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Abstract— The usage of Micro Aerial Vehicles (MAVs) is
rapidly emerging in the mining industry to increase overall
safety and productivity. However, the mine environment is
especially challenging for the MAV’s operation due to the lack
of illumination, narrow passages, wind gusts, dust, and other
factors that can affect the MAV’s overall flying capability. This
article presents a method to assist the navigation of MAVs
by using a method from the field of Deep Learning (DL),
while considering a low-cost platform without high-end sensor
suits. The presented DL scheme can be further utilized as a
supervised image classifier that has the ability to process the
image frames from a single on-board camera and to provide
mine tunnel wall collision prevention. The efficiency of the
proposed scheme has been experimentally evaluated in two
underground tunnel environments that were used for data
collection, training, and corresponding testing under multiple
flying scenarios with different cameras configurations and
illuminations.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) are platforms that have
received great attention during the last decade due to their
mechanical simplicity, agility and hovering ability [1]. These
platforms have the potential to provide leading solutions
in a wide range of applications, especially in hostile or
challenging environments, such as underground mines [2].
Thus, the MAVs can provide access to unreachable, complex,
dark and dangerous locations for the monitoring personnel,
while minimizing service times. Overall, the deployment of
MAVs can have a high impact on the mine’s operation,
production, and safety. However, as depicted in Figure 1, low
illumination, narrow passages, uneven surfaces, and dust, are
conditions commonly found in underground mining tunnels.
These dark and featureless environments challenge the state
estimation schemes, since range sensors and cameras do
not yield sufficient information [3]. Therefore, there is a
need to develop advanced control, navigation and perception
modules to compensate for these challenges, towards the
establishment of autonomous aerial platforms in underground
areas.

One of the main research challenges in mine navigation is
the definition of a proper heading (yaw) for the MAV, since
the mine is an environment where there is lack of visual and
geometric features and there is a general absence of illumi-
nation. Thus, to successfully navigate in a tunnel, the MAV
has to identify the direction of the flight in unknown areas,
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Fig. 1: Photo from an underground tunnel in Boden, Sweden
for indicating the lighting conditions in a mine tunnel, while
the effect of an artificial light source being also evident.

while avoiding the surrounding walls, without depending on
accurate state estimation. This article proposes a module, for
a low-cost MAV platform, for navigating in low illumination
environments, equipped with an on-board camera and an
LED light bar. In the presented approach and independently
to the type of the on-board camera, the images are resized
to 128 × 128 pixels to reduce noise and computation time,
while the RGB images are converted to gray-scale, since the
encapsulated color information is redundant. In the sequel,
these images are fed to a Convolutional Neural Network
(CNN) [4], probably the most prominent member of the
Deep Learning (DL) family. The CNN is used for classifying
the images into three categories: left, middle and right. This
categorization is critical for preventing potential collisions
onto walls, while the heading of the MAV can be corrected
based on the observed image; as an example, if the image is
categorized as right then the heading should go to left. As
it will be presented, the network is trained in two different
underground tunnel environments and evaluated in different
scenarios.

In the related literature, there have been many works
that addressed the navigation problem in 2D and 3D en-
vironments, while the three main exploration methods have
been the entropy based [5], the frontier based [6], and the
information gain based exploration [7]. The entropy gain
and information gain based methods, compute regions that
reduce the map uncertainty, based on current information
on the map. Furthermore, in the frontier based exploration
approaches, the exploration frontiers are computed as the dis-
crete boundary between the unknown regions of the current
map, while these methods have been successfully applied
in 2D environments [8]. Towards a 3D exploration, in [9]



it has been proposed a stochastic differential equation-based
algorithm to enable exploration in indoor environments. This
method resulted from the evaluation of existing methods of
frontier based exploration, however, there were no require-
ments of dense representation of the free space. In [10],
random trees were generated to find the best branch, while
the method was evaluated in indoor environments and the
paths were calculated on-line, while the occupancy map of
the perceived environment was conducted. These exploration
methods require in general a high computation power to
process the images, to calculate the best next point and
to accurately localize and store the previous information
of the map in order to avoid revisiting the area. This fact
limits the usage of these methods in large-scale structures,
while at the same time there have been very few works that
considered the navigation problem in dark tunnels. In [3],
the authors addressed the problem of estimation, control,
navigation and mapping problems for autonomous inspection
of tunnels using aerial vehicles with the overall approach
to be validated through field trials, however, the high-end
sensor suit that was utilized has limited the applicability of
the overall method.

Furthermore, there are few works using machine learning
techniques for the problem of navigation in in-door and out-
door environments, mainly due to the fact that these methods
require a large amount of data and a high computation power
for training, in most cases a CNN, which is an off-line
procedure. However, after the training the CNN can be used
for enabling an autonomous navigation with much lower
computation powers. The works using CNN for navigation,
such as [11], [12], [13], utilized the image frame of on-board
camera to feed the CNN for providing heading commands to
the platform. These works have been evaluated and tunned in
out-door environments and with a good illumination with the
camera and thus providing rich data about the surrounding
of the platforms.

Based on the aforementioned state of the art, the main
contribution of this article is threefold. Firstly, this article
establishes a method towards the navigation in dark and
unknown environments, using a low-cost MAV platform,
equipped with a single camera and a LED light bar. The
proposed method classifies the images based on a CNN to
identify the tunnel walls and void space, while providing
information regarding the direction of the camera, which can
be left, center or right. This information as a future step can
be used further for correcting the heading of the MAV and
for avoiding collisions to the mine walls without depending
on localization information. Secondly, the proposed novel
method has been evaluated for the first time ever in field
trials and more specifically, two underground tunnels were
visited with different dimensions, while the trained network
was evaluated in multiple scenarios with different camera
configurations and illuminations to prove the robustness of
the method in unknown mine tunnels. The final contribution
stems from the fact that datasets were gathered from manual
flights in order to evaluate the CNN when there are uncertain-
ties in the height of the camera and faster motions. It should

be also noted that this article is accompanied with the public
release of all collected datasets from the tunnel environments,
to provide the research community open access data and by
that enabling further developments towards the envisioned
autonomous flying in the dark.

The rest of the article is structured as it follows. Initially,
the problem formulation of the proposed method is presented
in Section II, followed by the CNN implementation in Sec-
tion III. In Section IV multiple evaluations based on collected
datasets with triple camera setup and manual flights with
MAV are presented, followed by a corresponding comparison
and discussion. Finally Section V concludes the article by
summarizing the findings and offering some directions for
future research.

II. PROBLEM FORMULATION

In general, an underground environment is considered
harsh for the operation of MAVs, thus it poses multiple chal-
lenges, like low illumination, narrow passages, dust, wind
gusts and short line-of-sight. Usually, the aerial platforms
are built with high-end and expensive components, to reach
increased levels of autonomy that can provide stability and
reliability in their operation, while the long-term operation
of these platforms, in such environments, degrades their
performance and integrity over time.

Therefore, the overall aim of mining companies is to con-
sider the aerial vehicles as consumables that can be instantly
replaced. Therefore, low-cost solutions are lately introduced
that can accomplish the task equally reliable. Generally, the
state estimation is the core of MAVs, providing the basis
for planners to build on top and fulfill exploration tasks. In
underground tunnels, localization schemes become unreliable
with low-cost sensors, therefore advanced algorithms need to
be developed to compensate for their inefficiency and accom-
plish the task successfully. Towards this direction, this article,
identifies the position estimation issues, tackles the inspec-
tion problem from another perspective, while proposing a
generic method for wall collision prevention towards the
navigation around the tunnel, without depending on accurate
localization schemes. More specifically, the proposed method
incorporates a high-level planning module that distinguishes
the walls from the tunnel axis, using a CNN and a single on-
board camera. The output of the developed module can be
used by the low-level controller of the platform to generate
heading commands for avoiding the corresponding obstacles,
including the mine walls.

An overview of the proposed concept is depicted in
Figure 2, where the overall trajectory of the MAV, the tunnel
axis and the heading direction of the MAV are also presented.
To avoid collisions, while navigating around the tunnel, the
platform should correct its heading commands according to
the information provided by the wall detection module. In
this inspection scenario, the height of the platform is constant
and the platform is commanded to move forward following
the tunnel axis. At this point, it should be highlighted that
this work focuses on the development and validation of a
wall collision prevention module based on machine learning



and it is considering as the first fundamental step towards au-
tonomous MAV enabled surveillance in underground mining.

Fig. 2: Top-view concept image of a mine tunnel with a MAV
and the corresponding resulted corrections in the heading.

Inspired by [12], in this article, a CNN is used as an image
classifier. In this approach, three classes are considered that
correspond to three different scenarios that are necessary for
remaining in the tunnel axis, while the camera is looking
in the direction of the movement. Each image from the on-
board camera is classified to mutually exclusive categories:
left, middle or right. The left and right categories correspond
to the left and right walls, while the middle category corre-
sponds to the tunnel axis. For the described problem, the
overall system diagram is presented in Figure 2.
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Fig. 3: The overall proposed architecture for the recognition
of the MAV’s heading; it should be highlighted that the
overall closed loop process from the classification to the
MAV heading commands are not studied in this article
(dotted lines).

III. CONVOLUTIONAL NEURAL NETWORK FOR IMAGE
CLASSIFICATION

The CNN [4] presented in Figure 4 receives a fixed-size
image as an input and outputs one out of three categories for
each image. Like most of other types of neural networks,
a CNN is composed of an input layer, an output layer,
and many hidden layers in between. These layers perform
operations that alter the data with the intent of learning
features specific to the task. The main difference of these
novel architectures is that they do not rely on tedious feature
engineering processes, instead the features are learned during
the training process. In the case of CNNs this is basically
achieved via the convolution filters, each of which learns

to be activated by certain features of the image. An ex-
tra advantage of the convolution connections is that they
dramatically reduce the number of parameters, especially
when compared to a fully connected architecture, due to
weight sharing. Apart from the convolutions nonlinearities
are also part of the architecture which lately are in most
cases ReLUs. The use of ReLUs allows for faster and more
effective training by mapping negative values to zero and
maintaining positive values. An extra layer, which is not part
of the classic NNs id the pooling layer. Pooling simplifies
the output by performing nonlinear down-sampling, while at
the same time reducing the number of parameters that the
network needs to learn. These operations are repeated over a
large number of layers, with each layer learning to identify
different features.

The input layer of the CNN is a matrix of 128 × 128,
followed by a number of hidden layers and ending with
a layer with three output neurons equipped with softmax
activation functions (to provide outputs that sum to one).
The input image can have different size depending on the on-
board camera, however for the proposed scheme it should be
resized to 128× 128 pixels. Moreover, in [14] it was shown
that the object recognition based on gray-scale images can
outperform recognition based on RGB images, which is an
ideal situation since the mine environments are dark and the
RGB sensors do not provide any extra information about
the environment. Thus, the images from the cameras are
converted to gray-scale, which also reduce the noise and the
computation time in the training phase. For each input, the
CNN provides the probability of an image class, which can
be Left, Middle, Right image. For the presented results, the
CNN was trained on a workstation equipped with an Nvidia
GTX 1070 GPU with 50 epochs, a selected initial learning
rate of 1−4 and solved by the stochastic gradient descent
with momentum optimizer.

IV. EXPERIMENTS AND RESULTS

A. Data collection

For collecting the data sets, the setup depicted in Figure 5
was used, which consists of three mounted cameras with
separate LED light bars pointing towards the field of view
of each camera. For evaluating the method with uncertainties
in the camera model, different types of cameras were used,
including the GoPro Hero 3, the GoPro Hero 4 and the
Foxeer Box. During the dataset collection for the training
phase, the resolution of the cameras was fixed to 1920x1080
pixels, while before each run, the cameras were exchanging
positions in a varying configuration to generalize the appli-
cability of the method, while avoiding the dependency on
a specific camera model. Furthermore, the light bars were
calibrated to provide an equal illumination power. During
the collection of the data sets, the setup can be carried by a
person or installed on a manual flying MAV, while special
care should be considered in guaranteeing that the middle
camera is always looking towards the tunnel axis. In the
presented approach, the cameras were recording the video
with 60 Frame Per Seconds (FPS), however the videos were
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Fig. 4: Architecture for the proposed CNN for heading clasification.
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Fig. 5: Top view of the setup for obtaining datasets.

down-sampled to 10 FPS and converted to sequential images,
in order to reduce the redundancy of the images, however
faster FPS could be selected without a loss of generality. In
the sequel, the images were resized and converted to a gray-
scale mode and labeled based on the direction of the camera
and as a last step, the images were fed to the CNN.

For collecting data for the proposed training, two under-
ground locations were visited. The first one located in Luleå,
Sweden and the second one located in Boden, Sweden. The
testing areas had the following dimensions 400×2.5×3 m3

and 50 × 2 × 2 m3 respectively. Both environments were
completely dark with no external illumination was available
and with uneven stone surfaces. Furthermore, the areas did
not have a strong corrupting magnetic field, however, small
particles were floating on the air. Figure 6 depicts sample
images of different areas of each location, which are part of
multiple data sets gathered during the trials.

B. Train and Evaluate the CNN

For training and evaluating the CNN, multiple scenarios
were defined, while the main purpose of the following
scenarios was to evaluate the performance of the CNN with
different cameras and multiple underground environments.

1) Luleå mine scenario: In the first scenario, the CNN
was trained with 6066 images from the Luleå underground
tunnel location and evaluated in the Boden underground
tunnel location datasets. The camera configuration for the
training phase was GoPro Hero3, Foxeer Box and GoPro
Hero 4 from left to right respectively and the LED light
bars had an illumination power of 6447 lux. During the
dataset collection for the testing phase of the network, the
Foxeer Box and GoPro Hero 4 exchanged their positions.
The accuracy on the Luleå underground tunnel location was
97.74%, while for the Boden underground tunnel location
was 96.27%. The CNN was tested on the Boden images
which were not used during training. In Figure 7 some
samples of input data used for evaluating the CNN from
the Boden underground tunnel location are depicted, where
the correct class is written in blue text above each image.

2) Boden underground tunnel scenario: In this scenario,
the Boden underground tunnel location dataset was used for
training the CNN, while the dataset from the Luleå un-
derground tunnel were used for evaluating the network’s
performance. In this case, the tunnel is shorter than the one
in the previous case, thus the training datasets are smaller
in size. In this case 1616 images were used for the training
phase, while the CNN had the same architecture as discussed
in Section III. The camera configuration was GoPro Hero 3,
GoPro Hero 4 and Foxeer Box from left to right respectively
with an illumination power of 5407 lux. The trained network
had an accuracy of 99.6% on the training dataset and 65.2%
on the evaluation data set respectively. This drop of accuracy
in comparison to the Luleå underground tunnel scenario
was expected as the Boden underground tunnel location was
shorter in tunnel’s length, thus the network was trained with
less (most probably not sufficiently enough) information.
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Fig. 6: Examples of collected images used for training the CNN. The left, center and right images are from cameras looking
toward left, center and right respectively.
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Fig. 7: Examples of images for testing the CNN with the
Luleå underground tunnel dataset, where the class of images
from the CNN is written above the images and with the CNN
to be trained from the Boden underground tunnel datasets.

Figure 8 provides some samples of the mismatch and correct
classification of the CNN. The correct class of images is
written in green in the right side of images, while the output
of CNN is written above each image. The red text means
mismatch class, while the blue text is the correct class for
each image.

3) Effect of Illumination and flight: In this scenario the
CNN from the Luleå underground tunnel was selected as it
had a higher accuracy in classification of the images. The
CNN was trained by Luleå underground tunnel location data
and it is evaluated with the same camera configuration and
environment, while different levels of illuminations are used
ranging from 6447 lux to 3547 lux. The accuracy of the
CNN based on illumination levels is depicted in Figure 9,

where it is shown that even though the training and testing
environments are the same, the accuracy of the CNN is
directly related to illumination, where smaller illumination
levels lead to less accurate results. However, the accuracy
reduction is different for each camera, where GoPro Hero 3
located on the left position of the setup has the highest drop
and the Foxeer Box located in the middle position on the
setup has the lowest changes.

Furthermore, manual flights of a custom made and low-
cost MAV have been performed,to evaluate the CNN ability
to identify the walls and correct the heading. The platform
was equipped with a forward-looking camera and a LED
light bar. The CNN was evaluated with datasets collected
with different cameras on the platform (one camera flying
each time), such as GoPro Hero 3, Foxeer Box and In-
tel RealSense camera (R200). However, due to safety and
narrow areas the MAV mainly was looking forward the
tunnel axis. The video of the evaluation can be reached at
(https://youtu.be/uJFvTGnrPAY), where it can be seen that
the CNN is quite accurate except in cases when the MAV
is very close to the ground, a fact that shows the impact of
the height in the accuracy of the classification. Additionally,
the datasets obtained from the RealSense were more difficult
to categorize in the proposed CNN scheme, that may result
from the fact that no training datasets from this camera
were used. However, more tests are needed to evaluate the
results with different camera models in order to reach safer
conclusions.
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Fig. 8: Examples of images for testing the CNN with the
Luleå underground tunnel dataset, trained using the Boden
underground tunnel datasets. The class of images from the
CNN is written above the images (red-mismatch class, blue-
correct class) and the correct label of each image is written
in the right with green.

V. DISCUSSION AND CONCLUSIONS

In this article, the problem of navigation in mine en-
vironments was studied to enable, safe and collision free
inspection with MAVs. In the proposed approach a CNN
was used to classify the images from the camera to left,
middle, right. The trained network was evaluated in multiple
scenarios and in most of the cases the CNN provided high
accuracy. It was shown that the accuracy of the CNN depends
on the number of training data and the illumination of
the environment (the CNN accuracy decreases when the
illumination is reduced). In future work, the network should
be evaluated in a closed loop system with the MAV equipped
with the camera and a LED light bar to correct the heading
of the platform and enable autonomous navigation in a
mine tunnel. Toward this direction the platform should be
equipped with sensors such as sonars to keep its distance
from ceiling and ground constant, while the CNN should
provide commands for going forward on the tunnel axis.
Additionally, the network should be evaluated in longer and
more complex mine environments with multiple branches
in the tunnel. Finally, the effect of the illumination in the
training and testing stage of the CNN should be studied, as
it is shown that the results are sensitive to the lighting of the
environment.
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Fig. 9: The accuracy of the trained network in relation to the
illumination in the same environment.
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