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Abstract

In this work, a novel music symbolic level representation system is described. The approach
has been tested in two music information retrieval tasks, namely melodic similarity and genre
classification. The proposed representation system is graph-based and could theoretically be
able to represent music both from an horizontal (contrapuntal) and from a vertical (harmonic)
point of view. It could also include relationships between internal variations of motifs and
themes. Moreover, a new large dataset consisting of more than 5000 leadsheets is presented,
with meta informations taken from different web databases, including author information,
year of first performance, lyrics, various features, genre and stylistic tags.





Che differenza pensate vi sia fra coloro
che nella caverna di Platone contemplano

le ombre e le immagini delle varie cose,
senza desideri, paghi della propria

condizione, e il sapiente che, uscito dalla
caverna, vede le cose vere?

e.r.
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Prefazione

In questo lavoro viene descritto un nuovo paradigma per la rappresentazione del livello
simbolico musicale, orientato ad applicazioni pratiche nell’ambito dell’informatica musicale.
Il progetto nasce da un articolo di quasi dieci anni fa’ in cui Orio e Rodà descrivevano un
nuovo approccio per effettuare riduzioni musicali in un modo computazionalmente sosteni-
bile. Partendo da qui, ho approfondito l’attuale stato dell’arte per la rappresentazione
dell’informazione simbolica della musica e ho sviluppato un paradigma teorico che vorrebbe
riuscire ad includere gli approcci più interessanti in uso ad oggi e, contemporaneamente, a
sorpassare la tradizionale dualità orizzontale-verticale – o armonia-contrappunto – per meglio
rappresentare le informazioni musicali in modo consono ai più svariati tipi di applicazioni
informatiche.

Nel primo capitolo viene fornita un’introduzione generale allo studio del livello simbolico
della musica, nonché una proposta per un modello di comunicazione centrato sugli utenti, con
la speranza che possa risultare utile alla comunità dell’informatica musicale e che la ricerca
presti più attenzione in futuro alla nostra cognizione astratta della musica. Successivamente,
introduco brevemente le rappresentazioni più usate per il livello simbolico, da quelli basati
sui valori MIDI delle altezze – pitches – a quelli basati sulle teorie neo-riemanniane e sul
Tonnetz, fino a quelli basati su grafi e riduzioni. Inoltre, ho anche tentato di fornire una
semplice categorizzazione della grande varietà di sistemi esistenti in letteratura.

Nel secondo capitolo ho tentato di formalizzare il mio approccio capace di rappresentare
relazioni complesse sia in musica monodica sia polifonica, giustificando le principali scelte
effettuate e descrivendo le linee generali dell’algoritmo utilizzato negli esperimenti.

Nel terzo capitolo viene fornita la descrizione dettagliata del design del software e dell’im-
plementazione. Vegono descritti i miglioramenti apportati all’algoritmo di segmentazione
LBDM nonché le principali problematiche riscontrate durante l’implementazione. Probabil-
mente, chi volese continuare questo lavoro dovrebbe prestare attenzione a questo capitolo
perché la grande eterogeneità degli algoritmi e degli strumenti utilizzati mi hanno impedito,
in questa prima fase, di approfondire molti aspetti che generavano problemi.

Nel capitolo 4 viene descritto il dataset utilizzato e il procedimento impiegato per la
sua costruzione, che ha portato ad un grande database di più di 5.000 canzoni basato su
un vecchio archivio proveniente da Wikifonia. Ho raccolto varie informazioni tramite web
mining e ho ripulito l’archivio da quei brani che sembravano più corrotti o inutilizzabili
dall’algoritmo.

Infine nel quinto capitolo mostro i risultati e li discuto, fornendo alcuni suggerimenti per
indicare quelle che mi sembrano le direzioni che potenzialmente possono apportare i maggiori
miglioramenti all’approccio. Molte strade sono state aperte, ma poche sono state chiuse.
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iv Graph based representation of the music symbolic level

Spero che qualcuno in futuro sarà ancora interessato negli studi sul livello simbolico della
musica.



Preface

In this work I describe a new paradigm for the symbolic level of music representation to be
used in practical music computing applications. The work was born from a paper of about
ten years ago in which Orio and Rodà described a new approach to perform music reductions
in a computationally sustainable way. Starting from here, I investigated the state-of-art of
music symbolic representations and I developed a theoretical paradigm which aims to include
the most interesting approach in use today and to overcome the horizontal-vertical duality
to better represent musical informations for various music computing applications.

In chapter 1, a general introduction to the study of the music symbolic level is given,
together with a proposal for a music communication model, user centered, in the hoping
that it could be useful to the music computing community, and that researchers will give
more attention to our abstract cognition of music in the near future. Then, I present an
introductory explanation of the most used music symbolic level representations, from MIDI
value based to Tonnetz based, until the ones based on graphs and reductions. Also, I tried
to collect and categorize references to different types of representations.

In chapter 2, I try to make a formalization of my approach to represent complex rela-
tionships in monodic or polyphonic works, explaining the most basic choices and giving an
outline of the algorithm used in the experiments.

In chapter 3, design and implementation details are given. I explain the improvements
made to the LBDM algorithm used in the segmentation stage and I describe the main issues
found during the implementation. Maybe, who would to continue this work should read
carefully this chapter because the great heterogeneity of the algorithms and tools used in the
work prevented me from studying further many aspects that generated problems.

In chapter 4, I describe the construction and the features of a new huge dataset for leadsheet
elaboration, based on the old Wikifonia archive. I collected several informations through a
web mining approach.

Finally, in chapter 5 results are described and discussed, together with some suggestion to
whoever wants to continue this project. Many roads have been opened but few were closed.
I hope that someone will still be interested in symbolic music studies.
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1
Introduction

Somewhere underneath, very deeply,
there’s a common place in our spirit
where the beauty of mathematics and
the beauty of music meet. But they
don’t meet on the level of algorithms
or making music by calculation. It’s
much lower, much deeper – or much
higher, you could say.

G. Ligeti

1.1 Motivations for a new music symbolic representation paradigm

1.1.1 Physical vs symbolic level

Since first theoretical studies in computer science, computers were associated to the elabo-
ration of pitch sounds, harmony and music composition (Menabrea and Lovelace, 1843). In
the XX sec., many composers, scientists and musicologists proposed different models to for-
malize musical informations so that it could be processed by computers. In the last decades,
researchers in this field of study have been mainly engaged in audio signal elaboration, mostly
geared to enterprise applications. For instance, at January 2018, by querying “symbolic mu-
sic” on Google Scholar and filtering out documents older than 2008 you get 148.000 results,
while querying “music signal processing” with the same filter returns 356.000 results; a query
“music score processing” returns 105.000 pages, while “audio processing” retrieves 1.230.000
documents.

In contrast to this trend, many studies have shown that humans have an abstract cogni-
tion of music (Deutsch, Thompson, Honing, and McAdams, 2013): we can recognize a music
played on different instruments, with different timings, intensity changes, various metronome
markings, tonalities, tunings, background noises and so on. This characteristic of our music
cognition process seems to be culture and age invariant. Two key concepts in this approach
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2 Graph based representation of the music symbolic level

are important: categorical perception and phonemic restoration (Aiello, 1994; Schön, Akiva-
Kabiri, and Vecchi, 2007). The former refers to the fact that we tend to perceive stimulus in
categories; the quality of categories is not culture invariant – e.g. Western musical intervals
differ from Indian śruti. The latter is the effect why we understand a musical tune also if
we do not listen some of its notes. This type of study has underlined the importance of
taking into account the abstraction level while modeling music cognition. Modern cognitive
psychology suggests that the study of the music symbolic level may be very interesting for
computational elaboration of music, also in the enterprise sector.

1.1.2 Music symbolic level: a definition

What is music symbolic level (MSL)? In simple terms, it is an abstract description of the
audio signals, which encores the most significant details about what we call music. According
to Vinet (2003)

the symbolic representation is content-aware and describes events in relation to
formalized concepts of music (music theory), whereas the signal representation
is a blind, content-unaware representation, thus adapted to transmit any, non-
musical kind of sound, and even non-audible signals; even digitized through sam-
pling, the signal representation appears as a continuous flow of information, both
in time and amplitude, whereas the symbolic representation accounts for discrete
events, both in time and in possible event states

Actually, MSL is an attempt to represent the abstraction level that we use in listening to
music and processing it in our brain. We can reasonably state that we like music because of
the abstraction we apply to the physical stimulus that our auditory system receives. Address-
ing our studies to the MSL and its relationship to our cognition could really improve any
application in which users opinion matters. As Widmer (2017) states, Music Information
Retrieval (MIR) systems in the near future need to put attention on the user as an active
listener. Doing this needs, iner alia, a model of our cognitive abstraction of music.

1.1.3 What does musicology think about it?

MSL is important not only in MIR tasks. For instance, it is used everyday by any musician
in the world, sometime in the form of musical score, sometime not. Every music that we
listen to is created using some form of MSL representation, commonly, but not necessarily,
a musical score, often written or digitized.

Indeed, MSL is studied from very longer time than physical level: the most ancient notation
testimony dates back to the I century CE (Mathiesen, Conomos, Leotsakos, Chianis, and
Brandl, 2001) and it is known that Western musical notation has had a gradual evolution
(Hiley and Szendrei, 2014). This remark forwarded music semiologist to track connections
between musical style, practice, notation and social changes (Middleton, 1990; Meyer, 1989).
This is a nice example of how musical scores may reflect human musical thinking change.
Anyway, more than one musicologist propose to reduce the prominence of musical scores
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Figure 1.1: Giacobazzi’s musical communication model: listener is an active player
of the communication process, together with performer and composer. Arrows
start from a subject and point toward an object of a creative or cognitive process
in which the subject uses actively some his own knowledge. Campbell and Heller
(1981), Nattiez and Ellis (1989), and Molino, Underwood, and Ayrey (1990)
can be thought as degenerate forms of this model.

in future studies, but this is said with regard to the musicological studies of the formalist
tradition (Fabbri, 2014) and we do not care.

To understand to what extent we should take into account the MSL in a practical appli-
cation, we found useful proposing the music communication schema by Michele Giacobazzi1.
He – starting from Campbell and Heller (1981), Nattiez and Ellis (1989), and Molino, Un-
derwood, and Ayrey (1990) – proposed a model of music communication involving composer,
listener, performer and MSL. It is shown in Figure 1.1.

According to Nattiez (1990), listener perception differs from listener to listener because he
is an active player in the communication process: using his own codes, he understand “some-
thing” that is not necessarily what composer or performer coded in the message. Campbell
and Heller (1981) proposed a different model in which performer appears to be an important
figure in that he is in charge of decoding composer message through implicit notational code
rules and to transform them in the physical audio level. Giacobazzi’s model of Figure 1.1
merge these two different views. In contrast to other models proposed for MIR tasks, like
the communication chain by Richard Moore (Serra, 2002), Richard Middleton’s and Philip
Tagg’s models (Inskip, MacFarlane, and Rafferty, 2008; Tagg, 2012), Giacobazzi’s model is
focused on the actors of the communication, rather than on the medium, and expresses the
idea of an active role by all players.

Actually, in some situations composer is at the same time listener and often performer too.
Moreover, notation could not exist and, even if more rarely, neither the audio. Therefore,
we think that square edges should be intended as fluid bounds.

1In report realized by Michele Giacobazzi while studying “Scienze e tecniche per la comunicazione musicale at
the University of Milan, 2006, https://www.slideshare.net/Smirne/i-modelli-della-comunicazione-musicale.
The report is available by contacting thesis authors.

https://www.slideshare.net/Smirne/i-modelli-della-comunicazione-musicale
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1.1.4 Why music computing should care about it?

It is now easier to see why the study of listener perception only based on audio can just
give a partial view of the communication process and of the internal cognitive process, as
suggested by psychological studies. By example, a system which aims to understand the
emotional response of the user, should also consider his abstract representation of the music
and maybe its relations with the one of the performer and, maybe, of the composer. Study-
ing performance should take into account the MSL, the listener perception and reaction (due
to – but not only – socio-cultural implicit conventions), the composer’s implicit notation
rules and their performer understanding. A completely automatic system for algorithmic
composition, instead, should take into account the whole process, and this is a very difficult
challenge; this is why, very often, music composition algorithms are polarized on particular
styles, objectives or situations decided by the developer choices.

Since at now we do not have a total understanding of the musical communication process,
we need to restrict a little bit the scope of action of computational systems in the model.
We could think that computational applications could look at it from left (composer) or
from right (listener). We propose to subdivide today music computing applications in four
macro-objectives, reducible to two areas:

■ facilitation in listening to a musical work (user) and/or in its execution (performer):

• Recommendation systems

• Live concerts enhancement

• Cultural heritage applications

• Acoustic enhancement of listening

• Automatic (and expressive) score execution

• Automatic score transcription

• Most of Music Information Retrieval tasks

■ facilitation in studying (musicologist) and/or in creating (composer) music:

• Musicological studies

• Cultural heritage applications

• Automatic composition

• Educational systems

• Facilitation of composers activity (notation software etc.)

• Automatic arrangers (real-time or off-line)

• Expressive score execution

In both the macro-areas – user oriented – a good MSL representation could bring many
benefits: concerning the second area, MSL is the direct product of music creation activities
and it is almost a must-have; while concerning the first area, MSL could enhance the cog-
nitive models of our music understanding, so that user or performer reactions can be fully
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elaborated.

Anyway, to our knowledge there is no MSL representation satisfactory for all the above
tasks, therefore new general MSL models are needed. In this thesis we are going to describe
a new MSL representation paradigm, which try to take into account most of the tasks named
above.

1.2 Symbolic music representation: related works

1.2.1 Classification of Symbolic Music Representation Systems

Giving an extensive survey of the main music symbolic representation systems (from now
on MSR) is quite difficult. For our purpose, we can divide MSRs in four broad groups based
on their principal purpose:

■ File representations like MIDI or MusicXML;

■ Cognitive representations, which try to describe our music cognition in general terms,
these include frameworks like GTTM (F. Lerdahl and Jackendoff, 1985), Implication-
Realisation theory (Narmour, 1992; E Glenn Schellenberg, 1997) and others (e.g. Deutsch
and Feroe (1981), Temperley (2007), Marsden (2000), and Camurri, Frixione, and In-
nocenti (1994)). An extensive description of some of these models is given in Wiggins,
Pearce, Müllensiefen, et al. (2009);

■ Analytical representations, which try to emphasize particular aspects of the theoreti-
cal underlying structures, such as classical, schenkerian, Meyer’s and neo-Riemann’s
theories, the ones based on pitch class sets and others (e.g. Chew (2014), Tymoczko
(2012), Callender, Quinn, and Tymoczko (2008), and Cohn (1997));

■ Computational representations, whose objective is to bring the benefits of the previous
to computational music analysis. Actually, some of the already named cognitive MSRs
are thought to be computational, while other analytical and cognitive models have been
implemented in computer algorithm versions. A good point to start can be found in
Meredith (2016), but many others computational MSRs exist (e.g. Marsden (2005),
Marsden (2010b), Widmer and Goebl (2004), and Chew (2014));

In the following we are going to focus on the computational MSRs, describing the most
interesting to the purpose of a new MSR aimed at Music Information Retrieval (MIR) and
computational musicology. Hence, we will just look at those extensively used in compu-
tational tasks or graph based. Also, we will limit our survey to those of which we found
tangible results in some practical task (see subsection 1.1.4). Surely, finding a measure of
the effectiveness of a MSR is a hard challenge, nevertheless it is a necessary information for
practical applications design. In this thesis, our MSR will be tested with typical MIR tasks.

We will also describe the two major MSL file formats, MusicXML and Standard Midi File.

Anyway, a complete description of these models is very hard because often researchers
refer to MSL and MSR with various different nomenclatures or do not stress this part of
their work, so that it is difficult to find related papers.
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1.2.2 File formats for MSRs

1.2.2.1 Standard Midi File

Standard Midi File (SMF) is a file format standardized the first time in 1988 (MMA, 1996).
It is the most widely used MSL file format and is thought to represent music symbolic level
in live performance. In fact, MIDI was born as a communication protocol aiming to make
easier the contemporaneous usage of different musical devices, such as in live concerts. The
SMF adds the timing informations to the messages of the MIDI protocol. In SMF, the MSL
is represented as a sequence of events, each characterized by a time stamp, representing the
time interval that occurs from the preceding event. In addition, it is added the duration of
a quarter note as unity of measure.

To our purpose, we just say that in MIDI protocol and in SMF note pitch is represented by
a number ranging from 0 to 127 where pitch number 0 is the C−1 in scientific pitch notation,
pitch number 1 is C♯−1 = D♭−1, and so on. This means that SMF has no enharmonic recog-
nition ability out-of-the-box and that it must be implemented trough some pitch spelling
algorithm (most famous are Chew and Chen (2005), Meredith (2006), and Cambouropoulos
(2003)). Moreover, SMF do not include high level informations such as musical structure,
lyrics, music dynamics. It instead includes several controls – such as velocity, volume, por-
tamento and others – intended as modifications of fundamentals sound events. Controls can
be in binary or continuous value – ranging from 0 to 127. SMF is very suitable for storing
performance executions.

1.2.2.2 MusicXML

MusicXML is a file format based on XML and born to create a score representation format
with interoperability purpose (MakeMusic and Good, 2017). MusicXML is the state-of-art
in portable music file format. It has definitely superseded old kern and musedata files and it
is now a standard for music score representation.

MusicXML brings everything needed to represent any type of traditional musical scores
and it is used in many advanced algorithms in MIR tasks. Unfortunately, MIREX (Music
Information Retrieval Evaluation eXchange), the most important algorithmic challenge in
MIR fields, uses only SMF in symbolic music tasks. This can be a restriction for algorithms
that could take advantage from more abstract data.

MusicXML can represent informations about almost everything a classical music score
may store, including meta informations, lyrics, chord annotations, dynamics, refrains, da
capo, etc.

1.2.3 Common MSR

1.2.3.1 MSL features

The most straightforward way to represent music for computational purpose is of course
by emulating other computer science fields and by extracting some relevant features from a
discrete signal representing the music symbolic level. Probably, the spread of this approach
among music computing applications is due to the fact that music listening and under-
standing is also accessible without deep background studies, while this is more difficult for
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computer science; this leads many computer scientists to be keen on music and few musician
to be interested in computers.

We think that this approach threatens to degrade the computer ability to understand
music if it is not accompanied by a careful choice of the feature space. However, it is a fact
that this method can give satisfactory results with faster times and easier learning curve.
Another big limitation by using this approach is that it is difficult to represent features
changes in time – see Widmer (2017) about the importance of music evolution in time.

Generally, these algorithms make use of the MIDI pitch notes and look for some relevant
features to extract. A common method is by using pitch histograms (Tzanetakis, Ermolinskyi,
and Cook, 2003). A nice collection of symbolic music features is in McKay and Fujinaga
(2006).

1.2.3.2 Interval and chord representation

As already said, most of the software that involves symbolic music use MIDI note number
representation. Others use something similar but with pitch class information instead of the
absolute number. Actually, they are not only based on MIDI pitch numbers, but they often
use some more abstract representation, usually a relative interval. By example, only the
first melody note is expressed in pitch number, while the others are expressed through the
difference between their MIDI number and the preceding. This approach let the analysis to
be transposition invariant, a quality very important in several tasks. Actually, in this way,
algorithms are just chromatically invariant but not diatonically, that is the most common
type of transposition in tonal music.

To this purpose, Cambouropoulos (1996) proposed the GPIR (General Pitch Interval Rep-
resentation), a new representation paradigm in which each interval class is associated to an
index. In this way, moving from D♭4 to E4 is no more represented as a step of 4 but only of
2, because it is an augmented second: no matter about alterations, it counts only diatonic
intervals. Another more classical approach is the step-leap representation which allows an
approximate search: it consists in representing only most “significant” interval classes. Simi-
lar to this approach is also the so called contour melody.

Regarding harmonic description, not so many models for analysis and MIR were proposed.
The majority of the algorithms which analyze music harmony adopt one of two possible
approach:

■ use the Tonnetz or some derivative form (see subsubsection 1.2.3.3)

■ use a vector of notes in absolute or relative number (Cambouropoulos, 2016)

1.2.3.3 Tonnetz and Spiral Array

Tonnetz, or harmonic network, is a geometric representation of musical pitch space, de-
scribed the first time by Euler and adopted later by Arthur von Oettingen, Riemann and
recently by neo-Riemannian theorists (Cohn, 1997) (see Figure 1.2). It has been used in
MIR tasks especially for harmonic analysis (e.g. Harte, Sandler, and Gasser (2006) and
Humphrey, Cho, and Bello (2012)).
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Figure 1.2: Tonnetz: a representation of the Tonnetz space. Horizontal lines represent
fifth circle, while triangles represent triads.

Spiral Array is a Tonnetz based representation of music which removes some of its redun-
dancy (see Figure 1.3). It was first proposed by Chew (2000) and then applied to several
other tasks, such as key detection (Chew, 2002), music enjoyment (Chew and Francois, 2003)
and pitch spelling (Chew and Chen, 2005). It has been recently defined in Chew, 2014. We
are going to briefly describe it adapting our survey from “The spiral array: An algorithm for
determining key boundaries” (Chew, 2002).

In Spiral Array, each pitch class is indexed by the number of perfect fifths separating it
from an arbitrarily chosen reference pitch and it is placed in 3D space. Moving through
the spiral of a quarter turn, coincides in incrementing the index. Four quarter turns places
pitch classes related by major third interval in the same vertical line. Moreover, higher level
musical entities (such as chords) are represented as convex combinations of pitches (lower
level musical entities). Easy speaking, like a pitch is represented by a point, power chords
can be represented as lines, three notes chords as 2D spaces, and so on, similarly to Tonnentz.

As Tonnentz, the Spiral Array is very fine in representing tonal harmonic relations. Whereas
it has been used in several interesting applications (Chew, 2008), it becomes of quite difficult
usage in non-tonal contexts and in tasks involving motivic analysis.

1.2.4 Graph based MSRs

MSR paradigms mentioned above have a weakness: they are not able to overcome the
vertical-horizontal duality, resulting in representational systems more appropriate for motivic
or contrapuntal analysis while others for harmonic studies.

A way to bypass this problem could be by using a graph based representation as we will
explain in the next chapters. Therefore we are going to describe the most interesting graph
based MSRs in literature.

1.2.4.1 Hamanaka – Hirata – Tojo GTTM

Over the past fifteen years Hamanaka, Hirata and Tojo undertook in the implementation
of the famous Generative Theory of Tonal Music (GTTM) (F. Lerdahl and Jackendoff, 1985),
a cognitive model of tonal music language. F. Lerdahl and Jackendoff, starting from Gestalt
theories and from Chomsky’s influential writings, tried to describe music through generative
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Figure 1.3: Spiral Array: A representation of the Spiral Array with pitches, tonic and
triads.

grammars, stating at the end of the book that most of the system was “universal”, that is
idiom independent. We will shortly describe the work by Hamanaka, Hirata, and Tojo based
on Hamanaka, Hirata, and Tojo (2016).

Basically, GTTM describes four different structural analysis: metrical structure, time-
span tree, prolongational tree and grouping structure. Each of these analysis has two type of
rules: well-formedness rules and preference rules. Through these rules, the GTTM deduce 4
different structure representations on the score:

■ Grouping structure: gives a Gestalt based music description and says which segments
are perceived more “unified” than others, identifying motifs, periods and sections;

■ Metrical structure: describes the most important events in metrical sense according to
strong and weak beats sequence (i.e. alike to the common metrical structure);

■ Time-span tree: merging the previous two structure, GTTM retrieves a hierarchical
structure, defining most relevant events, in a fashion resembling Schenkerian theories;

■ Prolongational tree: while time-span tree determined the most relevant events based
manly on metrical structure, this takes into account the alternation of tension and
relaxation;

Since F. Lerdahl and Jackendoff did not specify an algorithm for constructing hierarchical
structure but let several ambiguities in many crucial points, problems arise in its implemen-
tation. The GTTM implementation is quite complex and this is not the context to explain it
further. However, Hamanaka, Hirata, and Tojo’s algorithm has been applied both to similar-
ity (Hirata, Tojo, and Hamanaka, 2013; Matsubara, Hirata, and Tojo, 2014) and educational
tasks (Hamanaka, Hirata, and Tojo, 2008) with encouraging results.

https://commons.wikimedia.org/wiki/File:Spiral_Array_Model—Minor_Key_Representation.png
https://commons.wikimedia.org/wiki/File:Spiral_Array_Model—Minor_Key_Representation.png
https://creativecommons.org/licenses/by-sa/4.0/legalcode
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1.2.4.2 Marsden Schenkerian reductions

During the same period in which Hamanaka, Hirata, and Tojo worked to the GTTM imple-
mentation, Marsden worked to the implementation of an algorithm to perform a Schenkerian
analysis over a short music extract. Actually, at now, it is still difficult to realize a formal
Schenkerian analysis because of the computationally expansive cost of the operations (Mars-
den, 2011).

As for GTTM, Schenker did not explained his theory in an algorithmic way and it is hard to
derive a formal procedure. Moreover, it must be said that Schenker did not intend his theory
in a cognitive sense – cognitive psychology and Gestalt would have arrived later – but as a way
to found a superior meaning that only genius composers are able to understand (Temperley,
2012). Schenkerian theory is based on the identification of structural relevant elements –
which compose what he called Ursatz or fundamental structure – and on the assumption
that all music (namely tonal music) can be seen as the development of an alternation of
fundamental harmonic elements, i.e. tonic and dominant.

Aside from Schenkerian theoretical aspects, which have been criticized and at the same
time extended by several musicologists, hierarchical reductions may could reveal deep re-
lations, such as variations of a motif or a theme, that could enhance the computation of
music similarity and therefore of many MIR tasks. By example, Marsden (2010a) tested his
Schenkerian approach to similarity task, obtaining nice results. In any case, this algorithm
still need careful insights.

1.2.4.3 Rizo - Iñesta trees

An interesting graph based structure are the Rizo - Iñesta trees (Rizo Valero, Iñesta
Quereda, and Moreno-Seco, 2003; Rizo Valero and Iñesta Quereda, 2002; Rizo Valero, Iñesta
Quereda, and León, 2006; Rizo Valero, Iñesta Quereda, and Lemström, 2008; Rizo Valero,
2010).

They developed a MSR based mainly on the metric structure and on the bottom-up
propagation of more relevant pitches according to some rule system, which vary according
to the task. The level to which each note belongs is given by its duration: the longer the
note is and the higher the level at which it is located.

Rizo Valero, Iñesta Quereda, and Lemström (2008) and Rizo Valero (2010) extended the
same approach to polyphonic music too. This is done by building a separated tree for each
voice and then merging them together with multiset labeling of pitch – in a way resembling
the chord representation described in subsubsection 1.2.3.2.

The most interesting thing in Rizo - Iñesta trees is that they are specifically designed for
MIR tasks, as the following others, with successful results. In particular, authors use tree
topological similarity to compare different pieces of music.

1.2.4.4 Pinto graphs

Pinto, Van Leuken, Demirci, Wiering, and Veltkamp (2007) proposed a graph based rep-
resentation for melodic datasets. The basic idea was simple: an edge was build at every new
note, following the melodic contour, leaving out the pitch class information. The graph was
composed by 12 vertex – one for each note – and by n− 1 edges, where n is the number of
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notes in the melody; each edge is weighted by the occurrences of that interval.
Obviously, this approach is time independent and, although it had some benefits – it is

invariant to transposition, retrogradation, inversion, etc. – it was limited to little number of
melodies. Moreover, information that it stores are the same of a histogram (see subsubsec-
tion 1.2.3.2).

Pinto, Van Leuken, Demirci, Wiering, and Veltkamp used the Laplacian matrix represen-
tation, they computed the laplacian eigenvalues, sorted them by magnitude and used them
as points in an euclidean space. Distance between two melodies is the euclidean distances
between the laplacian spectra. They obtained nice results in a typical retrieval task.

1.2.4.5 Orio - Rodà dataset graphs

Orio and Rodà (2009) suggested a different approach through which, resembling schenke-
rian and GTTM theories, was possible to represent an entire monophonic dataset as a graph.
The algorithm is composed by four steps:

1. Normalization: the music is transformed in interval representation (see subsubsec-
tion 1.2.3.2) and undergoes to harmonic analysis;

2. Reduction: each melody is reduced by three rules until only one note remains (see
below);

3. Segmentation: each melody is segmented and each segment inherits all the reductions;

4. Encoding and merging: segments and reductions are then coded in one of the method
described in subsubsection 1.2.3.2; then, they are merged: since only one note remains
after the reduction, more than one melody can be merged in the same graph;

At this point, melodic distance between two segments is computable as the minimum path
between them – they could also have some mid reduction in common, hence minimum path
do not necessarily pass through the single fundamental note.

The central part of Orio and Rodà’s algorithm is the reduction algorithm, which creates a
hierarchical structure similar to the one of Hamanaka, Hirata, and Tojo, Marsden and Rizo
Valero and Iñesta Quereda. It uses some weight coefficients assigned to each note in the
melody, then, by using a sliding window of two notes, the least heavy note according to the
first coefficient is deleted in each window; if the two notes have the same weight, the second
coefficient is used and so on. Namely, they used three coefficients that they called harmonic,
metric and melodic. We propose a different but more explanatory nomenclature:

■ Functional: a weight relative to the importance of the harmony of a note with respect
to the tonality of the segment, representing the functional harmonic analysis – i.e. notes
in a tonic or dominant harmony are heavier than notes in subdominant harmonies;

■ Metric: a coefficient relative to the metric structure – see subsubsection 1.2.4.1;

■ Consonance: a coefficient which rewards consonant notes and disadvantages dissonant
ones;
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A simple example of reduction procedure according to this algorithm is shown in figure
fig. 3.1.

Results by this MSR were very encouraging, but the testing dataset was small and it
should be submitted to a further analysis.

1.3 Proposals for a new paradigm

Merging all observations from the previous two sections, we suggest the following intentions
and guidelines for a new MSR:

1. MSRs should be coherent with psychological discoveries;

2. It is important that MSRs are designed to be used in a context user centered, that is
taking into account the active cognitive process of the final user;

3. MSRs should be useful for musicological analysis and creative activities;

4. Despite existing MSRs, it is of central importance that MSRs are able to represent
music both from horizontal and vertical point of view; this would make them able to
perform contrapuntal and harmonic analysis as well to better learn the texture;

5. MSRs with practical aims should also be tested with real world dataset, not only with
prepared and cleaned corpora; although this is hard in the symbolic music context due
to the lack of dataset and to copyright laws, this is an unavoidable passage, sooner or
later;

6. Moreover, it would be nice if MSRs would provide support to standard encoding format
for musical analysis, as suggested in Marsden and Rizo (2016) and Harley (2015);



2
Formal definition and implementation choices

In this chapter we are going to define a new MSR paradigm. First, we will define a general
structure that is algorithm independent. Then, we will derive two possible algorithms to
create an MSR, one for polyphonic music and one for monophonic.

2.1 A general framework

2.1.1 Outline of a new MSR

An important feature that is missing in almost all the MSRs until now is the ability to
provide a good contrapuntal description of the music texture. Instead, MSRs are quite good
in detecting key changes or in harmonic analysis, as well as in describing some abstract
knowledge of our music perception. Musicology and composers spend a lot of time to under-
stand the complex relationships which characterize music also at a contrapuntal and motivic
elaboration level. Moreover, encapsulating this type of structural features would pave the
way for new strategies for genre classification, recommendation systems, expressive music
performance and so on. Since we aim to design an MSR satisfactory for the most part of
music computing applications, we think that this is an aspect that cannot be postponed
anymore (see subsection 1.1.4).

The question which arise is: how to represent music in its contrapuntal relationships,
motifs, themes and variations? Surely, our MSR should “know” the concept of motif – or
theme, or subject, depending on the context. This knowledge could be extracted manually or
by some automatic algorithm – this side will be analyzed in section 2.2. At now, we observe
that a fine structural description of the music piece could be useful to represent it in a MSR.
Also, each segment could be described with one of the already existing MSRs, so that its
intrinsic harmonic informations could be stored as well. Instead, we could add informations
about the mentioned relationships, improving the texture representation. Something similar
has already been suggested by Marsden (2001), Marsden (2004), and Marsden (2005).

Another feature we aim to achieve is a cognitive based approach (see subsection 1.1.1). To
this purpose, a new MSR should take into account at least:

13
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■ Transposition invariance

■ Duration invariance

■ Timing variation invariance – in case of performance base representations such as MIDI

■ Intensity changes invariance

■ Little variations invariance

■ Pitch hierarchy – according to the cultural context

■ Consonance-dissonance – according to the cultural context

Actually, from the above list, one should decide what is needed to his own purpose: by
example, an expressive performance algorithm could be enhanced by the knowledge of a trans-
position – e.g. performers often create particular dynamics to emphasize a subject growing
up from low frequencies to higher – while a recommendation system may does not want
this information because people usually do not care about it – the main distinction here is
between professional musicians and not musical trained people, for a review see E. Glenn
Schellenberg and Weiss (2013). Maybe, to create a general purpose MSR, these relations
could be introduced in a way which allow to take them into consideration or not. Note that
some of the above items are also important for the contrapuntal texture discussed above.

Finally, we think that the time information is really the most significant feature of music
since it permeates all its aspects. Removing it means losing too much crucial knowledge for
an adequate understanding of music.

In the next paragraph we try to give a formalization of these concepts.

2.1.2 Formalization

Let start with some useful definition.
Definition 1: Musical notes universe

We call N the universe of musical notes. Each note is a set of four elements:

■ main name, a value ∈ {A,B,C,D,E, F,G }

■ alteration, a value ∈ { −2,−1, 0,+1,+2 }

■ octave, a value ∈ Z

■ duration, a value ∈ R corresponding to the note duration expressed in quarters

Definition 2: Segment

We call segment an ordered sequence of notes ai : ai ∈ N .

We remark that a note is not a vector because we do not know how to define a commutative
sum between two notes. The same is for segments.
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Definition 3: Operations between segments

Given a segment a and a segment b, the following operations are defined:

■ membership: a ∈ b ⇔ ∀ ni ∈ a, ni ∈ b

■ equality : a = b ⇔ a ∈ b ∧ b ∈ a

■ length: |a| is the number of notes in a

■ sum: a+ b is a new segment given by juxtaposing b to a

■ intersection: a ∩ b is a new segment composed by the notes n : n ∈ a ∧ n ∈ b

■ union: a ∪ b is a new segment given by the removal from b of the starting items
which are in common with the end of a and by the juxtaposition of the remaining
part of b to a. Therefore a ∈ a ∪ b ∧ b ∈ a ∪ b. Also a + b = a ∪ b ⇔ a ∩ b = ∅
and a ∈ b → a ∪ b = b.

■ duration: d(a), the sum of the durations of the notes of segment a

Definition 4: Segmentation of a segment

We call segmentation of a segment b ∈ N l : |b| = l a set E ⊂ N k×h : b /∈ E of h

segments with length k obtained through a function e : N l 7→ N k×h called segmentation
function.

Definition 5: Parent function

We call parent function a function f : N k 7→ N l which maps each segment a into its
parent segment b, so that a ∈ e(b).

Definition 6: Set of parent relations

Given a segment b and its segmentation E = { a0, a1, . . . , ah } then p(ai) = b ∀i ≤
h. Therefore we can define the set of parent relations that is the set of ordered pairs
{ (a0, b), (a1, b), . . . | i ≤ h }. We call this set P.

Definition 7: Graph of a music piece

Let e be a segmentation function and A be the union of all the recursive segmentations
obtained through e starting from a music piece S. Then A can be intended as the set of
nodes of a graph in which the set of edges is P. We call G = (A,P) graph of the music
piece S . An example is shown in Figure 2.1.

Note that if a music piece S does not have pattern repetitions, then its graph is a tree,
and it is the hierarchical structure of the piece. Since by definition a set requires all its items
to be distinct, in general the graph of a music piece is not a tree. Instead, we can observe
that the union of the segments in a segmentation set is the parent of the items. Therefore,
at any point of the recursive segmentation procedure, we can reconstruct the initial segment.
Also, the union of all the segments in the graph G is exactly the music piece S.
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At now, we have generalized the typical hierarchical structure, without adding informations
to it. Actually, we could always build a tree by considering each segment distinct based on
its parent, so that at every segmentation a new set of segments is returned. Then, we could
add edges to the graph G to represent equalities relationships. These structure could then
be used in some useful tasks, like formal analysis, genre detection, and so on.

In a similar way, we could define any complex relationship of which in subsection 2.1.1 by
adding special edges to the graph. In this way we are representing contrapuntal relationships
in a melody. For polyphonic materials, the same approach could work, by simply building
separated graphs for each voice and then adding edges between each voice graph, or, maybe,
by using the above formalism and keeping in each node of graph G a list of pairs (t, v), where
t is the time and v is the voice in which the segment appears.

We still have to represent cognitive and harmonic informations. Concerning the first, we
can store them in arcs between nodes – e.g. transposition, retrogradation, inversion, different
levels of similarity – or by simply using one of the MSR described in section 1.2, depending
on the aim. About the harmonic informations, we think that the most practical way is
to use some of the MSR of which in section 1.2, such as the Spiral Array. Maybe, if a
hierarchic MSR is chosen, other segments can be added, of which each one can have the
same above mentioned relationships with all the other segments plus an edge representing
the reduction. This, as suggested by Marsden (2010a) and Orio and Rodà (2009) could also

Figure 2.1: Recursive segmentation: in this example, the segmentation function used
was e(b) = a : |a| = |b| − 1, that is the extracted segments are the two sub-
sequences with one note less than the parent. The results is a graph.
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Figure 2.2: An example of graph: each edge is annotated with the relative operation.
Looking parents and reductions relationships, it is clear that this graph is not
a tree. Also, segment B can be detected as variation of the first part of segment
A thanks to the reduction operation.
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enhance the identification of similarity between segments. An example of graph produced
with this approach is shown in Figure 2.2.

By using breadth-first search and depth-first search, it would be possible to find the maxi-
mum connected components of the graph according to one ore more type of edges, making
the graph invariant to that particular operation. Also, graph theory offers many algorithms
that may have significant meaning in music context: e.g. centrality measures could enhance
the representativeness of a database entry in a features-like approach, minimum spanning
threes could reveal hidden patterns and neighborhood functions may can help in similarity
tasks.

Finally, the initial score could also be removed from the graph since its informations are all
contained in the union of segments. According to the task, one could also decide the number
of recursion of the segmentation function and/or to remove intermediate extracted segments
maintaining just the lowest level. A map of the time succession of the segments and their
superposition in polyphonic works could also be added to speed-up some polyphonic task –
e.g. harmonic analysis using reductions and formal analysis.

We remark that this way of representing the musical texture may allow for a better embed-
ding of musical informations without losing what was already captured by previous MSRs.
In the following, we will discuss how to implement an MSR based on this framework, keeping
effective aspects of existing MSRs.

2.2 A new MSR framework

In this paragraph we will explain a possible algorithm coherent with the graph based
paradigm just described. Choices are performed with in mind a similarity task and a query-
by-excerpt like algorithm in which given a generic segment, we aim to found the work from
which it was extracted.

2.2.1 Melody representation

The first two challenges we meet in using the paradigm depicted in subsection 2.1.2 are
the choice of segmentation function and segment representation. By now, in this project we
have focused on these two problems and we were not dealt with pattern transformations such
as transposition and inversion.

There are many segmentation algorithms. A good survey can be found in López and Volk
(2012). Using hierarchical algorithms allows for choosing to store just longer or shorter seg-
ments, or maybe both of them. By using short segments, the MSR will give more weight to
little motifs tending to lose structural informations if segments are very short – i.e. one or two
notes. With long segments, instead, internal pattern repetitions or elaborations – such as
motifs – may are not tracked. The best would be to represent all of them, which would need
a hierarchical segmentation algorithm. To this purpose we considered to implement the VM1
algorithm by Velarde, Meredith, and Weyde (2016), which outperformed other segmentation
algorithms in the most of measures in MIREX 2017 competition1, and which perform a multi-

1MIREX is an annual competition between different algorithms in the context of Music Information Re-
trieval. One task is Discovery of Repeated Themes & Sections and refers to the segmentation of symbolic
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level segmentation. Since our aim is a query-by-excerpt like algorithm, maybe we could keep
only the most useful segments length. However, since VM1 is targeted to repetition identifi-
cation, just before testing the software we changed to the more classical LBDM algorithm by
Cambouropoulos (2001). In this algorithm the length of segments is in some way determined
by a threshold which has to be tuned. As it will be explained in the next chapter, we intro-
duced new parameters in the algorithm which allows to a better adaptive behavior of LBDM

About the structure to represent each segment, we could chose an interval based represen-
tation remembering the first absolute note of each segment. Maybe also GPIR or step-leap
could be used (see subsubsection 1.2.3.2). In this way, segments would already be transpo-
sition invariant without losing absolute pitch information. Regarding the harmonic content,
it is absent in melodies. Anyway, the Orio and Rodà (2009) algorithm may allows to a
more accurate similarity measure provided that we know chord annotations. Since we build
a dataset of leadsheets with chord annotations, we used the Orio and Rodà representation
with a slightly changed melodic similarity algorithm.

Since we decided to use Orio and Rodà (2009) algorithm, another important choice we
had to do were the rules to assign scores given the harmony chords. Recalling the cognitive
basis we want to give to our MSR (see subsection 2.1.1), we based scores on works by C.
Krumhansl and Cuddy (2010) and Fred Lerdahl and C. Krumhansl (2007).

Details of LBDM implementation, scores assignment rules and segments representation
will be given in the next chapter.

In general, we propose the following algorithm:

Monophonic Graph

1. segmentation at minimum level (LBDM local maxima)

2. detection of most important segment (single-linkage

clustering of LBDM local maxima)

3. reduction of each added segment until just one note

remains

4. adding edges between all segments (including reductions)

5. comparing segments (including reductions) and adding

edges (not reductions)

2.2.2 Polyphonic music

We also designed an algorithm to use the same representation based on Orio and Rodà
(2009) in polyphonic music. However we still did not implement it.

The main issue with polyphonic material and Orio and Rodà approach is the harmonic
evaluation from which they extract scores. Our idea is to retrieve firstly the most important

music. Results can be found at http://www.music-ir.org/mirex/wiki/2017:Discovery_of_
Repeated_Themes_%26_Sections_Results

http://www.music-ir.org/mirex/wiki/2017:Discovery_of_Repeated_Themes_%26_Sections_Results
http://www.music-ir.org/mirex/wiki/2017:Discovery_of_Repeated_Themes_%26_Sections_Results
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Figure 2.3: Polyphonic reduction: an example of reduction obtained after 2-3 steps on
an excerpt from Goldberg Variations, n.30, BWV 988. The reduction, contains
quite all the harmonic material even though the texture is rather complex because
of what De La Motte (1981) called “harmonic counterpoint”

bass notes and secondly the scores of other voices notes. A possible approach could be
therefore to compute exclusively the harmony basses notes – not fundamentals – based on
the dissonance grade in respect to the other voices. Then, scores could be given to each note
in each voice basing on the bass note.

Once a three for each voice is computed, one could build a graph as explained in subsec-
tion 2.1.2. This representation would allow an harmonic and contrapuntal representation of
the musical texture. Namely, harmonic representation would be captured by the reductions
and their superpositions (see Figure 2.3), while the contrapuntal representation would come
out from the segmentation algorithm and the added edges.

The algorithm would resemble this guideline:
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Polyphonic Graph

1. segmentation of each voice

2. reduction of each segment

a) score assignment to the bass

b) score assignment to the other voices based on bass

scores

c) reduction

3. transformation identification between different segments -

both involving reductions and original segments

4. restart from point 3 for each reduction with length > 1

added to the graph

Bass scores of which in item 2a may be computed with a measure which takes into account
the dissonance in respect to the other voices. We propose the following one, which still must
be tested:

1

N − 1

(1− α)
N−1∑
n=1

Θn + α
N−1∑

n=1,Θn<β

Θ′
n


Where:

■ n is the voice index, with n = 0 the bass voice;

■ N is the total number of active voices in the onset instant of the bass note;

■ Θn is the consonance score assigned to voice n, based on variable consonance classes
to take into account different cultural contexts;

■ Θ′
n is analogous to Θn but computed after that voice n has changed note during the

IOI (Inter Onset Interval, the time interval between two onsets) of the bass;

■ α e β are parameters of the model;

The first part of the formula computes the dissonance level in the onset instant, while the
second part takes into account the dissonance level of eventual resolutions. Letting β = 1,
any variation in any voice will be considered – e.g. this could be useful for pedals – while
letting 0 < β < 1 the classical concept of resolution of a consonance on the strong beat is
simulated. Finally, α allows to weight the contribute given by the resolution to the final
score. The best would therefore be to find some rule for the automatic computation of α

and β.
Moreover by changing Θk one could adapt the algorithm to different cultural contexts and

different psychoacoustic models.
Lastly, one could decide to add other scores to the ones proposed by Orio and Rodà, i.e.

by adding melodic accent weights (Parncutt, Bisesi, and Friberg, 2013).





3
Implementation details

3.1 Overview of the algorithm

As described in section 2.2 we used the schema below. In the following sections we are
going to describe details of each single point.

Monophonic Graph

1. segmentation at minimum level (LBDM local maxima)

2. detection of most important segment (single-linkage

clustering of LBDM local maxima)

3. reduction of each added segment until just one note

remains

4. adding edges between all segments (including reductions)

5. comparing segments (including reductions) and adding

edges (not reductions)

3.1.1 Enhanced LBDM

We used the Local Boundary Detection Model presented the first time in Cambouropoulos
(1996). We adopted the formulation in Cambouropoulos (2001). Anyway, we introduced
some new parameters and procedures to make the algorithm more adaptive and able to
manage different music contexts. However we did not evaluated in a strong way the improve-
ments brought by these little changes, but we confined the evaluation to informal qualitative
judgments.

In the following we are going to describe the LBDM algorithm in its original formulation
and our alterations.

23
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3.1.1.1 Original formulation (Cambouropoulos, 2001)

LBDM is mainly focused on a cognitive approach based on the acoustic associated to
notes. We think that this could be, in general, a limitation in that the theoretical meaning
of a note – e.g. its function in the context –, that is also explicated by the conventional
western notation, is in some way expression of the way we listen to music. In other words, a
B♯ is different from a C because B♯ includes the context information according to which we
perceive a tension and the need of a resolution.

LBDM is based on MIDI note values, that is a limitation since we know that local bound-
ary may occurs with more probability near and after a leading note. Also, it does not take
into account context informations, such as harmony and chords. However, it has bee largely
used in many projects and it is almost a de facto standard, together with other more complex
models.

LBDM uses three different scores computed between intervals and re-evaluated two times,
so that each final score takes into account 4 consecutive elements – notes or rests. Scores are
computed based on pitch intervals – that is MIDI value difference – inter onset intervals –
the time which occurs between two onset, rests excluded – and rests intervals – the time of
a rest. This formulation is clearly thought to be used with MIDI files, where “rests” do not
exist; in fact, the inter onset interval should actually be the duration of the last note. For
the sake of simplicity we decided to maintain this formulation and we considered the timing
intervals with reference to the quarter length which is 1.0, as defined by music21 library
which we used in the software. Actually, one could think to use other interval representations
for pitch difference, as described in subsubsection 1.2.3.2.

Given these three scores for each interval, LBDM computes three local boundary profiles
by assigning a score to each interval – but not the first one and the last one – according to
the formula:

si = xi

(
xi−1 + xi
xi−1 + xi

+
xi − xi+1

xi + xi+1

)
where xi is the score – pitch, interonset or rests – assigned to the i-th interval.
Then, each score profile is normalized between 0 and 1 and then a final local boundary

profile is computed by a weighted average of the three scores. The proposed weights were:
wpitch = 0.25

wioi = 0.5

wrests = 0.25

(3.1)

Once we have the local boundary, we can detect the local maxima and choose the ones
that are over a given threshold.

Actually, as Cambouropoulos says, this is an incomplete model but it is nice in that it can
be computed in a 2×O(n) and in that it is quite precise.

3.1.1.2 Improvements

We introduced some new procedure to make LBDM stronger to stylistic variations.
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First of all, we made the weights changing based on the frequency of rests. The idea is
that in songs with many rests, phrases are mainly expressed through pauses and they may
contain huge pitch intervals relevant to the boundary profile; on the contrary, songs with few
rests, tend to express hiatus through pitch intervals. To formalize this concept we introduced
a threshold t = 0.12 according to which a value α = 0.2 is added to wrests and subtracted
to wpitch or vice versa. Namely, if the number of rests – not their duration – over the total
number of notes and rests is < t, then α is subtracted from wrests and added to wpitch; if the
ratio between the number of rests and total number of notes and rests is > 1.5× t, then the
other way around.

Another improvement we made was to make the threshold to select local maxima com-
pletely adaptive. We adopted a hierarchic clustering approach due to the small number of
one dimensional samples – local maxima in this case. The clustering was stopped when only
two clusters remained and the one with the highest values was used to segment the song.
The algorithm adopted was single-linkage. Nevertheless also other more classical clustering
algorithms such as k-means could work by setting the two centers one at 0 and the other at
1.

The last addition we made was to force the algorithm to not found boundary in tuplets,
but only before the first note or after the last note. Actually, this is not an exact rule, since
in general, a music could be written with tuplets to not introduce metrical changes. Also,
phrases could terminate between two different tuplets, but the rule we introduced forbid this.
In the most part of cases, however, this prevent from erroneous detections.

3.1.1.3 Suggestion for future improvements

Some enhancement could still be made to LBDM. By example, one could think to use Orio
and Rodà (2009) scores to take into account the functional harmonic context. Also, one could
use GPIR or other interval based scoring to take into account the theoretical meaning of the
intervals.

3.1.2 Computing reductions

Reductions are the most original part of this framework. They allows to highlight the
most relevant musical elements (Marsden, 2010b), to summarize music (Hamanaka, Hirata,
and Tojo, 2008), to express a similarity measure (Orio and Rodà, 2009; Rizo Valero, Iñesta
Quereda, and León, 2006) and to detect little variations of a theme (Marsden, 2010a). The
main issue is the computability since neither Hamanaka, Hirata, and Tojo nor Marsden are
very efficient from a computational point of view.

From this perspective, the work of Orio and Rodà (2009) seems to be more appropriate
for a practical application which should work on very large databases. We extended the
reduction algorithm described in subsubsection 1.2.4.5 and used by Orio and Rodà (2009).

Figure 3.1 shows a simple example of reduction procedure of a simple melody according
to our new algorithm derived from Orio and Rodà (2009).

In the new algorithm windows are set in a more intelligent way: they are no more long
as the double of minimum duration in the last reduction, but they are large as the duration
just a level longer than the minimum duration in the metrical tree of the song meter. By
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Figure 3.1: Monophonic reduction: a simple example of reduction procedure of a melody
until just one note remains. Note that the resulting note is the root of the
tonality.

example, in 3/8, if the minimum duration at a certain stage is the eighth, then the window
will be long as three eighths. The key was to find a rule to delete one notes from a group
of three and to assign the duration of the deleted note to the most important note of the
two remaining. Once that just one note remained in each measure, all notes were reduced
in duration to thirty-seconds and put in the same measure with time signature equal to
2×number of remaining notes or rests

64 . Then, the same algorithm was applied but, instead of
padding with rests the semi-empty final windows, as we did in the first part, we deleted
the last note – that is the last window since all notes had the same length; this was did
because the algorithm used for padding was based on the original song measures and not on
the computed windows, so that the rests that would have been added to obtain a complete
ending measure would have been very long, making the computation really slow. Figure 3.2
explains this issue.

The new rule to decide which note must be deleted was made of two steps: first it deletes
the note in the window with the lowest score, according to the rule precedence defined by
Orio and Rodà; then it assigns the duration of the deleted note to the nearest note with the
highest score and, in case of tie, to the previous note. Since we selected songs so that at
most three notes per window appeared, in at most two rounds any group is reduced.

Following the same principle, we made the algorithm capable to work with any tuplets
and metrics, also compound meters, but we tested it just with triplets and binary/ternary
meters. It must be said that the new algorithm first parses the score in search of tuplets, put
them in standalone measures and then reduces them to a single note in the original meter of
the measure. After this, it continues with the normal reduction. We also made the algorithm
able to manage ties. In general, the new version of the algorithm is able to manage more
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Figure 3.2: Padding last measure: given a reduction containing one note per each mea-
sure, every note is converted to a thirty-seconds note; padding last measure with
rest could need to double the total length of the score, making the computation
really slow.

complex cases coming from a noisy dataset as the one described in chapter 4.
About the scores, we were inspired by C. L. Krumhansl and Shepard (1979) and more

recent works (Fred Lerdahl and C. Krumhansl, 2007; C. Krumhansl and Cuddy, 2010).
Actually, few studies were conducted about a quantification of the dissonance produced by
the superposition of two sounds. The following two tables show the scores we assigned to each
harmonic interval and to each chord, that is the consonance score – Table 3.1 – and functional
score – Table 3.2 – according to our nomenclature respectively – see subsubsection 1.2.4.5
for the nomenclature. Functional scores were computed based on the number of semitones
which divide the root of the chord from the tonic, while consonance score is computed by
using theoretical intervals between the melody note and the root of the chord. Metrical
scores were assigned based on the theoretical metrical tree1. If one of the two notes was a
rest, functional and consonance score was set to 0.5 – this value can be changed easily in
the setting file.

We also tested only three score classes for both consonance and functional scores, since
Orio and Rodà claim to have better results with this setting, but we did not obtained
significant changes.

3.1.3 Putting all together: dataset representation

For each segment we computed the reduction. Note that time and key signatures are
inherited by each child segment. Since the dataset we used was very noisy, with some
score not compliant to the MusicXML standard, some segments were not reducible and we
discarded them – anyway, the number of the discarded segments was small compared to the
total.

We also added a weight to the graph branches following different strategies:

■ add one for each note deletion in a reduction step

■ consider each branch with weight 1

1Despite music21 uses some misleading structure in the representation of the metrical tree – i.e. in 4/4 it
considers the third quarter to be as strong as the second and the fourth – we attained to the usual western
musical theory
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Table 3.1: Consonance scores
Intervals Scores
perfect unison 1.00
perfect fifth 0.75
diminished fifth 0.50
major third 0.75
minor third 0.75
diminished third 0.20
perfect fourth 0.30
minor sixth 0.40
major sixth 0.40
minor second 0.20
major second 0.20
minor seventh 0.50
major seventh 0.20
diminished seventh 0.50
rest 0.50

Table 3.2: Functional scores
Scale grade Scores
I 1.0
II♭ 0.2
II 0.5
III 0.4
IV 0.8
IV♯ 0.3
V 0.9
VI♭ 0.1
VI 0.6
VII 0.7
rest 0.50
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Figure 3.3: Dataset representation: the distance between two segments – i.e. A and
B – is computed as a path (dashed lines) in the graph representation of the
dataset; if two segments – i.e. B and C – have a different top note in their
own reduction tree, then another edge is added at retrieval time (dotted lines).
Weights are not shown in the figure.

■ add a distance which takes into account the intrinsic differences between the note
deleted and the note enlarged in duration

About the last point, distance used was the note-to-note distance described in section 3.2.
All segments were uniquely associated to a song and each song was associated to a list of

segment reductions. Each segment reduction contained the branch weights to be summed
up to compute the distance between two segments. On the top level only one note remained
and an edge is added at retrieval time between top-levels, weighting through note-to-note
distances. From now on, we will call internal edges the ones added at indexing time – they
could be weighted or not – and external edges the ones added at retrieval time – always
weighted.

The resulting is a graph like the one in fig. 3.3 in which we can compute distances between
two segments as path in the graph.
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3.2 Distances

We developed a number of distances, but we did not tested all them in our Symbolic Music
Representation since they were too many. Distances were computed with a block model as
depicted in figure 3.4.

There are a number of settings that can be used. The following apply to note-to-note
distance and can be used in segment-to-segment distance by simply setting the distance
frequency described below.

■ duration weight: one can decide to weight each distance with the duration of the
less long note

■ distance type: this could have a different value, namely:

• semantic: uses the mean of our functional, consonance and metrical scores; op-
tionally, this value can be weighted with the estrada distance (Rocher, Robine,
Hanna, and Desainte-Catherine, 2010) of the harmonic context of the two notes.
Since scores take into account the harmonic context, these are also transposition-
invariant. It uses note based representation.

• boolean: it assigns 1 if intervals are different, 0 if they are equals; intervals are
obviously transposition invariant. It uses interval based representation.

• fuzzy: this returns a value depending on the interval representation and included
between 0 and 1; as before, this is transposition invariant. It uses interval based
representation.

• MIDI : it normalizes the two segments to the their average midi value and returns
the midi distance as in Velarde, Meredith, and Weyde (2016); normalization makes
this measure transposition invariant. It uses note based representation.

■ interval representation: fuzzy and boolean distance need an interval based represen-
tation; duration of intervals is the duration of the first note; we developed:

• music21 : uses theoretical intervals; with fuzzy distance, the difference can be
based on the chromatic difference or on our consonance scores

• GPIR: see subsubsection 1.2.3.2

• step-leap: see subsubsection 1.2.3.2

• contour : see subsubsection 1.2.3.2

■ distance frequency: distance can be computed:

• at each new onset in any of the two voices

• with a fixed sampling, such as at each thirty-seconds note duration

If we consider three different values for chord weights in semantic distance and three
different values for fixed sampling in distance frequency, we obtain 78 different distance
measures.
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3.3 Tools

In this section we will briefly describe the tools used to develop and test the algorithm.

3.3.1 Python 3.6

We chose to use Python as programming language. Python is a modern multi-paradigm
interpreted strongly and dynamically typed programming language which is becoming more
and more used in scientific contexts due to its efficiency and to the predisposition to integrate
pure C library. Moreover, the library music21 is written in Python and offers the ability
to open ad elaborate various different symbolic music formats, MusicXML included, without
loosing information. This was useful to implement our reduction algorithm described in
subsection 3.1.2 which is based on chords annotations. More used tools, like Matlab and
midi-toolbox were not suitable to our purposes.

One of the major pros of Python is that it can be applied in an incredible variety of fields,
from big data analysis to machine learning and computer vision, from web development to
end user GUI applications, from distributed systems to signal processing, numerical calculus
and so on. This makes Python more desirable than Matlab, which instead is exclusively
targeted to just scientific research. On the other hand, Python forced us to deal with some
issues that, anyway, we think also Matlab would have compelled us to overcome.

Actually, our experience with Python was nice and we liked the way Python gives the
ability to change the programming paradigm in different sections of the code. By example,
our code is mainly object-oriented but the distance module, which is function based. Also,
Python allows these functions to became methods of future complex objects thanks to the
binding mechanism.

The main issues we found were about serialization and parallel computing.

3.3.2 music21

music21 is a Python library developed at MIT by Michael Scott Cuthbert and collabora-
tors (Cuthbert and Ariza, 2010). The main reason which forwarded us to use music21 was
the complete ability to open MusicXML files and the number of ready-to-use musicological
procedures available.
music21 is based on a tree music representation implemented through a composite pattern

(Gamma, Helm, Johnson, and Vlissides, 1995), where a stream.Stream – i.e. a score –
can contain other stream.Stream objects – i.e. some instrument parts or some measures.
Actually, music21 is a still in development project which under many perspective should
be improved.

First of all, it is almost completely written in pure Python code, which makes it very
slow.

Second, it includes only algorithms coming from quite old papers and music computing
community is not helping in this – we said in the incipit of the thesis that symbolic music is
very little studied.

Third, we think that some choices were non intuitive – i.e. see note about 4/4 subdivision
in subsection 3.1.2 or bugs in chapter 4 due to the non saving of some attributes in the
top-level of the composite pattern– and little suitable for musical analysis.
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Fourth, we found that some methods and functions integrates little between them, by ex-
ample we had to use measures as windows and no suitable function was provided to process
the score in handy windows, even if this possibility is considered with a windowed module.

In general we have found in music21 an interesting project which should be supported
by the scientific community. It is born in field poorly studied where collaborations and reuse
of code between different projects is of fundamental importance to achieve the best results.

3.4 Software design

3.4.1 Introduction to the design

Our implementation is mainly base on two objects: SegmentReduction, which represent
the reduction of a segment, and StreamReductor. SegmentReduction contains a key referred
to the song to which it belong and an ordered list of StreamReductor. This last one con-
tains a music21 stream.Stream and is able to produce a new StreamReductor containing
the stream.Stream object representing its reduction. After it computes its own reduction,
it also contains the distance between itself and the new reduction. All the implementation
is based on stream.Stream objects, which is a superclass for measures, scores, parts and so
on. In this way, SegmentReduction and StreamReductor should also work with other types
of stream.Stream. This is in some way similar to the builder design pattern (Gamma, Helm,
Johnson, and Vlissides, 1995).

An important approach we adopted during the development was the usage of proxy func-
tions to achieve different behaviors with the same function based on global or setting variables.
By example, StreamReductor has some methods which parse all notes of a stream or a single
measure or a single note; the first depend upon the latter. These perform a variety of tasks
that must be applied in different point of the code but always with a different combination.
This is implemented through proxy functions to assure that each task is performed always
in the same way. Another example is the distance module – see section 3.2. For the same
purposes we also made a large usage of IntEnum from the standard library.

Scores are computed each one by a specific class which implements a completely abstract
class Scorers. Tuplets and ties are managed by apposite classes, while the reduction rule
described in subsection 3.1.2 was moved to a standalone class.

Finally, settings are in a standalone module and are simple variables. Of sure, this is not
the best option from a security point of view, but it is the most straightforward for research
purposes.

3.4.2 Implementation issues

Python does not allow to serialize every type of data. Moreover, music21 uses WeakRef-
erences objects that Python standard library is not able to serialize. Luckily, there is dill,
which is a library to serialize even complex Python but it is very slow.

Serialization is of particular importance when trying to parallelize the computation, since
Python interpreter forbid the parallel execution of threads: it set a lock on a global variable
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– called GIL for Global Interpreter Lock – and each thread must wait for the GIL to start
its execution. This shall facilitate the development of pure C libraries, upon which Python

is strongly based, and allows the developer to focus on single threading performances of
the Python interpreter, that is, in fact, very efficient. There is a lot of discussion about
the GIL in the Python community because it makes harder introducing parallel computing.
The only way to take advantage of multiple processors is by using multiple processing with
multiple instances of the interpreter. Moreover, Python standard libraries can manage in
the shared memory only the C standard types – e.g. int, char, double, etc. – ad this
makes more difficult to share complex Python objects, which must be serialized and copied
in each private memory of each parallel process. It must be said that also Matlab makes
difficult to use parallel threads.

Anyway, we ended up by developing a custom pickle module which uses music21 func-
tions to serialize music21 objects. This allowed us to easily save the dataset representation
to file. Surely, the best would have been the ability to use multiple threads; this could
be achieved in the future by using Jython – a compiler for JVM bytecode, so no GIL at
runtime –, which at now only supports Python 2.7, or by using Cython – a Python

implementation which supports pure C statements and can disable GIL but this would need
to create a wrapper from music21 objects to pure C structures that can be altered in with

no GIL blocks of Cython.





4
Dataset

Since we needed music sheets with chord annotations, we build a new large dataset starting
from a hold Wikifonia archive. We, by using discogs.com and secondhandsongs.com,
added meta tags, lyrics, genres and various features to each score and filtered what our
algorithm could not parse. The resulting dataset included more than 5.000 leadsheets. We
also extracted a public domain dataset of about 550 scores.

In the following paragraphs we will describe all the dataset.

4.1 2018 EWLD

4.1.1 What is EWLD

EWLD (Enhanced Wikifonia Leadsheet Dataset) is a music leadsheet dataset coming with
a lot of metadata about composers, works, lyrics and features. It is designed for musicological
and research purposes.

The following table resumes the dataset.

Feature Number

Compositions with first performance date 2031
Composition with annotated language 3290
Compositions with lyrics 4940
Compositions with annotated features 5151
Composition with annotated genres 3489

Composers 2804
Composers with death/birth date 2188
Composers with nationality 2472

Traditional songs 57
Public Domain scores 568

35
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Feature Number

Compositions with annotated composer 3154
Compositions by USA authors 2713
Compositions by UK authors 434
Compositions by Italian authors 36
Compositions by French authors 76
Compositions by Canadian authors 67
[etc.. ] [. . . ]
Total number of leadsheets 5151

4.1.2 What we have added

This dataset comes from the old Wikifonia archive that is available on the web. We just
filtered its files to get only the ones compatible with algorithm descripted in the previous
chapters that is a graph-based representation of musical scores aimed at computational music
analysis, computational musicology and music information retrieval.

Moreover we added some notions taken from secondhandsongs.com and discogs.

com, such as the correct title, authors, year of composition, authors’ year of birth and
death and nationality, language, musical genres and styles. Also, we added a lot of features
relative to each music score computed through music21 (Cuthbert and Ariza, 2010) and
we separeted the lyrics where available.

The dataset is composed by one directory per author or combination of authors and one
directory per work, containing the leadsheet a text file with lyrics and a .csv file with
extracted features. Moreover, a little SQLite database contains all metatags such as year of
the first performance, authors, geres and so on.

A python3 script which creates the database is available.

4.1.3 Database creation

The database was extracted with a python ≥ 3.6 script from the old Wikifonia dataset.
From this a public domain subset was extracted. You can regenerate it by simply launching
the script with this command:

python3 EWLDcreation.py -d <path-to-wikifonia>

You will need a stable internet connection and some python libraries, that you can install
using the following command:

sudo pip3 install discogs_client music21\

requests argparse csv json operator os sys\

traceback zipfile sqlite3 collections typing\

time

Propably, most of them are already installed in your python3 distribution.
If internet connection goes down, you will find some file in a directory called exception_dir.

Delete it and rerun the script a few times without changing anything. If exceptions still per-
sist, please, contact us.

secondhandsongs.com
discogs.com
discogs.com
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Note that the file db_creation.sql must be in the working directory. It contains the
SQL script needed to create the initial tables.

If you want, you can also extract a subset containing only public domain scores by simply
running this command from the same directory in which you find this README:

python3 OpenEWLDcreation.py

4.1.4 Dataset organization

The database is organized as follows:

■ In the directory called dataset you will find a directory for each composer and within
it a directory for each score by that composer (or combination of composers). You will
also find a directory called [Unknown] for all scores without a recognized composer.

■ In the directory except_dir, if it exist there will be scores and logs relative to files
that cannot be parsed correctly

■ In the file EWLD.db you will find a SQLite3 database which contains all metatags
and file path

Note that all scores are filtered and edited so that they have the following properties:

■ Only one key signature and only one time signature – but they may not be there - see
subsection 4.2.1

■ No strong modulations –see paragraph about tonality field in the features table
of the db

■ Any triplet is allowed but no other tuplet, no nested and not between different measures
– N.B. We thought to have removed tuplets with notes of different values, but actually
they could still be there, see line 276 of the creation script

■ the tonality is expressed in the MusicXML

■ chords symbol (harmony) are always annotated in the MusicXML

■ only one voice is present in the score, no secondary voices or chords are allowed

■ no multiple white measures at beginning or at the end of the segment

4.1.5 Database structure

The database EWLD.db is a SQLite3 database. You can use any software to read it, for
example SQLiteStudio which is simple, tiny and portable. With it you can also extract XML,
HTML, JSON, SQL and PDF files.

It contains 6 tables, each described in the following paragraphs.
Each entry represents a work, as intended in secondhandsongs.com. A work is a music

composition: it can have several recordings by different performers, but the music opera is
only one.

https://sqlitestudio.pl/
secondhandsongs.com
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Actually, because of the noisiness of the beginning dataset, you could also find entries
representing derived works. Most of them should have the authors marked as ‘[Unknown]’.

Fields are:

■ id: unique integer

■ title: if author is not ‘Unknown’ it is the title given by secondhandsongs.com,
otherwise it is taken from the original score metadata or from the filename

■ first_performance_date: if available, the date of the first performance of the song, as
given by secondhandsongs.com. Usually, it should be similar to the composition
date

■ language: language as given by secondhandsongs.com or as detected by music21

■ path_lyrics: path to the txt file containing the lyrics (it could be empty)

■ path_leadsheet: path to the compressed MusicXML file containing the leadsheet

authors table This represents the authors. Fields are:

■ commonName: the name of the author as given by secondhandsongs.com (the real
author name is not available through their API at now; homonimy are diversified with
ending [1], [2], etc.

■ birth: date of birth if available (from secondhandsongs.com)

■ death: date of death if available (from secondhandsongs.com)

■ nationality nationality if available (from secondhandsongs.com)

features table Each entry describes a work from a musical point of view.

■ id: the id of the work

■ metric: metric signature as stated in the original score N.B. This is affected by a
bug, sometime 4/4 could appear but it could be wrong, see subsection 4.2.1

■ tonality: the tonality as detected by krumhansl-schmuckler algorithm – to avoid erro-
neous notation given by wikifonia users. If the certainty computed by [music21] is not
enough high – namely >= 0.9 –, the one provided in the score is used. This prevents
by erroneouses key signatures provided by Wikifonia users. N.B. a bug in saving
score made key detection useless, see subsection 4.2.1

■ incipit_type: a string, it can be ‘anacrusi’, ‘acefalo’ o ‘tetico’

■ has_triplets: a boolean that is true if there are triplets

■ features_path: path to the csv file containing features computed by music21. Each row
is a different feature. You can find a feature given its index, e.g.:

secondhandsongs.com
secondhandsongs.com
secondhandsongs.com
secondhandsongs.com
secondhandsongs.com
secondhandsongs.com
secondhandsongs.com
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• with features.base.getIndex(’name’) you get the index of a certain fea-
ture, that is equal to the row index in the csv file;

• with [x.id for x in features.extractorsById(’id’)] you can get
the list of features id in the same order as in the csv file;

■ read more here.

work_author table This table is needed to join works table and author table

work_genres and work_styles tables These tables give to each work a style and
genre classification in a 2D space with a fuzzy approach. By example, a work genre could be
identified by a 2D vector (‘rock’, ‘pop’). Each entry of these tables represent an entry of the
vector. Also, each entry of the vector is associated with a occurrences field that models
the certainty of that genre for that work. A good way to infer genre and/or style of a work
may could be by checking if one of the two vector entries has more than twice occurrences
of the other. If yes, you could consider it as genre or style of the work, otherwise you can
represent its genre/style using two coordinates.

These tables create association between a work and genres derived by discogs.com

following this procedure:

■ For each work creates a query made by title composer1 composer2 etc.

■ Consider the top-10 releases ordered by year returned by discogs.com:

■ Takes histogram of genres and styles, following discogs categorization, that is users
based

■ For each work, memorize the two most common genres and the two most common
styles

4.2 Discussion on dataset issues

4.2.1 What should be added

Despite our work, many enhancement can still be apported to the database. First of
all, some bugs, due to a not complete documentation of music21 and to non intuitive
functioning of some classes, should be solved before the next recreation of the database.

Also, we got access to datadumps of discogs and secondhandsongs – discogs let datadumps
freely available over the network, while secondhandsongs kindly sent us as Christmas gift
simply by email. Therefore, one who need to recreate the database could made the creation
script network indepedent.

Other improvements could concern the language and lyrics since we did not spend a lot of
time on it: often Wikifonia users introduced dynamics or technique text in the lyric field or
did not used a proper format for syllabication so that lyrics file at now are very dirty. Also
one could use semantic information to add interesting features to each score.

Summarizing, the following is a list of possible improvements.

http://web.mit.edu/music21/doc/moduleReference/moduleFeaturesBase.html
discogs.com
discogs.com


40 Graph based representation of the music symbolic level

1. Lyrics semantic tags (maybe using gensim or polyglot library)

2. Delete path to empty lyrics files

3. Add other features

4. Use additional source info (google.com, musixmatch.com, etc.)

5. Add path to authors directory

6. Switch to extraction from data dumps no connection required

7. Add language detection (polyglot library)

8. Correct measure numbering after removing empty measures

9. Solve bug on key and time signatures setting: no signature is saved if it is setted in
highest object hierarchy of the composite pattern

10. Solve bug on time signatures: method getTimeSignatures() returns ‘4/4’ by default

11. . . .

4.2.2 Related works

To our knowledge two main datasets containing leadsheets exist. One is coming from
wikifonia.org a collaborative website closed in 2013 due to copyright law. The other one is
the LSDB coming from Sony Computer Science Laboratory (Pachet and Suzda, 2013). This
last database is the larger in our knowledge – about 8.000 songs – but it is mainly focused
on jazz music and its content seems to be particularly cured. The first one, instead, is more
noisy and needs more robust algorithms.

Actually, there are other two interesting datasets that are folk-tuned oriented: one is the
Nottingham Folk Music Database, which contains more than 1200 leadsheets of British and
American folk tunes in ABC format and was originally created by Eric Foxley1. The second
one is the Essen folksong collection and do not contains leadsheets but just more than 6.000
folk melodies from all over the world – that is it lacks of chord annotations; it is distributed
in the kern collection and in the music21 corpora as well.

Our effort was intended to build a new rich dataset of more than 5.000 leadsheets that
can be merged to the LSDB and Nottingham Folk Music Database to create an even more
large dataset. Anyway, EWLD seems to be the more heterogeneous and noisy of the three,
hence it is the most suitable to MIR challenges.

4.2.3 List of authors and other statistics

The following are some figure that show the EWLD dataset content distribution over the
years and between different genres. Note that following results take into account just about
the 60% of the total dataset (see table in subsection 4.1.1)

To evaluate the distribution of the dataset content over the time, we evaluated five different
plots:

1It is available in ABC format at https://ifdo.ca/~seymour/nottingham/nottingham.html, while
the original database in a old ASCII format at http://www.chezfred.org.uk/freds/music/

google.com
musixmatch.com
https://ifdo.ca/~seymour/nottingham/nottingham.html
http://www.chezfred.org.uk/freds/music/
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■ Figure 4.1 and Figure 4.2 show the number of authors who dead in a given year. From
here it is clear that the great part of the authors lived in first 90 year of XX sec;

■ Figure 4.3, Figure 4.4 and Figure 4.5 show the distribution of works over the years. It
is self-evident that the dataset content is distributed in the 40 years between 1930 and
1970;

About the distribution of genres, instead, this dataset is polarized versus jazz standards,
like LSDB (see subsection 4.2.2), but we show in three different plots that also pop and rock
music is quite good represented. The main issue here concerned the meaning of the genres
attributes added in the dataset. We had from 0 to 2 genres associations for each work, and
for each association we had a certainty-like measure given by the genre occurrences in the
discogs database – which regarded releases returned by a query that not necessarily retrieved
entries related to the work at hand. Also, in discogs, genres tag are attributed by the users.
We performed three different evaluations:

■ In Figure 4.6 we normalized the genre occurrences of each work and we added up all
them for each genre – both the most common and the other;

■ In Figure 4.7 we did not normalized occurrences; instead, we intended each work to be
associated to a genre only and only if it had just one genre association or it had one
genre with the double of the occurrences than the other, otherwise the work was not
took into account;

■ In Figure 4.8 we intended each work to be in the genre of the most common tag; we
discarded only those works for which there was a tie between two associated genres;

From this little experiment we can argue that normalization is not so much important if
we do not care about certainty relationships of the two detected genres. Instead, we think
that the most accurate measure is the second one.
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Figure 4.1: Authors birth distribution over the years in absolute value

Figure 4.2: Authors death distribution over the years in absolute value
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Figure 4.3: Absolute number of works whose composer born in a given year

Figure 4.4: Absolute number of works whose composer dead in a given year
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Figure 4.5: Absolute number of works whose first performance date was in a given year

Figure 4.6: The absolute number of occurrences of each genre in the dataset after having
normalized the total number of occurrences of every work in the genre table to
100
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Figure 4.7: The absolute number of works for each genre where we considered as genre of
each work the one with more occurrences and where we discarded works which
had 2 genres associated and the first genre was not 2 times the second genre

Figure 4.8: The absolute number of works for each genre where we considered as genre of
each work the one with more occurrences, without discarding nothing





5
Evaluating the MSR

As stated in section 1.3, we think that a good music symbolic representation system should
be evaluated on a real world dataset. To this purpose we build the EWLD dataset. In the
following sections we are going to describe the experiments we made and results we obtained.
Lastly, we will give some observations on what the future developments could be.

5.1 Experiments

We performed four different experiments, combining two different measures and two dif-
ferent querying systems. In all these experiments, we tested our MSR in a similarity based
task in which the distance d between two segments is the sum of the branch weights in the
reductions of the two segments until the top level – internal edges –, plus the note-to-note
distance between the two top-level notes or intervals – external edges. Moreover, if the top
level is the same for the two compared segments, the distance is computed starting from the
highest level in which they differs. If they are equal in all the levels, their distance is 0. An
demonstrative image is shown i fig. 3.3. Then, the distance δ between a query segment q

and a document c is defined as the average distance between q and all segments belonging
to c. In formula:

δ(c, q) =
1

N

∑
i

d(ci, q), ci ∈ c

This is the same approach used by Orio and Rodà (2009). Actually, they used some
normalization factors and a similarity measure s defined as

s(c, q) =
1

1 + δ(c,q)
α

, α =
1

N − 1

N∑
j=1, j ̸=i

∆(c, ki)

where ∆ is the distance between c and each other document in the collection ki. Anyway, s
has a one-to-one correspondence with δ, so that, to our purposes, it is an extra computation.

Since our aim was to test the representativeness of the MSR, we computed the top-20
similar documents in a naive way: we made a simple linear search on all documents in

47
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the collection to compute an array of about 4800 dimensions, where each dimension is the
distance between the query segment and a document; then, we sorted it with quick sort
and we evaluated measures described in subsection 5.1.1. Surely, better algorithms can
be implemented, for a review see Abbasifard, Ghahremani, and Naderi (2014). Distance
between a segment and a whole document was computed as the average distance between
the segment and all segments in the document.

We explored the space of distances described in section 3.2: each distance function is used
as weight function for the branches of the model. Namely, we tested the following – see
section 3.2 for an explanation of the words used below:

1. no duration weight in distance computing

2. just onset frequency

3. model weighted with semantic function
■ experiments by using semantic distance with chord weight = 0.0
■ experiments by using semantic distance with chord weight = 0.5

4. model weighted with MIDI function

5. model with all branch weights set to 1
■ experiments by using boolean function

• music21 interval representation

• GPIR representation

• step-leap representation

• contour representation
■ experiments by using fuzzy function

• music21 interval representation chromatic difference

• music21 interval representation scores difference

• GPIR representation

• step-leap representation

• contour representation

Experiments relative to item 5 were made without internal edge weights due to compu-
tational reasons. Anyway, we then checked that with internal weighted edges results did
not change significantly. We explored other parameters without success. For a complete
discussion, see sections 5.2 and 5.3.

5.1.1 Parent song and genre classification

Two of the four experiments had the objective to identify the song to which a segment
belonged. The other two experiments, instead, aimed to identify only the musical genre
of the parent song of the query segment. The first type of experiments is based on the
assumption that two similar segments have a similar reduction, so that their distance is
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low. The second type, instead is based on the assumption according to which the stylistic
similarity is captured in the semantic distance, which is able to measure also the harmonic
context.

In the parent song detection task we evaluated the following measures:

■ Precision at 20 (P-20): the number of queries upon the total (400) in which the
parent document of the query segment appeared in the top-20 documents retrieved

■ Mean Reciprocal Rank (MRR): if the parent document of the query segment was
retrieved in the top-20 documents, we stored its reciprocal rank; then, computed the
mean over all samples stored

■ Mean Normalized Inverted Rank (MNIR): if the parent document of the query
segment was retrieved in the top-20 documents, we stored its normalized and negated
rank; then, we computed the mean over all samples stored

While the first two are typical measures in information retrieval (Croft, Metzler, and Strohman,
2010), the third one was added to have a linear evaluation of the mean rank with a “high is
better” definition. In formula:

MNIR =
1

N

N∑
i=1

20− ri
20

MRR =
1

N

N∑
i=1

1

ri

Note that from MNIR we can always compute the mean rank:

MNIR =
1

20N

[
N∑
i=1

20−
N∑
i=1

ri

]
= 1− 1

20N

N∑
i=1

ri =⇒ MR = 20(1−MNIR)

where MR is the mean rank.

In the genre classification task, instead, we used the discogs.com info collected in
EWLD – see chapter 4. Namely, we defined the genre of a song as the most common
detected genre in EWLD. Then we balanced the dataset by randomly choosing 200 songs
from four different genres – jazz, rock, pop and folk. We computed the mean genre ratio,
i.e. the number of top-20 songs having the same genre of the parent song from which the
query segment was extracted divided by the number of queries times 20, and the precision
in genre classification, where the genre was detected as most common genre in the top-20
retrieved songs; we also tried to detect the segment genre as the one with highest average
precision, where the average precision of a genre was defined as the usual average precision
(Croft, Metzler, and Strohman, 2010) in which documents of that genre were considered to
be relevant. Anyway results with average precision were poor.

discogs.com
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Table 5.1: Experiments nomenclature
indexed segments random segments

parent song detection A1 B1
genre classification A2 B2

5.1.2 Indexed and random segments

We queried the system with 400 queries. In two experiments, these were collected taking
400 segments already reduced one per song extracted in a pseudo-randomly way. In the other
two experiments, instead, each segment was built taking one or two consecutive random
segments from a song pseudo-randomly extracted; then, if only one segment was extracted,
we built a sub-segment of that, otherwise, if two segments were extracted, we joined them
and in 50% of the cases we extracted a sub-segment, in the other 50% of cases we used the
joined segment. Note that sub-segments were extracted taking from 1 to 4 measures, so that
if the segment extracted was long just one measure, then the sub-segment was identical to
its parent.

Table 5.1 resume the experiments. In the following sections, we will use the nomenclature
of this table to refer to the various experiments.

5.2 Evaluation

5.2.1 Results

We built three different models for experiments of both type 1 and 2, as described in
section 5.1. In experiments A1 and B1, we discarded songs without time signature – see bug in
section subsection 4.2.1 – so that we used 4859 songs of the 5151 songs in the EWLD database;
moreover, we discarded some segments that our system was not able to reduce, mainly due
to erroneous file formats: we used 29517 segments and discarded 57. In experiments A2 and
B2, we discarded X songs and 8 segments, keeping X songs and about 4300 segments; a
detailed view is given in Table 5.2.

We used the cluster Blade of the Department of Information Engineering of the Univer-
sity of Padua with 8 processes. The cluster is shared between different users, so that the
evaluation time strongly depended upon the load of the node to which our job was assigned.
Each one wrote to file a part of the dataset model, by using our custom pickle module
and by compressing files with lzma compression; sizes of each chunk were quite equals. In
Table 5.3 we show the cumulative file size for each model, the maximum RAM usage and
the time needed to build the model.

Results are showed in tables 5.4 to 5.7.
Since MIDI and semantic functions outperformed other type of weights, we tested these

two with other combinations too. More precisely, we observed how results varied by intro-
ducing a duration weight to increase the importance of long note deletion, by stopping the
reduction at a note per measure – we were not convinced of the rule we used to reduce
multiple measures, see subsection 3.1.2 – and the original order of scores during the deletion
– Orio and Rodà used functional, metrical and melodic in this order, we instead used func-
tional, melodic and metrical. In no case these new settings gave better results while in time
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Table 5.2: Models creation statistics
statistics

songs used songs skipped segments used segments skipped
parent song detection
semantic weights 4859 292 29517 57
MIDI weights 4859 292 29517 57
1 per branch 4859 292 29517 57
genre classification
semantic weights 758 42 4289 8
MIDI weights 761 39 4277 12
1 per branch 759 41 4543 13

Table 5.3: Models creation resources
resources

time max RAM file model size
parent song detection
semantic weights 1h 41m 42s 75 GB 98 MB
MIDI weights 1h 32m 14s 75 GB 98 MB
1 per branch 1h 27m 54s 75 GB 98 MB
genre classification
semantic weights 17m 39s 9 GB 16 MB
MIDI weights 16h 52m1 9 GB 16 MB
1 per branch 18m 03s 9 GB 16 MB

Table 5.4: Experiment A1: time is intended as averaged over all queries
WEIGHTS TYPE TIME P-20 MNIR MRR

semantic, no chords weight 111 s 0.56 0.91 0.71
semantic, chord weight = 0.5 115 s 0.45 0.91 0.75
MIDI 192 s 0.54 0.89 0.71
WEIGHTS TYPE INTERVAL REPR

boolean

music21 296 s 0.235 0.48 0.13
GPIR 266 s 0.21 0.44 0.11
step-leap 184 s 0.19 0.44 0.12
contour 189 s 0.24 0.51 0.13

fuzzy

music21, no chromatic 177 s 0.20 0.51 0.14
music21, chromatic 166 s 0.25 0.45 0.12
GPIR 160 s 0.215 0.51 0.14
step-leap 150 s 0.21 0.44 0.11
contour 154 s 0.175 0.515 0.13
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Table 5.5: Experiment B1: time is intended as averaged over all queries
WEIGHTS TYPE TIME P-20 MNIR MRR

semantic, no chords weight 102 s 0.07 0.9 0.57
semantic, chord weight = 0.5 123 s 0.04 0.8 0.49
MIDI 98 s 0.06 0.8 0.58
WEIGHTS TYPE INTERVAL REPR

boolean

music21 142 s 0.03 0.5 0.11
GPIR 117 s 0.03 0.5 0.22
step-leap 114 s 0.03 0.6 0.16
contour 110 s 0.02 0.6 0.19

fuzzy

music21, no chromatic 104 s 0.03 0.5 0.21
music21, chromatic 111 s 0.03 0.6 0.18
GPIR 138 s 0.02 0.5 0.17
step-leap 121 s 0.02 0.5 0.20
contour 128 s 0.03 0.6 0.23

Table 5.6: Experiment A2: time is intended as averaged over all queries
WEIGHTS TYPE TIME GENRE RATIO PREC

semantic, no chords weight 41 s 0.27 0.41
semantic, chord weight = 0.5 39 s 0.27 0.365
MIDI 37 s 0.27 0.35
WEIGHTS TYPE INTERVAL REPR

boolean

music21 42 s 0.26 0.36
GPIR 41 s 0.26 0.33
step-leap 44 s 0.28 0.33
contour 37 s 0.27 0.33

fuzzy

music21, chromatic 43 s 0.27 0.35
music21, no chromatic 41 s 0.27 0.33
GPIR 41 s 0.25 0.28
step-leap 44 s 0.27 0.34
contour 43 s 0.26 0.32

Table 5.7: Experiment B2: time is intended as averaged over all queries
WEIGHTS TYPE TIME GENRE RATIO PREC

semantic, no chords weight 24 s 0.25 0.26
semantic, chord weight = 0.5 27 s 0.25 0.25
MIDI 24 s 0.26 0.27
WEIGHTS TYPE INTERVAL REPR

boolean

music21 32 s 0.25 0.26
GPIR 29 s 0.25 0.24
step-leap 29 s 0.25 0.25
contour 31 s 0.25 0.25

fuzzy

music21, chromatic 31 s 0.24 0.23
music21, no chromatic 30 s 0.26 0.25
GPIR 27 s 0.25 0.25
step-leap 24 s 0.25 0.26
contour 32 s 0.25 0.27
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Table 5.8: Experiment A1 with varied parameters
WEIGHTS TYPE Variation P-20 MNIR MRR

Semantic
duration weight 0.41 0.89 0.71
one note per measure 0.18 0.78 0.54
new score order 0.51 0.90 0.73

MIDI
duration weight 0.36 0.84 0.61
one note per measure 0.16 0.72 0.48
new score order 0.53 0.91 0.70

Table 5.9: Experiment B1 with varied parameters
DISTANCE TYPE Variation GENRE RATIO PREC

Semantic
duration weight 0.27 0.25
one note per measure 0.28 0.28
new score order 0.27 0.38

MIDI
duration weight 0.27 0.24
one note per measure 0.27 0.27
new score order 0.28 0.38

resources no significant changes were obtained. Results are summarized in tables 5.8 and 5.9
We also tried to use only three score classes because Orio and Rodà claim this setting

gives better results but we obtained no significant changes.
Finally, we checked that with interval based representations – for which we initially used

not weighted internal edges and boolean and fuzzy functions for external edges – results did
not change when using the same weights for internal and external edges.

5.2.2 Discussion

First of all it must be said that our evaluation is a feasibility evaluation of an MSR
based on principles described in subsection 2.1.1. We did not perform any formal evaluation
with relevance judgements and our results should be taken as indicative of the goodness of
this approach. Surely, it can be improved in several ways. We will discuss about this in
section 5.3.

Aside from that, results show that note based representations better fit our system in
similarity tasks. Also, the reduction procedure founded on context based decisions seems to
be effective, particularly with note-to-note distances which take into account the context of
the note and not only the pitch. This comes out both from experiments A1 and A2, where
the semantic weights overcomes the others. Also, the very poor results from experiments
B1 ad B2 – which involved random queries – highlight the importance of the segmentation
stage. We performed a non overlapping segmentation which obviously makes the system
quite unusable with inter-segments queries. Maybe, in an application to discover music, one
could look for a structure which is genre invariant; in this sense the normalized MIDI weights
taken from Velarde, Meredith, and Weyde (2016) could be useful because in experiment A2
it retrieves 1/4 of songs from a genre and the other 3/4 from others three genres. Anyway,
the distribution over genres should be checked.

It is very probable that results could be enhanced by introducing some topological structure
according to which one can choose a subset of segments to compare, by example by clustering



54 Graph based representation of the music symbolic level

according to the top-level note.
Another variable which has not been checked was the influence of the re-evaluation of

scores: in our experiments we gave each note a score and it persisted until the last reduction;
instead, a re-evaluation of scores at each reduction could change results.

However, the frequency at which notes were compared to compute distances and weights
seemed to be not so much important but only empirical evaluation has been made about
this. Moreover, we did not normalize weights over the three reduction because normalization
would have been the computation of the average distance produced by the deletion of a note
during a reduction procedure; but if a segment is long, more notes will be deleted and its
final reduction should be more distant, that is less similar, to its original representation; by
normalizing we would lose this information.

Also, since stopping reduction to one note per measure instead of to one note for all the
segment gives low results, we can argue that weighted edges are a fine way to express intrinsic
similarity, better than computing distances between longer segments to weight the external
edges added at retrieval time.

Moreover, results in Orio and Rodà (2009) showed that LBDM algorithm was the worst
between those tested. We can expect a certain improvement by adjusting the segmentation
stage.

Finally, the chord weight had the opposite effect to what we wanted – i.e. a better context
and stylistic measure. Anyway, it may be the Estrada distance to not fit well with our
reduction procedure and other chord distances could enhance results.

We think that the most important lesson we can learn from these results is the importance
of the musical context, included functional harmonic context. We think that this aspect
should be taken into account more often and to this purpose it is needed to also use rich
symbolic music format such as MusicXML, and not just MIDI.

5.3 Future development

As said repeatedly, this work present a first stage development of a MSR. There are many
and many enhancement that can be applied. We will list below the ones that in our opinion
could bring the greatest advancements.

■ Better segmentation algorithm: we used a slightly changed version of LBDM,
but we did not evaluated how much these changes improved the algorithm; also, we
introduced many parameters that should be tested and evaluated. Moreover, other
segmentation algorithms exist, and maybe these could turn out to be better than
LBDM to our purposes. To a query-by-excerpt purpose, it would be of very help
using an overlapping segmentation algorithm, e.g. by shifting all segments of a certain
amount of time. Moreover, our results let suppose that harmonic context could very
enhance segmentation algorithms. Also, Orio and Rodà (2009) showed that other
segmentation algorithm performed better than LBDM.

■ Better search: we adopted the simplest algorithm for neighbors search that one could
think; many other algorithms exist, most of them based on some data structure. In our
case, a topological description of the dataset graph could help, by example one could
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think to set a threshold and to compare query segments only with segments whose
distance is under threshold at the top level or to cluster segments on the top level.

■ Better scores and rule deletion: other types of scores could be implemented and
values could be evaluated based on cognitive studies or on their frequency in the lit-
erature. Moreover, Orio and Rodà obtained best results with only three classes for
functional and consonance score. The rule deletion could be improved too, since, for
example, we deleted last note instead of padding from a certain point on, see subsec-
tion 3.1.2 for an explanation of the issue.

■ Adding edges between song segments: segments could also be compared by using
some topological similarity measure referred to their relation with other segments in
the song; by example, adding edges referred to transposition, inversion or retrogrades
relations could help in the genre classification.

■ Other distances: we developed many distances in the scope of this project, but they
are limited in efficiency and typologies.

From an implementation point of view, we think that a major improvement could come
from switching to Jython or Cython and by implementing a wrapper to store music21

objects through arrays of basic C types. This would enhance the storage to file, the RAM
usage and the multi-threading computations, impacting both on speed and memory usage.
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