaluated on the AB

page of that track. Similarity functionality that is implemented in open-source

project such as AB might be of great use to multiple third-party apps and websites.

A natural extension of implemented functionality is to make it available via the

AcousticBrainz API. As it will provide access to many more users, the issue with

keeping the database in hot state will be partially addressed.

Moreover, as per the initial proposal, once we have the baseline metrics implemented,

it is not difficult to build hybrid metrics from baseline blocks. We can allow users to

combine already transformed feature vectors into new hybrid similarity metrics with

subsequent evaluation to find new high-performing metrics. There is great potential

in such functionality to even find new approaches to compute similarity efficiently

and precisely.

At the time of evaluating frameworks for the thesis, there had been a framework that

had been overlooked due to its novelty and alpha availability - Annoy1 by Spotify.

As it evolved overtime, now it is a flexible alternative to PostgreSQL cube extension.

However, due to the timing constraints it hasn’t been evaluated and tested in the

1https://github.com/spotify/annoy

https://github.com/spotify/annoy
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scope of this thesis. For the future work it can definitely be considered and its

performance compared with PostgreSQL.
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Appendix A

Code

All of the code used in this paper is open-source and available on GitHub:

• AcousticBrainz: https://github.com/metabrainz/acousticbrainz-server/

• AcousticBrainz fork with similarity implementation: https://github.com/

philtgun/acousticbrainz-server/

• Various scripts to retrieve data from database, process it and plot figures that

are used in the paper: https://github.com/philtgun/smc-thesis/
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