

What is Special about HPC Computing for Weather and Climate?

A user perspective: The EC-Earth Earth System Model

ISC'18 BoF session

Uwe Fladrich, SMHI

Earth System Models (ESM)

Software/development characteristics:

- Multi-component
- Multi-code
- Multi-language
- Multi-configuration
- Multi-institution
- Legacy code under continuous development

Earth System Models (ESM)

- Multi-scale, multi-physics
- Sensitivity to initial conditions
- Natural stochastic variability
- Long time integrations
- Weak scalability
- I/O and/or memory boundness

Need for computing power

ESMs consume computing power along several axes:

Resolution

To include processes at finer and finer scale

Complexity

To simulate, rather than describe, more and more processes and feedbacks of the climate system

• Ensemble size

To sample uncertainty across chaotic non-linear dynamics of the underlying complex system

What's Performance?

- For a given experimental design, what can I afford to run?
- If I add complexity (e.g. biogeochemistry), what will I have to sacrifice in resolution?
- How much computing capacity do I need to participate in a campaign like CMIP6? How much data capacity?
- Do the queuing policies on the machine hinder the sustained run of a long-running model?
- During the spinup phase, how long (in wallclock time) before I have an equilibrium state?

Performance metrics for Climate Computing

Existing performance measures do not provide adequate information about the actual performance during scientific experiments.

Typical questions:

- How long will the experiment take?
- How many nodes can I use efficiently?
- Are there bottlenecks in the work flow?
- How much short/medium/long term storage?
- How many ensemble members to be run in parallel?

Performance metrics for Climate Computing

• SYPD/ASYPD/JSYPD

(Actual) Simulated years per day, Joules per simulated year

Complexity

Number of prognostic variables per component

Coupling cost

Overhead caused by coupling, i.e. cost for coupling algorithm plus load imbalance

• Data output cost

Cost of performing I/O, i.e. ratio of cost with and without I/O

• Data intensity

Data produced per core-hour [GB/CH]

