OpenRiskNet

Deliverable Report D2.3

Report on deployment of virtual
infrastructures with service discovery
and container orchestration

* X %
* *
* *
* *

* 5k

This project is funded by

the European Union

OpenRiskNet: Open e-Infrastructure to Support Data Sharing, Knowledge
Integration and in silico Analysis and Modelling in Risk Assessment

Project Number 731075

www.openrisknet.org

http://openrisknet.org/

Project identification

Grant Agreement

731075

Project Name

OpenRiskNet: Open e-Infrastructure to Support Data Sharing,
Knowledge Integration and in silico Analysis and Modelling in
Risk Assessment

Project Acronym

OpenRiskNet

Project Coordinator

Douglas Connect GmbH

Star date 1 December 2016
End date 30 November 2019
Duration 36 Months

Project Partners

P1 Douglas Connect GmbH Switzerland (DC)

P2 Johannes Gutenberg-Universitat Mainz, Germany (JGU)

P3 Fundacio Centre De Regulacio Genomica, Spain (CRG)

P4 Universiteit Maastricht, Netherlands (UM)

P5 The University Of Birmingham, United Kingdom (UoB)

P6 National Technical University Of Athens, Greece (NTUA)

P7 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten
Forschung E.V., Germany (Fraunhofer)

P8 Uppsala Universitet, Sweden (UU)

P10 Informatics Matters Limited, United Kingdom (IM)

P11 Institut National De L’environnement Et Des Risques,
France (INERIS)

P12 Vrije Universiteit Amsterdam, Netherlands (VU)

OpenRiskNet

m Page 2

Deliverable Report
identification

Document ID and title

Deliverable 2.3 Report on deployment of virtual
infrastructures with service discovery and container
orchestration

Deliverable Type Demonstrator
Dissemination Level Public (PU)
Work Package WP2

Task(s)

Task 2.3, 2.4, 2.5, and 2.6

Deliverable lead partner

uu

Author(s) Ola Spjuth (UU), Tim Dudgeon (IM), Daniel Bachler (DC), Denis
Gebele (JGU), Micha Rautenberg (JGU), Jonathan Alvarsson
(UV), Pantelis Karatzas (NTUA), Egon Willighagen (UM), Chris
Evelo (UM), Marvin Martens (UM), Thomas Exner (DC)
Reviewed by Barry Hardy (DC)

Status Final

Version V1.0

Document history

2018-05-15 Draft version
2018-05-31 Final version

OpenRiskNet

- Page 3

Table of Contents

Summary 5
Introduction 6
System analysis and description 6
Demonstrator Access 8
Deployment 8
Virtual Infrastructure and OpenShift cluster 8
Automating deployment 9
Services and templates 9
Security and encryption 1
General infra applications and databases 1
Monitoring, logging and auditing 12
Security environment 13
Reference environment 15
Service discovery 18
Aim 18
OpenRiskNet Service Description 18
The Service Registry 20
Available services 22
Risks and mitigations 25
Technical issues encountered and future work 26
Conclusion 27
Glossary 27
References 28
Page 4

OpenRiskNet

Summary

This report documents the Demonstrator for the Deliverable 2.3, describing the
deployment of virtual infrastructure and applications making up the OpenRiskNet Virtual
Research Environment (VRE). It outlines the system analysis, deployment fundamentals,
service discovery, and a list of the currently available services. The production reference
instance is deployed on the Swedish Science Cloud (SSC), and end user access is available
at https://home.prod.openrisknet.org.

This deliverable includes work performed towards the following tasks in the DoA:

Task 2.3: Establish security environment
Task 2.4: Services discovery
Task 2.5: Deployment of virtual infrastructures and container orchestration
frameworks
e Task 2.6: Establishment and maintenance of OpenRiskNet reference instance

OpenRiskNet m Page 5

https://home.prod.openrisknet.org/

Introduction

The OpenRiskNet Consortium develops the OpenRiskNet e-infrastructure for the
harmonisation and improved interoperability of data and software tools in the area of
predictive toxicology and risk assessment. It will combine interoperable web services
providing data or analysis, processing and modelling tools communicating over
well-defined and harmonised application programming interfaces (APIs). The services will
be deployable within an OpenRiskNet Virtual Research Environment (VRE)"?, and
OpenRiskNet will provide resources to enable users to instantiate their own virtual
infrastructures populated with the applications and middleware making up the VRE on
public or private cloud resources, as well as in-house server/workstations. The
OpenRiskNet e-infrastructure and VRE will support many aspects of risk assessment by
allowing for the integration of all toxicology-related data sources, for the implementation
and execution of processing and analysis pipelines and for the execution of modelling
workflows.

System analysis and description

The OpenRiskNet infrastructure builds fundamentally on containers®* as a core technology
for enabling portable, isolated environments for applications that can be exposed as
services within the e-infrastructure. In order to manage multiple containers on distributed
resources (compute nodes), a container orchestration system is needed to accommodate
for starting, stopping, scheduling, and packing containers on a set of compute nodes. The
most widely used container orchestration systems include Docker Compose, Docker
Swarm, Kubernetes, and OpenShift. The OpenRiskNet project considered these and other
options (see Deliverable 2.7) and landed at a decision that at present the most suited for
our needs are either Kubernetes (backed by Google) or OpenShift (Red Hat’s distribution
of Kubernetes with important extra capabilities). While we kept the door open towards
Kubernetes, the current development and production environment is based on OpenShift.

While containers and container orchestration can be run on single computers such as
servers, virtual infrastructures (comprising compute nodes, networks, storage, etc.) in
elastic environments such as available cloud computing providers, offer compelling
properties regarding cost effectiveness and improved resilience. A fundamental design
decision in OpenRiskNet is to implement the e-infrastructure as a Virtual Research
Environment (VRE), consisting of the deployment of virtual infrastructure, the middleware
in terms of container orchestration software and workflow engines, as well as a suite of
compatible tools packaged as docker containers with the APIs defined to sustain semantic
interoperability between the services.

The OpenRiskNet consortium is providing its own reference VRE that acts as the public
showcase for the project, but users and organisations should also be able to launch
OpenRiskNet VREs on their own resources. In order to achieve this, a high grade of
automation on all levels of the infrastructure is needed. With such complexity comes the
importance of testing, and continuous integration (CI) and continuous deployment (CD)
has been set up by the OpenRiskNet consortium to facilitate continuous packaging,
testing, and deployment. The development infrastructure and CI/CD system has previously
been reported in D2.1.

OpenRiskNet m Page 6

Model building by workflows

Packaged model

Predict

User

Cloud / Server

L

S-crlp

Figure 1: An example case of the use of OpenRiskNet VRE for predictive models. Scientific
workflows can be used to automate model building components, with the resulting model
packaged as a container. The container can then be deployed in the OpenRiskNet VRE as a
service/pod in OpenShift. The service can then provide end-user services, e.g. in the form
of web-based interfaces (that can be consumed by humans) and REST APIs (that can be

consumed via scripts).

OpenRiskNet

n Page 7

Demonstrator Access

This is a ‘demonstrator’ report. As such we concentrate primarily on describing how the
output of the project can be demonstrated at the Month 18 stage. The report was mostly
written in May 2018 as the project approached its mid-point. At this stage the project is in
its most active stage, and if the report is read even a few weeks later, some aspects might
have changed significantly. To accommodate this, we try to provide basic information in
this report, including screenshots, but to link out to live sources of information such as
GitHub repositories and Google Drive which will continue to be updated.

In order to demonstrate many of the systems in the production site a login will be needed.
There are three types of user accounts.

1. OpenRiskNet partner applications that have been deployed to the site can be
accessed as an end-user. This is straightforward as individuals can login using one
of the social authentication providers such as GitHub or LinkedIn. Information on
how to do this is available from the reference site home page:
https://home.prod.openrisknet.org.

2. Access to the OpenShift console, APl and command line tools requires developer
access. This is controlled through the OpenRiskNet GitHub organisation and a small
number of dedicated admin accounts. Viewing these parts is best done under
guidance of a developer experienced with the system.

3. For the demonstrator reference instance, access to administrative areas of the
cloud provider and OpenShift will not be possible as access needs to be tightly
controlled. Instead we will arrange for a guided tour of these areas on request.

The documentation for the project is primarily in GitHub projects owned by the
OpenRiskNet organisation (https://github.com/OpenRiskNet). All these documents are
publicly accessible under open licenses.

Deployment

Virtual Infrastructure and OpenShift cluster

The OpenRiskNet VRE requires a virtual infrastructure to be instantiated on either a public
cloud (laaS) provider or a local computer resource. The procedures for creating the
OpenShift cluster suitable for OpenRiskNet VRE on a virtual environment such as the SSC
OpenStack environment (and in future other types of sites such as Amazon Web Services
(AWS)) are described here:

https://github.com/OpenRiskNet/home/tree/master/openshift/environments

The procedures for deploying the individual OpenRiskNet infrastructure components and
partner applications are described here:
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments

The purpose of this deployment documentation is to provide descriptions of how to
deploy these applications to your own Virtual Research Environment (VRE). The aim is to
make this as simple and automated as possible by making these applications available
from the OpenShift service catalog so that they can be deployed using the OpenShift web

OpenRiskNet m Page 8

https://home.prod.openrisknet.org/login.html
https://github.com/OpenRiskNet
https://github.com/OpenRiskNet/home/tree/master/openshift/environments
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments

console as well as using command line tools.

Automating deployment

In order to enable user-initiated instantiation of the OpenRiskNet VRE, we use KubeNow
(https://github.com/kubenow/KubeNow), a cloud-agnostic platform for microservices,
based on Docker and Kubernetes that was developed within the H2020-PheNoMeNal
project (http://phenomenal-h2020.eu/home/)®. KubeNow provides a seamless mechanism
to set up ready-to-use Kubernetes-based research environments, aimed to support
on-demand scientific workloads. We extended KubeNow with functionality to instantiate
OpenShift clusters, and set up the infrastructure applications needed for OpenRiskNet
VRE. The present version is not feature-complete, with some functionality missing for
different cloud providers, and the remaining features will be added during M19-M30.

Services and templates

A key aspect of automating the provisioning of applications is through OpenShift
Templates. These define all aspects of an application, and typically consists of at least
three components:

1. a DeploymentConfig that defines the Docker images to run and the options for
running them in a Pod;

2. a Service that provides access to the running Pods from within the cluster; and

3. a Route that provides access to a Service from outside the cluster.

Templates often define additional components of the running application such as
configuration and persistent storage.

The aim is that by defining an appropriate template the provisioning of a complex
application can be turned into a ‘one click’ operation. OpenShift itself uses this extensively
to provision parts of the OpenShift infrastructure, and some of these applications are
quite complex.

In some cases, these templates are complex, and significant work was spent on providing
information and training to project partners in getting up to speed with generating these.
In particular we have:

1. Created extensive documentation in the OpenRiskNet Home GitHub repository that
can be found here: https://github.com/OpenRiskNet/home/tree/master/openshift

2. Run a regular series of on-line clinics where partners have been able to share
experiences, material for which is located in the project’s Google Drive:
https://drive.google.com/drive/folders/1A98zl9P0387ifTsIOwW2QPOlinGX6LlTwqg

Our aim is to describe and establish best practices for deploying containerised
applications to a VRE. Some examples are:

1. The ‘example-java-servlet’ project that contains a very simple ‘Hello World’ type
project and aims to demonstrate best practice for how to build and deploy it to a
VRE: https://github.com/OpenRiskNet/example-java-servlet

2. Deployment of the Squonk application (IM) to a VRE, which is an example of
deploying a complex application involving multiple containers and incorporating
many of these best practices:
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/squonk

OpenRiskNet m Page 9

https://github.com/kubenow/KubeNow
http://phenomenal-h2020.eu/home/
https://github.com/OpenRiskNet/home/tree/master/openshift
https://drive.google.com/drive/folders/1A98zl9P0387ifTsI9w2QP0linGX6lTwq
https://github.com/OpenRiskNet/example-java-servlet
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/squonk

3. LAZAR predictive toxicology service benefits from the automatic deployment
whenever the source code is changed. For this a trigger chain is used which
creates a docker image including the changed code with all dependencies and pulls
to re-deploy the service.

4. Jagpot predictive and modeling services, also benefits from this deployment
strategy. Jaqpot consists of many microservices that are dockerised and the
manual deployment of these was very time consuming. With Openshift this became
easier by simply creating a template that handles the deployment, with all the
necessary components needed by the services. After deploying the template, the
user can customise the deployment in many ways such as scaling up and down on
premise. The Jagpot deployment template can be found at:

https://github.com/KinkyDesign/KubeAndOpenshiftTemplates

One of the most important aspects that OpenShift provides above and beyond Kubernetes
is an integrated CI/CD infrastructure. This allows to continually update applications as
they are developed. Docker images are rebuilt and published to repositories so that they
can be automatically deployed in any VRE. OpenShift provides multiple ways to achieve
this, and we are setting up partner applications to utilise this. Examples include:

1. Simple build and deployment configs that update the Landing page that lists the
partner applications that are deployed whenever the website material is updated in
GitHub. A commit to GitHub with new material results in the web server being
redeployed with the new material within a few minutes without the need for any
human intervention. See the Home deployment and build of the openrisknet-infra
project https://prod.openrisknet.org/console/project/openrisknet-infra/overview

2. The Squonk CI/CD project which runs Jenkins to build the Docker images for
Squonk, ultimately resulting in redeployment of the application when updates are
committed to the GitHub repository:
https://prod.openrisknet.org/console/project/squonk-cicd/overview.

The work on this is ongoing. Admin access is needed for both of these sites.

s OOODd - ,

Legend EYRSSforall [)RSS forfalures [RSS for just latest builds

maven-hfrzp {offline)

Figure 2: Screenshot from the Jenkins continuous integration service as part of the Cl/CD
process for building the Squonk Computational Notebook and other projects used by
Squonk. This will ultimately allow automated updating of applications as changes to their
source are made.

OpenRiskNet m Page 10

https://github.com/KinkyDesign/KubeAndOpenshiftTemplates
https://prod.openrisknet.org/console/project/openrisknet-infra/overview
https://prod.openrisknet.org/console/project/squonk-cicd/overview

Security and encryption

Running web-based applications over HTTPS is nowadays the norm. This provides
encryption of traffic in transit, and provides some guarantees over the authenticity of
sites. To achieve this, TLS certificates have to be obtained from an authority that is
trusted by the web browser. Historically this has been complex and expensive to achieve.

OpenRiskNet is taking advantage of two recent developments in this area that make the
process of securing the OpenShift Routes (a Route provides external access to services
running on the cluster) with HTTPS:

1. Let’s Encrypt (https://letsencrypt.org/) allows to generate trusted certificates free
of charge. Let’s Encrypt is run by the non-profit Internet Security Research Group.
Certificates have a 3-month lifetime making it highly desirable to automate the
generation and renewal process.

2. ACME Controller (https://github.com/tnozicka/openshift-acme) is a project that
automates the generation of TLS certificates for OpenShift routes.

By providing the ACME Controller as part of the infrastructure of a VRE, securing routes
with TLS becomes remarkably simple. The route definition just needs to have the
kubernetes.io/tls-acme: "true” annotation added to its definition and the ACME Controller
will generate and deploy TLS certificates and renew them before they expire. We aim to
have all public routes secured with TLS.

Traffic within the OpenShift cluster is also secured using TLS certificates. In this case, as
this traffic is entirely internal to the cluster, it does not need to have a public chain of
trust, and so self-signed certificates are used.

The OpenShift Console and REST API are publicly-accessible services. These are secured
using a master certificate from Let’s Encrypt. OpenShift provides a mechanism for
updating these certificates.

Internal traffic between OpenRiskNet applications currently mostly runs over HTTP as it is
private to the cluster. We have established a mechanism for securing this traffic with
mutual TLS should that be required. Details can be found here:
https://github.com/OpenRiskNet/home/blob/master/openshift/recipes/service-communica
tion-via-tls.md

By default, data in an OpenRiskNet VRE (e.g. database files) is not encrypted on disk as it
is private to the cluster, but most cloud providers, including OpenStack, provide a simple
mechanism to encrypt volumes, so this would be easy to provide if necessary.

General infra applications and databases

As part of the process of deploying a VRE we include key infrastructure components that
will be used by many of the applications that will be deployed. This avoids the developer
from needing to provide and manage these components e.g. backup and restore will be
handed centrally by the VRE administrators. Currently these infrastructure components
include:

e PostgreSQL database
e RabbitMQ message queue
e Red Hat Single Sign On for authentication and authorisation

OpenRiskNet 5] Page 11

https://letsencrypt.org/
https://github.com/tnozicka/openshift-acme
https://github.com/OpenRiskNet/home/blob/master/openshift/recipes/service-communication-via-tls.md
https://github.com/OpenRiskNet/home/blob/master/openshift/recipes/service-communication-via-tls.md

e ACME controller for generating and maintaining TLS certificates
Additional infrastructure components may be added during the project.

Instructions for deploying these components can be found here:
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/openrisknet-in
.':r_a
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/acme-controll
er

Monitoring, logging and auditing

Consolidated logging and metrics can be enabled for a VRE by deploying some additional
components. These provide a powerful way to know what is happening on the cluster and
are very useful for troubleshooting. In a distructured multi-server environment this would
otherwise be hard to achieve. This comprises the following components:

1. Consolidated logging using the ElasticSearch, Fluentd and Kibana (the EFK stack).
This consolidates all the logs from the running hosts and containers into an
ElasticSearch database that can be queried using Kibana (creating dashboards is
also possible)

2. Consolidated metrics using Hawkular. This is OpenShift’s internal mechanism for
scraping metrics from pods to that CPU; memory and network usage can be
monitored

3. Metrics using Prometheus, which is a more comprehensive metrics solution that
can gather host and container metrics, and can provide automated alerts (e.g.
about failures or disks becoming full). Dashboards can be generated with Grafana.

Graph Console

Figure 3: Monitoring with Prometheus. This screenshot shows how visualisation of the
number of Kubernetes pods running on each node in the OpenShift cluster is possible. A
wide range of metrics can be monitored with Prometheus, and alerts can be generated
from these metrics e.g. when a certain metric goes outside the expected normal range.

OpenRiskNet m Page 12

https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/openrisknet-infra
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/openrisknet-infra
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/acme-controller
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/acme-controller

Whilst consolidated logging, metrics and Prometheus have been deployed, we have yet to
utilise these more. This will be done as the project progresses.

Security environment

The security environment is an integral part of an OpenRiskNet VRE. When a user creates
a new VRE the security infrastructure is already in place, and applications that are
deployed to the VRE can integrate into that security infrastructure.

However, this security environment needs to remain flexible, allowing the administrator to
configure it according to their organisation’s needs. An example would be the need to
delegate authentication to the organisation’s LDAP or Active Directory server.

We chose to use Red Hat Single Sign On (SSO) as the security environment. This is a Red
Hat supported product, based on the upstream open source project Keycloak. This
provides an enterprise grade security environment that is very flexible in how it can
operate. We highlight two aspects:

1. Applications can be integrated into the security environment using OpenlID Connect
(an extension of OAuth) or SAML2. Both are widely adopted protocols supported by
nearly all application servers. This allows OpenRiskNet partner applications to be
easily integrated into the environment and benefit from the SSO environment. To
date the Squonk (IM) and Jagpot (NTUA) applications have been incorporated.

2. The ability to federate authentication to other sources such as LDAP or social
providers such as Facebook, GitHub or Linkedln. We have demonstrated this using
the GitHub provider. This feature allows the administrator of a VRE to configure
authentication according to their needs.

We have created documentation on how to set up the SSO environment as part of the
OpenRiskNet VRE that can be found here:
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/openrisknet-in
fra

We ran a clinic for OpenRiskNet partners on 12-APR-2018 on the topic of how to integrate
applications into the SSO environment.

Information on how to automatically incorporate the Squonk Computational Notebook into
the SSO environment can be found here:
https://github.com/InformaticsMatters/squonk/tree/openshift/openshift/templates

Jagpot REST services utilise the OpenlID connect protocol that is offered by Keycloak. In
order to do so, open source libraries certified by http://openid.net/connect/ foundation,
have been used. This procedure and examples can be found in the clinic slides and can be
found here:

https://docs.google.com/presentation/d/1-xxYFyrl5zaNyQsdQOfmOMqgSoHalAylLhmZsw9C9
vHK

Administrative access to the SSO environment (https://sso.prod.openrisknet.org/auth/) is
restricted to a small number of OpenRiskNet administrators.

Access to OpenRiskNet applications that are deployed to the VRE is handled through an
SSO ‘realm’ (by default this realm is called ‘OpenRiskNet’). Each application is registered
to the realm as a ‘client’, and end users access those applications by logging into that
realm using whatever mechanism is configured by the administrators, but usually requiring

OpenRiskNet m Page 13

https://access.redhat.com/products/red-hat-single-sign-on
https://www.keycloak.org/
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/openrisknet-infra
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/openrisknet-infra
https://github.com/InformaticsMatters/squonk/tree/openshift/openshift/templates
http://openid.net/connect/
https://docs.google.com/presentation/d/1-xxYFyrl5zaNyQsdQOfmQMqSoHalAy1LhmZsw9C9vHk
https://docs.google.com/presentation/d/1-xxYFyrl5zaNyQsdQOfmQMqSoHalAy1LhmZsw9C9vHk
https://sso.prod.openrisknet.org/auth/

them to enter a username and password. We have demonstrated that we can use GitHub
as a social login provider, but this feature is not currently enabled. We are discussing how
best to handle the end user authentication, with the preference to use a social login
provider, possibly Linked In. Currently we use usernames and passwords handled by the
SSO application and stored in the SSO database (users can potentially register
themselves).

Another possibility is for Red Hat SSO to delegate to another OpenlD Connect instance
(e.g. another Red Hat SSO instance) allowing federation of users between VREs.

We have demonstrated enabling 2 factor authentication, with the user needing to generate
a login token using the Google Authenticator mobile application. Currently we enable this
only for administrative accounts.

MOBILE AUTHENTICATOR SETUP

f?\ You need to set up Mobile Authenticator to activate your account.

1. Install one of the following applications on your mobile

o FreeQTP
o Google Authenticator

2. Open the application and scan the barcode

3. Enter the one-time code provided by the application and click Submit to finish the setup

Figure 4: Two factor authentication. For sensitive administrative accounts we add the
requirement to enter an additional token that must be generated from a device such as a
mobile phone. This provides significant additional security over just using a username and
password.

The SSO environment can be backed up by a number of means:

1. Export/Import of the ‘realm’ definition as a JSON file

2. Creation of a complete export during startup of the SSO application (this requires a
small amount of downtime)

3. Backup of the PostgreSQL database that is used to store the information from the

OpenRiskNet 5] Page 14

SSO application.

Reference environment

In the D2.1 report provided at M6 we described the setup of a development environment
that supported the basic software development activities of the project. This has now
been superseded by a new production environment that provides the basis for the
long-term reference site for the project, and the basis for creating a new VRE that could
be created by project partners or third parties.

This production site is currently comprised as follows:

e Virtual server and networking environment provided through the OpenStack
running on the Uppmax region of the Swedish Science Cloud. Currently this
consists of:

o 1 master node running the OpenShift API, controllers and etcd

1 infrastructure node running the Docker registry and Router

7 worker nodes dedicated to OpenRiskNet applications

3 worker nodes dedicated to performing HPC-style work

3 storage nodes providing persistent storage through GlusterFS

(note: the worker nodes can be easily scaled up or down)

e OpenShift Origin cluster deployed to those servers providing a container
orchestration platform and Continuous Integration and Continuous Delivery (CI/CD)
capabilities

e Containerised consolidated logging and metrics management systems deployed to
allow efficient monitoring and alerting of the cluster

e Containerised solutions for components that can be considered as OpenRiskNet
‘infrastructure’ components, including

o Databases (PostgreSQL)

o Message Queues (RabbitMQ)

o Single Sign On (SSO) security infrastructure using Red Hat SSO (described in
the previous section)

o OpenShift ACME as a mechanism to secure external routes using TLS
(HTTPS)

o OpenRiskNet Service Registry for discovering OpenRiskNet services

e Partner applications including (see Table 1 for more details):

o Squonk Computational Notebook (IM)

Lazar predictive toxicology service (JGU)

JGU WEKA REST Service (JGU)

Jagpot predictive modelling services (NTUA)

BridgeDB (UM)

CPLogD (UU)

Modeling Web (UU)

O O O O

O O O O O O

The OpenStack console is located at https://uppmax.cloud.snic.se/project/. An account at
the SSC is needed to access this. The console provides access to the OpenStack
environment and allows servers, networks and storage to be provisioned. This can also be
performed using command line tools.

OpenRiskNet m Page 15

https://uppmax.cloud.snic.se/project/

The following screenshot shows the servers for the production environment.

UPPMAX ¥ & so6i6 v
Project | Compute | Instanc

Instances

large armlev-koypai- a0 8D 1837 10061608148 Adive nova Nene Rumning 3 weoks, & days Creste Snapshor | =

o te.010.opensiaciiocal centos. 1802.05-base-01-A - 100037 g armdev-koypair- a0 8D 1837 10061608148 Adve nova Nane Running 1 weok, 2 days Croste Srapsnet |

Figure 5: A screenshot showing the servers for the production environment. The
OpenStack environment on the SSC allows to provision virtual machines, networks and
storage. This screenshot of the OpenStack web console shows the VMs that form the
production site.

The OpenShift web console can be accessed at this location:
https://prod.openrisknet.org/. A developer account with the OpenRiskNet GitHub
organisation is needed.

Once logged in, projects (Kubernetes namespaces) can be accessed based on
user-specific access rights. For instance, the following screenshot is for the
‘openrisknet-infra’ project that contains containerised applications for key parts of the
OpenRiskNet infrastructure, including the SSO application and the PostgreSQL database it
uses.

OpenRiskNet - 5] Page 16

https://prod.openrisknet.org/

OPENSHIFT ORIGIN

Figure 6: OpenShift web console. This screenshot shows one of several projects from the
production site. The console allows to inspect and update the applications running in
these projects.

A home page is available that provides links to the systems in the reference site that are
described above: https://home.prod.openrisknet.org. Administrator rights will be needed to
access some of these systems. Basic usage instructions can be accessed from that page.

A guide for deploying production-ready services to OpenRiskNet VRE can be found here:
https://github.com/OpenRiskNet/home/blob/master/openshift/deployments/ProductionDe
ploymentGuide.md

The deployed applications and instructions for using them will be continually updated
during the project and, in this way, managed externally to this report. Please refer to the
home page for further information: https://home.prod.openrisknet.org

The end user support infrastructure is online (reported in Deliverable 3.2) and available on
https://openrisknet.freshdesk.com/. Since the reference instance is only recently publicly
available and we have made little public announcements on this, the support system is
currently not in much use. However we anticipate that we will receive more requests and
questions as the OpenRiskNet VRE is tested, and we are ready and prepared to handle
these requests using the support system.

OpenRiskNet 5] Page 17

https://home.prod.openrisknet.org/
https://github.com/OpenRiskNet/home/blob/master/openshift/deployments/ProductionDeploymentGuide.md
https://github.com/OpenRiskNet/home/blob/master/openshift/deployments/ProductionDeploymentGuide.md
https://home.prod.openrisknet.org/
https://openrisknet.freshdesk.com/

Service discovery

Aim

As outlined in the project proposal and then again in detail in the D2.2 report, the
OpenRiskNet project anticipated the need for a service discovery component called the
OpenRiskNet Service Registry. This component should run within every VRE and monitor
the services in the VRE. When new OpenRiskNet services are started in the VRE these
should be discovered by the Service Discovery component, their semantically annotated
service description (called the OpenRiskNet Service Description) parsed and their
semantic information indexed for future searches. Additionally, the cluster internal DNS

name and port need to be stored in order for other services to be able to make requests
against the other services’ APIs.

OpenRiskNet Service Description

As outlined in the D2.2 report, an extensive search has been conducted to find suitable
approaches for adding semantic information to the description of REST APIs. The major
challenge in this case is that a REST API is a relatively complex interface that requires
extensive specification to be used correctly (JSON schemata, MIME types, query
parameters, header values, etc.) in addition to the needs of a semantic view on the inputs
and outputs of the operations. After careful evaluation, a combination of two approaches
was selected that extends the industry standard OpenAPI (formerly Swagger) and turns
the main openapi.json description files into the semantic web standard JSON-LD by
providing a JSON-LD context. This allows us to combine the tools of two existing,
powerful, but so far independent sets of technology stacks: OpenAPIl on the one hand to
cover the technical details of a REST API with a big toolset around automatic creation of
tools and documentation; and on the other hand JSON-LD and the semantic web
technologies around the RDF data model and in particular SPARQL queries to query
flexible knowledge graphs.

To facilitate experimentation and validate the feasibility of the OpenRiskNet Service
Description concept, a web-based Ul tool has been created called the OpenRiskNet Query
Tester. It allows authoring of OpenRiskNet Service Description documents as well as the
authoring and execution of SPARQL queries against these Service Descriptions:
https://orn-query-test.cloud.douglasconnect.com/.

OpenRiskNet m Page 18

https://orn-query-test.cloud.douglasconnect.com/

OpenRiskNet

Annotated OpenAP| Query Test

This is a tool to test the idea of using OpenAPI descriptions annotated with Json-LD Context information as the
semantic API layer for OpenRiskNet.

You can try some of the SPARQL queries below with the service that is filled in below and the default json-ld
context or you can customize them and use your own service descriptions.

Results
service description path rest input
https://lazar.prod.openrisknet.org/ REST API webservice for https:/flazar.prod.openrisknet.org Gethttp://www.w3.org InChI*Mhttp://wwwa
lazar and nano-lazar. /compound/{InChI}**http: /2001/XMLSchemat#tstring /2001/XMLSchema#
lazar (lazy structure— Hwwww3.org

activity relationships) is /2001/XMLSchematstring
a modular framework for
predictive toxicology.
With activated
Authentication &
Authorization, subjectid
authorization token are
obligatory for designated
services.

AMhttp: fwwww3.org
/2001/XMLSchema#string

SPARQL Query

Retrieves content based on "Use Cases for annotated APIs with Query Tool"

e) 1) 1) list services that can handle specific content formats e.g. chemical/x-mdl-sdfile
SELECT ?service ?description ?path ?rest ?input Zoutput WHERE {

service name

?service a orn:Service.

?service orn:info ?info.

?info orn:description ?description.

handle SD files

?s <http://openrisknet.org/schema#chemical/x-mdl-sdfile> ?format.

show REST method, path

?content orn:content ?s.

7200 orn:200 ?content.

?responses orniresponses 7200.

? i ?

?responses ornipath ?path. A

Annotated OpenAPI definition

The OpenAPI 3/Swagger 2 definition

Figure 7: Screenshot from the Annotated OpenAP! Query Tool that allows SPARQL queries
against annotated APIs.

For service providers, creation of an OpenRiskNet Service Description is a technically
straightforward process if an OpenAPl/Swagger definition already exists for a REST API
(which is a very common case). The creation of a document explaining the details of the
semantic annotation for REST APl authors is work in progress and will be available on the
OpenRiskNet website.

After some experimentation, a minimal Json-LD context was created that allows a REST
API to be treated as an OpenRiskNet-compliant service. This minimal context consists of a

OpenRiskNet ISK ASSESSMEN RASTRUCTUR n Page 19

set of alias definitions to make Json-LD keywords that are illegal Json keys for an
OpenAPl.json/Swagger.json valid by prefixing with “x-orn” (lines 4 and 5 in the listing in
Figure 8). To really use the power of semantic APl annotation, every service provider
should then additionally define a subset of the json-keys used in the response body and

provide meaningful ontology terms for them (see the “smiles”, “inchi” etc examples in the
listing below)

{"@context": {

"@vocab": "http://openrisknet.org/schema#",
"x-orn": "http://openrisknet.org/schema#",
"x-orn-@id": "@id",

"x-orn-@type":"Q@type",

"smiles": "http://semanticscience.org/resource/CHEMINF 000018",
"inchi": "http://semanticscience.org/resource/CHEMINF 000113",
"inchikey": "http://semanticscience.org/resource/CHEMINF 000059",
"cas": "http://semanticscience.org/resource/CHEMINF 000446"

}

Figure 8: An example Json-LD context with four API specific keys defined as RDF
predicates (in this case using terms from the CHEMINF ontology)

The Service Registry

A first iteration of the OpenRiskNet Service Registry was created and deployed into the
reference environment (http://orn-registry-openrisknet-registry.prod.openrisknet.org/).

The Service Registry listens to Kubernetes events related to Kubernetes services to
discover when new services become available inside the Kubernetes/OpenShift
installation. The Kubernetes service description of a new service is then checked for the
“openrisknet-static-services” annotation. If such an annotation exists it is expected to
contain a link to the OpenRiskNet Service Description which is then downloaded, parsed
and indexed. The service is then shown in the user interface of the service registry and
SPARQL queries can be run against the information contained in the service description to
find data based on the semantic annotations.

OpenRiskNet m Page 20

http://orn-registry-openrisknet-registry.prod.openrisknet.org/

OpenRiskNet Dashboard

Open e-Infrastructure to Support Data Sharing, Knowledge Integration and in silico Analysis and Modelling in
Risk Assessment

Active OpenRiskMNet services

grn=-chemidconwvert

Thiz REST Apl allows you ta submit chemieal identifiers in one format and translate it into ancther format (e.g. SMILES ->
InChi)

Endpoints:

= fcas/tofinchi

s feasitodinchikey
= fcas/to/smiles

finehifto/cas

finehifta/finchikey

finchiftofemiles

finchikey/tofcas

-

finchikey/tofinchi

finchikey/tofsmiles

fmolWeight

fsmiles/tofcas

familes/tafinchi

s fermiles/ro/inchikey

lazar-rest

REST APl webservice for lazar and nano-lazar, *lazar® (lazy structuredactivity relationships) is a madular framework for

predictive toxicology. With activated Authentication & Authorization, subjectid authorization token are obligatory for
designated services
Endpoints:

fmodel

{radel/{id)

* freport

frepart/{id}

-

fdataset

-

fdataset/{id}

Figure 9: OpenRiskNet Service Registry showing the lazar and chemidconvert services

As of May 2018, the lazar modelling service (JGU) and the chemidconvert service (DC) have
been adapted to serve a OpenRiskNet registry service compliant openapi definition. The
other services are currently being modified to be findable via the Service Registry (see
next section).

A document outlining the steps necessary to create a Registry Service compliant OpenAPI
definitions is available in the documentation material of the registry:

https://docs.google.com/document/d/1a9Wndz5ngBz02Km93ISpHjvftLLHufTo6Do3UpqgyliE
JA

OpenRiskNet ASK ASSESSMENT E-INFRASTRUCTURE n Page 21

https://docs.google.com/document/d/1a9Wndz5nqBzO2Km93lSpHjvftLLHufTo6Do3UpqyliE/edit#
https://docs.google.com/document/d/1a9Wndz5nqBzO2Km93lSpHjvftLLHufTo6Do3UpqyliE/edit#

Available services

See below for a table and example screenshots (Figures 10-12) with details of partners’
applications as services that so far have been deployed in the OpenRiskNet environment
and featured in the Reference Instance. The services will be described in more detail in
Deliverable 4.2 due at M24.

Table 1: List of available services and links to partners’ applications. The Resources column contains
relevant links to resources for that application.

Partner Service Resources
JGU lazar Source code
Docker image
JGU WEKA Source code
https://jguweka.prod.openrisknet.org/ AP definition
Docker image
uu cpLogb Source code
OpenShift template: Uses s2i
]IIQ'MCQ di p[Qd Qpent's knet Q[gfd[a)ﬂ” D.Q&kﬂiu.ﬂ
uu Modeling Web
Y . .
IM Squonk Computational Notebook Source code
Openshift template
NTUA Jaqgpot predictive modelling services Source code
Docker image
UM BridgeDb Source code
.) Openshift template
Docker image

OpenRiskNet

Page 22

https://lazar.prod.openrisknet.org/
https://github.com/opentox/lazar-rest/tree/ORN
https://github.com/gebele/os-templates
https://github.com/OpenRiskNet/openapi-examples/tree/development/partner_apis/Johannes%20Gutenberg%20University
https://github.com/gebele/lazar-rest/blob/master/Dockerfile
https://hub.docker.com/u/gebele/
https://jguweka.prod.openrisknet.org/
https://github.com/jguwekarest/jguwekarest
https://github.com/jguwekarest/jguwekarest/blob/master/openshift/os-jguweka-template.json
https://github.com/OpenRiskNet/openapi-examples/tree/development/partner_apis/Johannes%20Gutenberg%20University
https://github.com/jguwekarest/jguwekarest/blob/master/Dockerfile
https://hub.docker.com/r/jguweka/jguweka/
http://cplogd.prod.openrisknet.org/draw/
https://github.com/pharmbio/cplogd
http://cplogd.prod.openrisknet.org/
http://modelingweb.prod.openrisknet.org/
https://squonk-notebook.prod.openrisknet.org/
https://github.com/InformaticsMatters/squonk
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/squonk
https://hub.docker.com/u/squonk/dashboard/
https://api-jaqpot.prod.openrisknet.org/jaqpot/swagger/
https://github.com/KinkyDesign/jaqpot-api
https://github.com/KinkyDesign/KubeAndOpenshiftTemplates
https://github.com/OpenRiskNet/openapi-examples/tree/master/partner_apis/NTUA
https://github.com/KinkyDesign/jaqpot-api/blob/feature/ApplicationInitialization/Dockerfile
https://hub.jaqpot.org/jaqpot-api
https://bridgedb-swagger.prod.openrisknet.org/swagger/
https://github.com/bridgedb/docker
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/bridgedb
http://www.bridgedb.org/swagger/swagger.json
https://github.com/bridgedb/docker/blob/master/Dockerfile
https://hub.docker.com/r/bigcatum/bridgedb/

https:flazar.prod.openrisknet.org/ v]

ap| Swagger AP| representation in JSON &
| /api/api.json
algorithm Algorithm o
authentication minimal Authentication service o
m /aa/authenticate Gettoken
m /aa/logout Destroy token
compound Compound v
/compound/descriptor
m J/compound/descriptor Descriptor calculation
/compound/descriptor/{descriptor}
/compound/{InChI}
v

dataset Dataset

/dataset

GET /dataset/{id}

Figure 10: Fully functional LAZAR predictive toxicology service implemented as a RESTful
service with a SWAGGER Ul as example application in the OpenRiskNet environment.

OpenRiskNet RISK ASSESSMENT E-INFRASTRUCTURE

Page 23

{3} Jaqpot AP' https:/fapi-jagpot.prod.openrisknet.org/jagpot/services/swa¢ || AQIC5wM2LY4SfcxjRyAzFwmt

Jagpot API

Jagpot v4 (Quattro) is the 4th version of a YAQP, a RESTful web service which can be used to train machine learning models and use them to
obtain toxicological predictions for given chemical compounds or engineered nano materials. The project is written in Java8 and JEE7.

Created by Charalampos Chomenidis, Pantelis Sopasakis, Evangelia Anagnostopoulou, Angelos Valsamis, George Drakakis, Georgia
Tsiliki, Philip Doganis, Haralambos Sarimveis
See more at https://github.com/KinkyDesign/jaqpot-web/issues

Contact the developer

aa

report Show/Hide List Operations =~ Expand Operations

feature

nd Operations

task

model

readacross

biokinetics

enm

pmml

interlab

validation Show/Hide | List Operations

openrisknet

List Operations

Figure 11: Jagpot REST services (Swagger documentation and Swagger Ul) in the
OpenRiskNet environment.

‘5d (3unread) % (€ Empty/etc x| [E] OpenRiskl x | B Verne XCh x| €) jupyter-on x M RH-SSOA x () OAuthApy x |EID23Repor x ' [} Ovenview x & GoogleClc % « G OpenShift ' x €} squonkisq = | [httpsifisq x L]
foce e 60

3-113

& C @ Secure hitpsil/squonk-natebook.prodopenrisknet.org/iortal/ 70 8session state =GF

Home

first notebook - 2 &) Create savepaint

3 2
g a SdiUpload1 ;
2
SD File
Name Ovmer it inaiat 7ol
ttanEarenactEr ParallelCoordinatePlot1 =
24y x estnotesosk udgeon Ghaseatis o echosen [eoas | F;
8 ax B RO HBALIP RDKE KED Lp ROKI Logo RDRI §
Name field name " -
- v
P
Lipinski (RDKit)1
Filter mode
INCLUDE ALL .
Number ofviolations q
1
viz a
Malweight
00 5000
Ed e e, o »
TabeDisalay Scatterpiot BoxFlot _ 50
HED count
L BS o - s
HES
ParallelCoardinatePlot Heatmap 3DMol HEA count.
o - 10
8 e, -

NGLiewer ImageViewer

Figure 12: The Squonk Computational Notebook running on the OpenRiskNet environment.

OpenRiskNet RISK

“ Page 24

Risks and mitigations

From the OpenRiskNet DoA, the Risks that are deemed relevant to the current deliverable
are R5 and R6. In the table below, we comment upon these and also list additional risks

that have been identified during M1-18.

Table 2. Description of risk and proposed risk mitigation measures

Description of risk

(level of likelihood: Low/Medium/High)

Proposed risk mitigation measures

R5: Technical advantages in computer hardware
and software concepts will render the
proposed concepts (microservices and
containerisation) obsolete (medium to high)

We will constantly monitor the stateoftheart of
available deployment and virtualisation
solutions and select the most suitable ones. If
necessary, the infrastructure will be adapted to
the changing standards.

Update at M18: Microservices and

Containerisation continue to be highly
important components in modern
e-infrastructures. If anything, their importance
has increased during M1-18.

R6: Virtualisation options will not work with
future hardware and software concepts (low)

Even if the underlying technology might change,
the concepts of microservices and
containerised applications are expected to be
valid for the foreseeable future. Specific tools
like DOCKER and MANTL can then easily be
substituted with newer approaches, when
these become available.

Update at M18: Docker is still the most widely

used containerisation implementation, but
MANTL has been discontinued and OpenRiskNet
has changed to use Kubernetes/OpenShift that
has the highest momentum and is backed by
Google and RedHat.

R10 (new): Reference instance unstable due to
national cloud providers not production-grade

We will work together with national cloud
providers to pinpoint problems. We will also
develop contextualisation protocols to
overcome potential infrastructure stability
gaps. We will also make entire deployment
process portable to allow for moving between
cloud providers where we have sufficient
resources.

R11 (new): Momentum in community shifts
from OpenShift towards Kubernetes

OpenShift adds a layer on top of Kubernetes,
we e.g. use the CI/CD in OpenShift and the
KeyCloak service provided by RedHat. There is
no conflict between OpenShift and Kubernetes,
and in case OpenShift is discontinued we can
shift towards Kubernetes.

OpenRiskNet

Page 25

R12 (new): The OpenRiskNet software stack Kubernetes is becoming more and more

becomes complex, the level of technical mainstream, and the pool of people using it
expertise needed is high, having an impact on continues to grow. This means that more
sustainability. information is made available online, and more

examples and experienced people are available.
Further, many tools and frameworks that
simplify the ecosystem is emerging. We will
stay updated on the recent developments in
the field, educate the partners in the
consortium, and document our infrastructure
and setup for more easy maintenance and
sustainability.

Technical issues encountered and
future work

The process of setting up the OpenShift cluster proved to be unexpectedly problematical
due to fragilities in the underlying OpenStack cloud environment combined with fragilities
in the OpenShift installation process. These problems are still being investigated and are
yet to be fully resolved. These problems caused significant delay in generating this
production cluster, and as a result a small number of aspects still remain to be
completed:

e Provide and test backup and restore procedures;
e Provision high availability clusters;
e Automation of the orchestration process.

The delay affects the tasks 2.3, 2.4, and 2.5 that will need to be extended in time, but
without any deviation in the total effort. The work will continue on these aspects until
M24.

OpenRiskNet m Page 26

Conclusion

In this deliverable we describe the deployment process for OpenRiskNet virtual research
environments, comprising a virtual infrastructure, an OpenShift cluster, OpenRiskNet
infrastructure services, and operational container orchestration using the underlying
Kubernetes cluster. We also describe the security environment, and the OpenRiskNet
approach to service discovery.

The deliverable is in the form of a demonstrator manifested as the OpenRiskNet reference
instance, deployed on SNIC Swedish Science Cloud (SSC) OpenStack resource, and
available at https://home.prod.openrisknet.org/. The reference instance feature 10 services
as of end of May 2018 and more to be integrated during the next months.

Glossary

The list of terms or abbreviations with the definitions, used in the context of OpenRiskNet
project and the e-infrastructure development is available:

https://github.com/OpenRiskNet/home/wiki/Glossary

Abbreviation Description

AAI Authentication and Authorisation Infrastructure

Cl Continuous Integration

CD Continuous Deployment

DoA Description of Actions

laaS Infrastructure as a Service

SSC Swedish National Infrastructure for Computing (SNIC) Science Cloud
SSO Single Sign-0On

TLS Transport Layer Security

VRE Virtual Research Environment

OpenRiskNet - 5] Page 27

https://home.prod.openrisknet.org/
https://github.com/OpenRiskNet/home/wiki/Glossary

References

1. Candela, L., Castelli, D. & Pagano, P., (2013). Virtual Research Environments: An
Overview and a Research Agenda. Data Science Journal. 12, pp.GRDI75-GRDI81. DOI:
http://doi.org/10.2481/dsj.GRDI-013

2. Hurley DG, Budden DM, Crampin EJ. Virtual Reference Environments: a simple way
to make research reproducible. Brief. Bioinformatics. 16(5), 901-903 (2015).

3. A. Silver, Software simplified, Nature, vol. 546, pp. 173-174, 05 2017.

4, Cito J, Gall HC. Using docker containers to improve reproducibility in software
engineering research. In: Proceedings of the 38th International Conference on
Software Engineering Companion - ICSE *16. ACM Press, New York, New York, USA,
906-907 (2016).

5. Payam Emami Khoonsari et al. Interoperable and scalable metabolomics data
analysis with microservices. bioRxiv 213603; doi: https://doi.org/10.1101/213603

OpenRiskNet m Page 28

http://doi.org/10.2481/dsj.GRDI-013
https://doi.org/10.1101/213603

