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Vortices in electron beams can manifest several types of topological phenomena, such as the formation of
exotic structures or interactions with topologically structured electromagnetic fields. For instance, the wave-
function of an electron beam can acquire a phase vortex upon propagating through a magnetic monopole, which,
in practice, provides a convenient method for generating electron vortex beams. Here, we show how an electric
field must be structured in order to achieve a similar effect. We find that, much as in the case of magnetic fields,
closed but not exact electric fields can produce electron vortex beams. We proceed by fabricating a versatile
near-obstruction-free device that is designed to approximately produce such fields and we systematically study
their influence on incoming electron beams. With such a single device, electron vortex beams that are defined
by a wide range of topological charges can be produced by means of a slight variation of an applied voltage.
For this reason, this device is expected to be important in applications that rely on the sequential generation and
manipulation of different types of electron vortices.

Vortices can generally be described as stagnant points sur-
rounded by a form of coiling motion. These entities can, for
instance, occur within complex fields, such as those describ-
ing the wavefunction of a quantum system or scalar optical
waves. In such systems, vortices manifest themselves as sin-
gular points of the wavefield’s phase, i.e., points around which
the phase varies by an integer multiple ` of 2π, where ` is re-
ferred to as the topological charge of the singularity [1–3].
In many cases, the presence of singularities in wavefields can
lead to exotic forms of topological or geometric phenomena.
For instance, the presence of a polarization singularity in a
tightly focused optical wave can lead to the formation of a
Möbius strip [4], while optical beams with carefully struc-
tured phase and polarization singularity distributions can re-
sult in the formation of knots [5, 6]. Other types of singular
behaviours can occur when matter waves of charged particles
interact with structured electromagnetic fields. An example
of such a phenomenon involves an electron beam propagat-
ing through a magnetic monopole. Upon propagating through
the monopole’s magnetic field, the electron experiences an
azimuthally-dependent phase shift, thereby resulting in the
formation of an electron vortex with a topological charge that
is proportional to the strength of the monopole [7, 8]. The
impartment of this vortex arises directly from the electron’s
charge, in conjunction with the topological structure of the
magnetic field. In spite of the physical elusiveness of mag-
netic monopoles, the above process can approximately occur
in practice by replacing the monopole by the tip of a mag-
netic needle [9, 10], where the magnetic field closely resem-
bles that required to impart a vortex onto the electron beam.
When this vortex is located at the centre of the beam, the
electron effectively acquires ~` units of orbital angular mo-
mentum (OAM), where ~ is the reduced Planck constant [11].

In conjunction with the electron’s charge, the presence of a
vortex also causes the electron to acquire a magnetic dipole
moment `µB, where µB is the Bohr magneton. This magnetic
property makes OAM-carrying electrons desirable in materi-
als science, as it allows them to be employed as nanoscale
magnetic probes [12–14]. For this reason, magnetic needles
offer an appealing alternative to other types of electron beam-
shaping methods, such as diffractive holograms [12, 15, 16]
and refractive phase masks [17, 18], which are both able to
generate electron vortex beams. However, these devices have
some technological constraints, including limited spatial res-
olution and an inability to generate electron vortices that are
defined by arbitrary topological charges using a single device.
For the specific case of magnetic needles, their magnetic na-
ture prevents them from being positioned in the back focal
plane of a magnetic lens and therefore to be used in electron
imaging techniques that are analogous to optical spiral phase
contrast microscopy [19, 20]. Finally, the physical endurance
of needles currently prevents them from generating electrons
that are defined by larger values of OAM and are desirable in
applications that rely on the stronger magnetic dipole moment
that is carried by these electrons [14, 21]. In this Letter, we
discuss how an electric field can be shaped to achieve the same
effect that a magnetic monopole has on an electron beam. The
requirement to achieve such an effect relies deeply on the na-
ture of the topology of electric fields, as compared to that of
magnetic fields. We present an implementation of a device
based on a recently proposed design [22] that can be seen as
an electric counterpart to a magnetic needle, and demonstrate
how its electrical properties, in conjunction with its structural
durability, can be used to generate electrons that carry a much
broader range of tunable OAM values than those generated
using magnetic needles.
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FIG. 1. Propagation of electrons through closed but not exact
electromagnetic fields. (a) Surfaces used to calculate the relative az-
imuthal phase gained by electrons upon propagating through a mag-
netic monopole. (b) Lines used to calculate the relative azimuthal
phase gained by electrons upon propagating through an azimuthally
oriented electric field. Both the surfaces and the lines are coloured
based on the phase obtained from integrating the fields over them.
The green arrows in the plots represent the two trajectories that are
used as boundaries to calculate their relative azimuthal phases. In
these plots, field strengths that were designed to add a phase of θ = ϕ
to the electron beam were considered.

In order to acquire OAM, electron waves need to acquire
an azimuthally-dependent phase that results in the addition of
an exp (i`ϕ) term to their mathematical formulation, where ϕ
is the transverse azimuthal coordinate. Such phases can be
acquired by making the electron propagate through a poten-
tial whose action induces a structured phase shift [15–18, 23].
The phase θ acquired by an electron wave upon propagation
through a system that is characterized by the presence of an
electromagnetic field can be expressed in the form [11]

θ =
1
~

∫
(p · dr − E dt)︸                  ︷︷                  ︸

Dynamic Phase

+
e
~

∫
A · dr︸       ︷︷       ︸

Dirac Phase

+

∫
A · dR︸      ︷︷      ︸

Berry Phase

. (1)

The first term in this equation accounts for the dynamical
phase acquired by the electron, where p is the electron’s ki-
netic momentum, E = p2/2m + eΦ − µ · B is its energy, m is
its mass, e is its charge, Φ is the field’s scalar potential, µ is
the electron’s magnetic dipole moment, and B is the magnetic
field. This phase is typically used in the holographic genera-
tion of OAM-carrying electrons, given that such methods rely
on devices, which have a mean inner potential that affects both
the energy and the momentum of propagating electrons. The
second term is the Dirac phase, where A is the field’s vec-
tor potential. It is responsible for the impartment of OAM
onto electrons propagating through a magnetic monopole [8]
and other phenomena such as the Aharonov-Bohm effect [24].
The last term represents the Berry phase, whereA is the Berry
curvature associated with an adiabatically varied parameter R.

The OAM acquired by an electron beam exposed to a mag-
netic monopole can be found by calculating the relative Dirac
phase attributed to propagation along different transverse az-

imuthal angles. Such a calculation can be performed in a
cylindrical coordinate system (ρ, ϕ, z), where the z-axis is set
to lie along the electron’s direction of propagation. The phase
acquired by electrons propagating along ϕ = 0 is set to zero,
allowing it to be taken as a reference, with respect to which
the phase of electrons travelling along other values of ϕ can
be calculated. As shown in Fig. 1(a), this approach effec-
tively enables the use of Stokes’ theorem to calculate the ac-
quired Dirac phase, i.e.,

∫
Az dz =

∫
B · ρdϕ ∧ dz, where

B = (µ0qm)/(4πr3) r is the magnetic field attributed to the
monopole, µ0 is the permeability of free-space, qm is the
magnetic charge of the monopole, r is the spherical radial
coordinate, and ∧ denotes the exterior product. Integrating
the above expression reveals that the electrons acquire an az-
imuthal phase given by θ = (eµ0qm/h)ϕ, implying that the
impartment of discrete units of OAM requires a monopole
strength qm set to an integer multiple of h/(eµ0).

Some remarks concerning the above analysis can be made
with reference to the topology of the monopole’s magnetic
field and how it relates to the OAM acquired by the electron.
The magnetic field formally consists of a differential form,
more specifically a 2-form, which is defined over the mani-
fold R3 − {0}, where the exclusion of the origin results from
the spherical radial coordinate not being defined at this point.
This exclusion results in the formation of a so-called “2-hole”
at the origin. An arbitrary two-dimensional surface in the
manifold cannot be deformed into another without crossing
the hole, causing the magnetic field to be closed but not exact.
This non-simply-connected space allows a propagating elec-
tron to acquire OAM. The radial nature of the magnetic field
enables an azimuthally increasing flux through the surfaces
shown in Fig. 1(a), and can be used to calculate the azimuthal
phase gained by the beam.

Unlike magnetic fields, the differential forms that describe
electric fields consist of 1-forms, implying that their topology
must be different to be used to impart OAM to incoming elec-
trons. In order to achieve such an effect, the electric field can
also be expected to be closed yet not exact due to the presence
of a “1-hole” in two-dimensional planes that are perpendicu-
lar to the propagation of the electron beam. Furthermore, the
phase acquired due to the presence of the electric field can also
be expected to rely on a line integral, i.e., a 1+1 dimensional
boundary, as opposed to the surface used in the case of the
magnetic field, which consists of a 2+1 dimensional bound-
ary. This intuitive approach can be concretized by examining
the contribution of the electric field to the phase acquired by
an electron due to the presence of an electric field in Eq. (1),
i.e., −(e/~)

∫
Φ dt [25]. Assuming the presence of a static

electric field along with a paraxial configuration over which
the electrons are propagating along the z-axis, the integration
over time can be replaced by an integration along z. As a re-
sult, the acquired phase becomes −(em/~p0)

∫
Φ dz, implying

that the potential Φ needs to be monotonic along ϕ over a cer-
tain range ∆z to impart OAM onto electrons. Such a require-
ment can also be seen by expressing the azimuthal domain of
this potential with respect to the azimuthal component of the
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FIG. 2. Device generating a tunable, closed, but not exact elec-
tric field. Two sub-micron wires in close proximity with different
electric potentials can effectively produce an azimuthally oriented
electric field at their extremity. (a) Electric field resulting from such
a configuration at the tips of both wires, which, represented as red
and blue segments, are infinitely long and infinitely close to one an-
other. (b) Device configuration required for the impartment of OAM
onto an electron beam by means of such an electric field. The elec-
tric field is represented by red arrows, with a relative opacity that is
dictated by its relative strength. (c) Scanning electron micrograph of
a fabricated device, which consists of two 200-nm-wide and 15-µm-
long nanowires separated by a 200 nm gap, which lie on a silicon-
nitride/silicon substrate.

electric field Eϕ, i.e. Φ(ϕ, z) = −
∫

Eϕ(ϕ, z) ρdϕ. In order to
impart a phase that increases linearly with azimuthal angle, an
electric field with a constant azimuthal component is required.
This requirement is shown schematically in Fig. 1(b). As
initially postulated, the azimuthal nature of the electric field
makes it not exact and constrains it to the manifold R2−{0} for
a given z value, requiring the presence of a “1-hole” at the ori-
gin. Moreover, the presence of the azimuthally varying phase
ultimately relies on a line integral as opposed to a surface inte-
gral. In order to produce such an azimuthal electric field, one
can adopt an approach similar to that for the extremity of a
magnetic needle to approximately replicate the magnetic field
of a monopole. In essence, the approach consists of using a
dipole-like structure that locally displays fields with the geom-
etry required to impart OAM onto electrons [22]. These local
features can thereafter be enhanced by modifying the local ge-
ometry of the structure itself. As illustrated in Fig. 2(a), the
tip of an electric dipole structure consisting of two elongated
and extremely close charged rods allows for the generation of
an almost perfectly azimuthal electric field. By varying the
charges on the two rods, the relative strength of the azimuthal
electric field can be modified. Schematic diagrams of how
such a device can be used to impart OAM onto incoming elec-
trons are shown in Fig. 2(b). By varying the relative potential
between the two rods, or equivalently the effective charge that

they carry, the strength of the azimuthal electric field can be
adjusted, thereby enabling the generation of electron vortices
that are defined by a tunable amount of OAM. Because the
strength of the electric field varies continuously as a function
of relative potential, only discrete values of voltage applied
between the two rods can lead to quantized azimuthal phase
variations attributed to OAM.

In order to fabricate such a device, we adopted a fabrication
procedure that involved the combined use of electron beam
lithography and focused ion beam (FIB) milling. This ap-
proach enabled the fabrication of two 200-nm-wide and 15-
µm-long metallic wires separated by a 200 nm gap, which
were patterned lithographically onto a silicon nitride/silicon
substrate. A semi-circular opening with a radius of 15 µm
around the wires was then created using FIB milling. This de-
sign enables the substrate to be grounded to the microscope,
while the wires are connected to an external voltage source,
thereby preventing the formation of a short circuit between the
wires. Given that the wires only span a bridge of 600 nm over
the 30 µm circular opening, the device is almost obstruction-
free, allowing higher transmission efficiency and reducing po-
tential artefacts from scattering introduced by material-based
phase masks. A scanning electron micrograph of the device
is shown in Fig. 2(c). A device achieving a similar effect,
consisting of a dielectric rod with a partial metallic coating,
was previously reported [26]. However, details about how the
topology of the electric field explicitly interacts with that of
the electron beam were not explored. Moreover, unlike for
the design reported in the present work, the latter device was
not tunable, thereby preventing more extensive studies involv-
ing the role of the strength and the orientation of the azimuthal
electric field on the generated electron vortex.

The device’s ability to impart a vortex on an electron was
demonstrated by measuring it inside a transmission elec-
tron microscope (TEM, FEI Titan 60-300) equipped with a
Schottky-type high brightness field emission gun (FEI X-
FEG) and two electron biprisms. The microscope was oper-
ated at 300 kV during the measurements. An electron biprism
was used to form an interference region with a 1.5-µm-wide
field of view. A 1.9 nm holographic interference fringe spac-
ing was obtained by using a biprism voltage at 107 V. Off-axis
electron holography measurements obtained in this configura-
tion were used to reconstruct the phase profile of electrons
that had interacted with the device. Representative phase pro-
files are shown in the top row of Fig. 3 and clearly display
azimuthal variations attributed to the presence of a phase vor-
tex.

As expected, the strength of these variations increases with
that of the device’s azimuthal electric field, which is tuned by
means of applying a voltage difference between the two wires,
thereby enabling the generation of electron vortices that are
defined by topological charges of up to ±30. Furthermore, the
handedness of the electron beam’s azimuthal phase profile is
observed to depend on the sign of the electric field, which is
controlled by switching the sign of the applied voltage. The
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FIG. 3. Transverse spatial profile of electrons affected by the device. Left: TEM image of the device while the two wires are held at the
same potential obtained from Fresnel imaging with a nominal defocus near 25 mm. Top row: acquired phase of an electron wavefunction
having interacted with the device while the two wires were held at various potentials. These phase profiles were reconstructed by means of
off-axis electron holography defined by a fringe spacing of 1.9 nm. Both the absolute value and the sign of the generated electron vortex
beam’s topological charge are observed to follow that of the applied voltage. Bottom row: corresponding probability density functions of the
electrons obtained from TEM images by means of Fresnel imaging experiments.

presence of the vortices is also attested by the profile of the
probability density function of the electrons’ wavefunction.
Defocused images recorded in the Fresnel domain provide a
means of examining the latter quantity, given that they are ac-
quired over many electrons and that the use of a larger defocus
amplifies the small deflection of the electrons, thereby yield-
ing a good reflection of the probabilistic nature of their wave-
function. The images that were obtained are shown in the bot-
tom row of Fig. 3, for a series of different potentials applied
to the two wires, as well as on the far-left side of this figure,
where no potential was applied. They display the expected
presence of a null in the electron’s probability density func-
tion located at the position of the phase vortex. The transverse
extent of these nulls also displays the quintessential trend of
increasing with the absolute value of the beam’s topological
charge. The phase and probability density profiles of the elec-
tron vortices are in good agreement with numerical results re-
ported in an earlier study [22]. Slight discrepancies between
the simulations and experiments arise primarily from minor
details regarding how the device is fabricated. As the silicon
nitride/silicon support of the wires becomes charged when it is
being used, the presence of the support introduces additional
contributions to the potential, akin to that of a biprism [22].
The finite length of the wires also contributes to discrepancies
in the potential. These limitations can, however, be addressed
with slight design modifications, such as the addition of static
fields, as well as by ensuring that the wires can be biased in-
dependently.

In summary, we have demonstrated the tunable generation
of electron vortex beams by means of closed but not exact
electric fields. On a fundamental level, this generation scheme
holds several similarities to the use of magnetic monopoles,
which have closed but not exact magnetic fields, as a means
to achieve a similar effect. However, the differences between
the differential forms that describe electric and magnetic fields
manifest themselves within the structures of the fields that can

be used to produce electron vortices. We were able to con-
struct such fields by means of a nanofabricated device con-
sisting of two wires held at different potentials. By adjusting
the potential difference between the wires, we were able to ad-
just both the strength and the sign of the device’s electric field,
thereby enabling the generation of electron vortex beams de-
fined by arbitrary topological charges. Besides demonstrating
the relationship between the differential geometry of an elec-
tric field and the vortex content of an electron affected by it,
our device holds significant promise for applications that rely
on the sequential generation of electron vortex beams defined
by different topological charges. Potential extensions of this
device could include the use of larger numbers of electrodes
to generate more complicated electron beam shapes – perhaps
three-dimensional ones, especially if the electric fields can be
modulated on a timescale over which the electron wave passes
the device.
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