ON THE EULERIAN NUMBERS AND POWER SUMS

KOLOSOV PETRO

Abstract

In this short report we discuss a relation between Triangle of Eulerian Numbers and Power sums of the form $\Sigma_{k}^{n} k^{m}$, where n, m are positive integers.

Contents

1. Introduction and Main Results

This manuscript was inspired by the article of Yuyang Zhu, [1], 2018. The author of [1] has done an overview of classical problem of simplifying of power sum

$$
\begin{equation*}
\sum_{1 \leq k \leq n} k^{m},(n, m) \geq 0, m=\mathrm{const} \tag{1.1}
\end{equation*}
$$

and proposed "A Fast Algorithm to Calculate Power Sum of Natural Numbers". The main result of [1] is based on analysis of certain matrices. In this paper we show the relation between results of [1] and Eulerian Numbers and their role in power sum 1.1. Recall the definition of Eulerian Number $E_{n, k}$

$$
E_{n, k} \stackrel{\text { def }}{=} \begin{cases}\sum_{j=0}^{k}(-1)^{j}\binom{n+1}{j}(k-j+1)^{n}, & \text { if } 0 \leq k \leq n \tag{1.2}\\ 0, & \text { otherwise }\end{cases}
$$

Consider the five initial rows of Triangle of Eulerian numbers
$n=0$
$n=1$
$n=2$
$n=3$
$n=4 \quad 1$
$n=5 \quad 1$
26
66
26

.
Figure 1. Triangle of Eulerian Numbers, $E_{n, k}, n \geq 0,0 \leq k \leq n$, 5].

[^0]We denote the terms of above triangle as $E_{n, k}, n \geq 0,0 \leq k \leq n$, where n is row and k is corresponding term of n-th row. In this manuscript we assume that Eulerian Triangle starts from term $E_{0,0}=1$ and continues similarly $E_{1,0}=1, E_{1,1}=0, \ldots$. See [2] for a detailed discussion of the Eulerian numbers and many related topics. Now, review some examples form Yuyang's paper [1]. Consider the power sums $\Sigma_{1 \leq k \leq n} k^{4}$ and $\Sigma_{1 \leq k \leq n} k^{12}$, the following identities hold

$$
\sum_{1 \leq k \leq n} k^{4}=\binom{n+4}{n-1}+11\binom{n+3}{n-2}+11\binom{n+2}{n-3}+\binom{n+1}{n-4}
$$

And

$$
\begin{aligned}
\sum_{1 \leq k \leq n} k^{12} & =\binom{n+12}{n-1}+4083\binom{n+11}{n-2}+478271\binom{n+10}{n-3} \\
& +10187685\binom{n+9}{n-4}+66318474\binom{n+8}{n-5}+162512286\binom{n+7}{n-6} \\
& +162512286\binom{n+6}{n-7}+66318474\binom{n+5}{n-8}+10187685\binom{n+4}{n-9} \\
& +478271\binom{n+3}{n-10}+4083\binom{n+2}{n-11}+\binom{n+1}{n-12}
\end{aligned}
$$

Now we have to mention that the coefficients in corresponding sums $\Sigma_{1 \leq k \leq n} k^{4}$ and $\Sigma_{1 \leq k \leq n} k^{12}$ are terms of forth and twelfth rows of Eulerian Triangle 1.3), therefore, these identities can be simplified as follows

$$
\begin{equation*}
\sum_{1 \leq k \leq n} k^{4}=\sum_{0 \leq k \leq 4} E_{4, k}\binom{n+4-k}{n-1-k} \tag{1.4}
\end{equation*}
$$

And

$$
\begin{equation*}
\sum_{1 \leq k \leq n} k^{12}=\sum_{0 \leq k \leq 12} E_{12, k}\binom{n+12-k}{n-1-k} \tag{1.5}
\end{equation*}
$$

Therefore, for every positive integers (n, m) holds

$$
\begin{equation*}
\sum_{k=1}^{n} k^{m}=\sum_{k=0}^{m} E_{m, k}\binom{n+m-k}{n-1-k}=\sum_{k=0}^{m-1} E_{m, k}\binom{n+1+k}{m+1} \tag{1.6}
\end{equation*}
$$

where $E_{m, k}$ are Eulerian numbers.
Proof. Expression (1.6) is direct consequence of Lemma (2.6), Theorem (2.7) and Lemma (2.8) that already proven in [1], pp. 3-4.

Result of 1.6 is direct consequence of Worpitzky Identity and Symmetry of Binomial coefficients. Recall the power sum, see 6]

$$
(*) \quad \sum_{k=1}^{n} k^{m}=\sum_{k=0}^{m-1} E_{m, k}\binom{n+1+k}{m+1}
$$

Now, let compare the binomial coefficients in (\star) and $(*)$, we start to check from the values of corresponding binomial coefficients for $k=0$ and $k=m-1$ respectively, we have

$$
\binom{n+m-(m-1)}{n-1-(m-1)} \equiv\binom{n+1}{m+1} \rightarrow\binom{n+1}{n-m}=\binom{n+1}{m+1}
$$

Therefore, denote $j=n+1$ and $r=m+1$, symmetry of binomial coefficients holds

$$
\binom{j}{r}=\binom{j}{r-j}
$$

Now if we substitute the step a instead 1 , the identity holds again

$$
\binom{n+a}{n-m}=\binom{n+a}{m+a}
$$

As per Don Knuth's "Two notes on notation", 3 we don't use upper bound of summation in theorem (1.6) as Eulerian numbers are defined to be 0 when out of range $0 \leq k \leq n$.

2. Conclusion

In this paper we have shown the relation between results of 11 and Eulerian Numbers and their role in power sum (1.1) for every positive integers m, n. Therefore, arXiv:1805.11445 [math.GM] another time proves the Worpitzky Identity.

References

[1] Yuyang Zhu, A Fast Algorithm to Calculate Power Sum of Natural Numbers, arXiv:1805.11445 [math.GM], 2018.
[2] T. K. Petersen. Eulerian numbers. Springer New York, 2015. 3-18.
[3] Donald E. Knuth., Two notes on notation., pp. 1-2, arXiv preprint, arXiv:math/9205211 [math.HO] 1992.
[4] The OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, 1964-present https://oeis.org/
[5] N. J. A. Sloane et al., Entry "Euler's triangle: triangle of Eulerian numbers $T(n, k), n \geq$ $0,0 \leq k \leq n$ read by rows. ", A173018 in [5, 2010-present.
[6] Eulerian number From Wikipedia, the free encyclopedia

[^0]: Date: November 1, 2018.

