The Graph Traversal Machine:
Close Encounters of the Fourth Kind*

Marko A. Rodriguez
Captain, S/V Red Herring
Director of Engineering, DataStax Inc.
Project Management Committee, Apache TinkerPop

Stephen Mallette
Senior Engineer, DataStar Inc.
Project Chair, Apache TinkerPop

(Dated: October 31, 2018)

Apache TinkerPop™ is an open source graph computing framework. The project is approaching
its 10*" year of existence and the team is about to embark on its fourth and final major release
— TinkerPop4. This article reviews the technical and mythological aspects of The TinkerPop all
the while demonstrating how its lore has driven many of its architectural decisions and vice versa.
This historical synopsis ends at the project’s denouement with a concluding prospectus detailing
the major threads of the final version that will enable the integration of any data query language,
any data storage system, and any data processing engine. At the point of unification, in the closing
chapter, Gremlin will come to understand the meaning of The TinkerPop and that moment will
write the final line of code and sentence on a deep rooted project in the field of graph computing.

I. INTRODUCTION

Over the last decade, the Apache TinkerPop™ team,
in its incarnation prior to Apache® and now as a top-
level Apache project, has focused on the design and de-
velopment of a system-agnostic framework for graph stor-
age and processing. TinkerPop’s graph data structure is
the property graph G = (V, E,)\), where a set of ver-
tices V' are connected via directed, labeled, binary edges
E CV x¥*xV and both vertices and edges can have an
arbitrary number of key/value-properties associated with
them such that A : (VUE)xX* — (Z*URU...UN). Tin-
kerPop’s graph processing component is a Turing Com-
plete [29] virtual machine with respective bytecode and
data flow language known as Gremlin. This graph traver-
sal machine is abstractly defined as

G+— teT — VY,

where the graph/data G is processed by a set of tra-
versers/processors T according to a traversal/program
V. Every traverser has two primary projections: one
into the graph G and one into the traversal ¥, where the
steps/instructions in ¥ dictate the next function that
traverser ¢ will execute in order to alter its location in G.
When the traversers have no more steps in ¥ to execute,
they halt and the aggregate of the final G-locations of all
traversers in T is the result set of the query [18].
TinkerPop specifies the interfaces for interpreting the
information inside the underlying data storage system

*Rodriguez, M.A., Mallette, S., “The Graph Traversal Machine:
Close Encounters of the Fourth Kind,” S/V Red Herring’s Ship’s
Log: Chronicles in the Sea of Cortez, pages 1-10, La Paz, Baja
California Sur, Mexico, October 2018.

as a property graph, where, ultimately, any TinkerPop-
enabled system has the same “look and feel” as any other
TinkerPop-enabled system. Differences between systems
lie in their respective time and space tradeoffs which
are typically realized as random access vs. linear scans,
support for index lookups, in-memory subgraph caching,
vertex-centric indices, deductively generated edges, edge
compression, and other techniques commonly used in the
field of graph computing. Once the underlying data is ex-
posed as the graph G, TinkerPop’s graph traversal ma-
chine’s traversers T traverse the graph according to the
constraints defined by W.

The aforementioned architecture has come from a long
line of choices made in both TinkerPop’s technical spec-
ification and corresponding mythological narrative. The
TinkerPop lore has been recorded in the project’s docu-
mentation, tutorials, artwork, blog posts, and academic
articles over the years. The sum total of this archive is
the mythology of The TinkerPop and this story has en-
livened the project with an ethos that reaches beyond
the rote, utilitarian approach espoused by modern tech-
nologists. So much so that the storyline has served as
a guiding inspiration to the technology’s direction and
as such, is driving TinkerPop into its final act which is
to take place in the next major release as TinkerPop4.
Prior to describing where TinkerPop4 is headed, it is im-
portant to first understand where TinkerPop has come
and what aspects of its mythos are determining its last
phase of life within the ever burgeoning graph computing
space.

II. HISTORY

TinkerPop has gone through 3 major releases and 50
minor releases. The technical design choices made for

TinkerPop have found their justification in their juxta-
position to the continuously evolving narrative of The
TinkerPop. The TinkerPop story is developed using non-
linear, anecdotal, intuitive, right-brain techiques while
the technical aspects of the project are driven by an an-
alytical, rational, left-brained approach [7]. Leveraging
the power of myth and science has proved successful in
overcoming both technical and plot/character develop-
ment hurdles over the years and will continue to serve
as the modus operandi for TinkerPop’s final phase of de-
velopment. The remaining subsections will discuss the
relationship between story and design in the major re-
leases through to TinkerPop3.

A. TinkerPopl: The Language

The beginning of the story, at TinkerPopl, introduces
a character named Gremlin who is on a life quest to un-
derstand something he calls “The TinkerPop.” The con-
cept of the The TinkerPop borrows many themes from
the Indo-Aryan philosophies as being that which upholds
reality in a Brahmanic-sense and yet at the same time is
ungraspable by psychologically and physically localized
beings [12]. Gremlin is not deterred from the seeming
insurmountable objective of “coming to terms” with The
TinkerPop and reasons that in order accomplish his goal
he must search the graph in a manner analogous to a
world explorer. This life choice gives rise to a series of
epic tales reminiscent of the heroic era [4, 10] with Grem-
lin fighting to solve numerous domain-specific graph use
cases that have been developed over the years.

From a technical standpoint, the analog to Gremlin’s
wanderings about the world/graph required the develop-
ment of a data query language that imparts a sense of
movement on the user. What emerged was a language
for specifying a sequence of steps that dictate the le-
gal paths that a swarm of traversers can take through
a graph. Gremlin’s fluid, path-oriented approach to
data analysis was inspired by the sprawling, flow-like
nature of spreading activation potentials within neuro-
logical graphs [13, 26]. This style is in contrast to the
typical select-filter-format model found in most modern
set-theoretic query languages.

The Gremlin language is a functional, concatenative
language, where steps are appended to a traversal W
and the executing traversers T constrain their move-
ment through the graph G according to those steps.
If a is a traversal step, b a traversal, and ¢ a con-
stant, then ¥ € a(c*b*)*, where ¢ could be defined as
a traversal that yields a single constant value and thus
U € a(b*)*. Every U-step a(...) generates a function
f:T* — T*, where the ultimate graph computation ex-
ecuted is a functional mapping from T to 7" and has the
form (fogo...oh): T* — T*. Every U-projection of
t € T" is () as the traversers are halted in G and their final
locations are the result set. W is a linear, nested struc-
ture. A theoretical implication is that W-traversals are,

in fact, graph-structures themselves whose embedding in
G [15] will later be used in a proof of the Turing Complete
nature of Gremlin and will also play an influential role in
bridging the mythological gap between TinkerPop3 and
TinkerPop4.

B. TinkerPop2: The Compiler

Gremlin traveled the graph far and wide seeking prob-
lem ridden domains that he could elegantly solve with
his graph traversal techniques. Each new problem space
was a whole new world unto itself with new concepts
and things (vertices), new relationships (edges), and new
traversals (processes). This patchwork of isolated sub-
graphs at varying levels of resolution, scale, and import
made Gremlin think that

the unusual aspect of [The] TinkerPop is that
every possible “thing” is related to every pos-
sible “thing” in every conceivable way possi-
ble. [...] Even purely conceptual things enjoy
an arbitrary existence: left is to the right of
east and up is both beside and within down.
17)

Any vertex can be connected to any other vertex. The
reason why a vertex or edge existed or not was simply
a matter of the constraints of the builders of that par-
ticular world. This disheartened Gremlin. It appeared
that there would always be more problems, more graph,
and more traversals. He could continue his travels, but
his life mission was to understand The TinkerPop and
solving the world’s concocted worries no longer seemed a
means of getting him closer to his goal. If The TinkerPop
truly enabled any arbitrary structure, then he was going
to create a world (and subsequent problems) all his own.
This was a use case that he could care about as it was
his use case.

English folklore speaks of gremlins as little “machine
elves” competent at building (or, more nefariously, de-
constructing) physical machines [5]. Gremlin uses his
powers of creation to construct a collection of mechan-
ical friends whom he names Blueprints, Pipes, Frames,
Furnace, and Rexster. Blueprints was the architect able
to mutate the graph. Pipes was the plumber able to ma-
nipulate a flow of vertices and edges. Frames was the in-
terior designer able to express complex graph constructs
in simpler terms. Furnace was the boiler that moved tra-
versers about the graph. And finally, there was Rexster
who was a Gremlin’s best friend, happily greeting those
who showed up at Gremlin’s door. Gremlin had a made
a nice home for himself within The TinkerPop. He had
a little plot of graph that he could call his own.

From a technical standpoint, TinkerPop2 primarily fo-
cused on the advancement of the tooling around Gremlin
(the language) with particular focus on Blueprints and
Rexster. Blueprints was refactored to account for the
growing need from providers to be able to specify more

complex data selection patterns. This was inspired by
the use of vertex-centric indices in the industry, where a
query of the form outE(‘knows’) .has(‘stars’,gt(3))
would best be expressed as a single pushdown-predicate
as opposed to a broad query (outE(...)) followed by
an in-memory filter (has(...)). TinkerPop2’s direction
spawned the first language optimizer for Gremlin that
would later advance leaps and bounds in TinkerPop3
and will reach a definitive design in TinkerPop4. Fur-
thermore, TinkerPop was starting to be recognized by
other language communities and it was becoming increas-
ingly necessary to evolve the project beyond its original
JVM confines. A language agnostic binary protocol and a
REST/HTTP protocol were developed for Rexster. This
work would later turn into GremlinServer in TinkerPop3
and will serve as the binary protocol and serialization
infrastructure for TinkerPop4.

In general, TinkerPop2 was settling down into a stable
project that would evolve slowly over time. However, this
peaceful repose would not hold for long. Gremlin was
becoming restless with his simple life and it was only a
matter of time before he would embark on a new effort
of blockbuster proportions: TinkerPop3.

C. TinkerPop3: The Bytecode

TinkerPop2 was a refactoring of TinkerPopl. Tinker-
Pop3 was a complete rewrite of the codebase. Rewrit-
ing the codebase from scratch helped rectify a number
of architectural problems that had started to hinder the
progress of the project. Accordingly, the rewrite forced
The TinkerPop story to evolve to account for the new
design choices and features which were summarily cap-
tured in [25] at the outset of the development process.
TinkerPop3’s major advancements included:

e A hosted language capability: The nested, con-
catenative nature of the Gremlin language enables
its embedding within any programming language,
where traversals are constructed using method
chaining. Nearly every major programming lan-
guage has a respective Gremlin language variant.
[Frames]

e A bytecode specification: The graph traversal
machine processes a list of bytecode instructions
of the form [op, arg*]*, where any arg can be yet
another list of bytecode instructions. Any query
language can compile to bytecode in order to ex-
ecute on the Turing Complete traversal machine
and therefore, against any TinkerPop-enabled data
system. [Frames]

e A general purpose compiler: The traversal ma-
chine maintains an ordered list of traversal strate-
gies that rewrite a traversal into an algebraically
equivalent form, where the purpose is to opti-
mize the traversal’s time/space-requirements with

respects to the underlying data storage system
[21, 22]. [Pipes]

e A declarative runtime optimizer: The Grem-
lin language was extended with declarative con-
structs such as match-step which borrows its se-
mantics from the graph pattern matching language
SPARQL [11]. Furthermore, a runtime optimizer
was included that dynamically resorts patterns
based on realtime performance statistics [1]. [Pipes]

e A traversal-centric processor: Every traversal
is responsible for its underlying swarm of traversers.
Besides side-effect steps, traversal steps and, in
turn, traversals are purely functional in nature as
static descriptions of process. Both serial (stan-
dard — OLTP) and a distributed (graph computer —
OLAP) traversal processors were developed. [Fur-
nace]

e An objectified traverser: Traversers were ex-
plicitly defined in order to offload state from traver-
sal steps (e.g. path, bulk, loop, etc. data). Tra-
verser atomicity allowed traversers to split and
merge according to respective forks and joins in
the underlying graph structure. This enabled
the development of the bulking optimization which
greatly increased the speed and decreased the mem-
ory footprint of a traversal [18]. [Furnace]

e A universal serialization format: Serialization
of bytecode to and results sets from the graph
traversal machine was made possible via a JSON-
based, language agnostic serialization format called
GraphSON. For inter-JVM communication, a byte-
based serialization format called Gryo was devel-
oped. [Rexster]

e An extension to the property graph model:
In order to meet the requirements of use cases such
as auditing, permissions, and security, it became
important to be able to express multiple properties
for a single vertex key and furthermore, for each
vertex property to be able to maintain properties
themselves. This became known as the multi/meta-
property extension. [Blueprints]

There have been many efforts in the graph computing
space to create a standard graph query language. These
efforts have been advocated by standards committees,
vendors, and educational institutions with varying de-
grees of success, but never universal acceptance. While
TinkerPop has never promoted Gremlin as a standard,
it has perhaps seen the most widespread adoption across
the various open source and commercial data system ven-
dors. Even with Gremlin poised to claim itself to be a
“standard,” TinkerPop eschews this title as one language
is not sufficient to express all means of graph data pro-
cessing. Much like there is no universal programming
language, there are deleterious gains to be had from a

single universal query language. The desire to renounce
Gremlin’s rising status as a query language standard has
been captured by the colloquial phrase: “If you see the
Gremlin, kill the Gremlin.” Furthermore, by promoting
Gremlin bytecode over the Gremlin language, the Grem-
lin language sits side-by-side other graph languages: ex-
alted by some, simply useful to others, and found un-
seemly to yet more.

For TinkerPop, a graph traversal machine bytecode
is the more powerful concept because it is the founda-
tional assembly language leveraged by all Gremlin lan-
guage variants (i.e. Gremlin hosted in another program-
ming language) and distinct languages (i.e. a query lan-
guage that compiles to Gremlin bytecode). This means
that any query language can have a compiler to Gremlin
bytecode for execution against any TinkerPop-enabled
data system. This generality allows the vendor (and its
users) to promote whichever language(s) they deem fit
for their particular use cases. TinkerPop is thus enriched
by a diverse collection of query languages that account
for the many ways in which users think about and in-
teract with graphs. The fable of the “conceptual snare”
was the inspiration for this direction and will be further
discussed in §III.

TinkerPop3 was the first version of the project that
made its virtual machine architecture explicit. The re-
lationship between the terminology used by TinkerPop3
and that espoused by standard virtual machine architec-
tures are presented in the Table I [3].

Virtual Machine

Programming language

TinkerPop3
Gremlin language

Gremlin bytecode Bytecode

Gremlin traversal Machine code
Data storage system Machine memory

Data processing engine Machine CPU

TABLE I: TinkerPop and virtual machine terminology

The artwork created during the TinkerPop3 era took
a new direction. Drawings emerged that showed many
Gremlins interacting with one another as if Gremlin was
no longer a single individual, but a collection of individ-
uals trying to solve the problem of existence via their
aggregate behavior through the graph. Gremlin was less
the language and more generally a traversal, where real-
world traversals can birth an unfathomable number of
traversers at execution time (sometimes beyond the 64-
bit long space). “Multiplicity” became a general theme
of TinkerPop3, where agnosticism reigned in the many
Gremlin language variants, the many distinct query lan-
guages, the many data storage systems, and even, for a
moment, but without the finishing touch, the many data
processing engines. This was made possible because of
the virtual machine aspects of the project and, most im-
portantly, by its bytecode specification that promoted
universal interoperability.

IIT. BEHIND THE VEIL WITH TINKERPOP4:
THE TRAVERSER

TinkerPop4 has been in design since the beginning of
2018 and will start development in the Spring 2019. At
the tail end of TinkerPop3’s creative development cycle,
the stories began to ignore common graph use cases and
instead, focused on problems in graph computing theory
[16]. Two particular tales have played an important role
in the design of TinkerPop4 [19, 20]. In [19], Gremlin
decides that endlessly searching the graph will only yield
more knowledge, not a deeper, truer, more virtuously as-
tute awareness of reality. He reckons that the best way to
understand The TinkerPop is to build a TinkerPop — or
at least, what he believes the TinkerPop to be. Gremlin
constructs a traversal machine within the graph struc-
ture G complete with U-based traversal strategies and a
W-based execution engine. The reader gains a proof of
the Turing Complete nature of Gremlin via the demon-
stration of a recursive universal traversal machine, but
Gremlin, unfortunately, suffers the inefficiencies of virtu-
alization and the self-reflective [8] consequences of having
both program and data in the same vertex/edge address
space of G. While Gremlin had created a universal ma-
chine within The TinkerPop, he still was unable to make
direct reference to The TinkerPop — the simulation is not
the reality. Gremlin became plagued by an existential
crises which was only deepened with a question posed
by some unknown being within The TinkerPop: “Is it
possible for software to understand the hardware that is
executing it? From the gates, to the electrons, to the
physics, to the what? Where is the bottom?”

Gremlin’s desire to see “behind the veil” was inspired
by the Indo-Aryan concept of maya and the grays of mod-
ern psychoanalysis [14, 27]. In these reports, there exists
a more fundamental layer than that espoused by mod-
ern physics and the layers above are controlled by so-
phisticated beings who are executing the “reality” that
mankind is aware of. When man is able to see “behind
the veil,” man is no longer the means of their computa-
tion, but the computation itself. Gremlin gives credence
to this metaphysics and decides that if it is true, he must
see it for himself.

A true metaphysics must be a theory of expe-
rience, and not a guesswork as to what is at
the back of it hiding itself under a veil. [12]

The downward decent through the layers of abstraction
from language, to bytecode, to traversal, to a single tra-
verser t € T had transformed the fun loving Gremlin
of bygone versions into an ascetic monk attempting, at
all costs, to see (and be) The TinkerPop. Perhaps The
TinkerPop was just a thought in his head whose only
substance is the endless, barren search he called a life.
In [20], a tired and defeated Gremlin simply lets go — “If
you see the Gremlin, kill the Gremlin.”

Since the inception of the TinkerPop project, there has
been little discussion of what The TinkerPop actually

is from a computational perspective. The mythology of
The TinkerPop has always remained vague with amor-
phous parables hinting that it is the engine of existence.
TinkerPop4 will pull attention away from Gremlin and
focus on the development of the lore and specification of
The TinkerPop as the universal graph traversal machine.
Through all his efforts, Gremlin only had to realize that
he himself was The TinkerPop, albeit a fractal subset
of a complex process shared with millions, billions, tril-
lions, quadrillions, quintillions, ... of others traversers
[23]. The TinkerPop is simply V¢ € T. The machine
is the traverser(s). Together each ¢ forms a fragment of
The TinkerPop and reality is Gremlin himself reflected
as far as he wants to shine. This mythos will require
a new terminology which will render Gremlin simply as
“the language” (his conceptual snare) and “Tinker-” will
be used as the prefix for “the machine” (see Table II).
The graph, the traversals, the languages, the bytecode,
the strategies, and everything else are just aspects of his
machine friends helping him to be all the ¢ that he can
be. When these pieces are combined, the act of graph
computing is The Tinker‘Pop’.

TinkerPop3

TinkerPop4

Description

Gremlin language
Gremlin variant
Distinct language
Variants+distincts
Gremlin bytecode
Language provider
Structure provider
Process provider

Gremlin machine

Gremlin language
Gremlin variant
Distinct language
TinkerLanguage
TinkerCode
Language provider
Structure provider
Process provider
TinkerMachine

Language spec.
Hosted impl.
Non-Gremlin lang.
Any language

B language

B compiler

G storage

U processing

B/G /¥ integrator

TABLE II: TinkerPop Terminology

The TinkerMachine will seamlessly unify three types
of software: data query languages, data storage systems,
and data processing engines. TinkerPopl and Tinker-
Pop2 have always been agnostic towards the underly-
ing data storage system. This has allowed any structure
provider to leverage TinkerPop technology. TinkerPop3
was agnostic to the data query language with the in-
troduction of a Turing Complete bytecode specification.
This has allowed any language provider (graph or oth-
erwise) to leverage any TinkerPop-enabled data system.
Now with TinkerPop4, a new component will be plug-
and-playable: the data processing engine. This will en-
able any data processor (e.g. iterative systems, message
passing systems, map/reduce systems, scatter/gather
systems, reactive systems, etc.) to move traversers about
any TinkerPop-enabled data system. Thus, any query
language can be used to control any processing engine to
analyze graphs in any storage system. TinkerPop4 will
also provide an architecture for developing a TinkerMa-
chine in any programming language. This will make it
so that the TinkerMachine is not constrained to a Java

implementation, but can be developed in other “data sys-
tem languages” such as C/C++, Go, Erlang, etc. and all
TinkerMachine implementations will execute in the same
manner, leveraging a standardized bytecode language. In
summary, the three components of the TinkerMachine
that can be integrated from 3'¥ party sources are item-
ized below.

e Data query language: TinkerMachine will sup-
port any query/programming language that can
compile to bytecode 3 (see §IITA).

e Data storage system: TinkerMachine will sup-
port any data storage system whose data can be
interpreted as a property graph G (see §III B).

e Data processing engine: TinkerMachine will
support any data processing engine which can mi-
grate traversers according to ¥ (see §IIIC).

TinkerPop’s goal is to accelerate the advances made in
the graph computing space by leveraging the advances
made across the entire computing field. Some teams ex-
cel at language development (specifications, compilers,
verification), some teams excel at data storage (distri-
bution, failure handling, consistency), and finally some
teams excel at data processing (load balancing, thread
management, serialization). Apache TinkerPop capital-
izes on what each team does best by enabling the seam-
less unification of their best efforts into high-end graph
computing systems.

The following diagram details all the major compo-
nents of TinkerPop4. The remaining subsections will dis-
cuss the particulars of each subsystem and their role in
The Tinker‘Pop’.

£ compile 6 C strategize y% generate
—> —>
core 4 4 provider
language ol
strategies o strategies

Ggenerate V’ E’)\ traverse t e T execute f

structure

e U
generate

process

FIG. 1: TinkerPop4 System Architecture

A. Data Query Langauge

The Gremlin language will have a host language ag-
nostic specification called “Gremlin.” It will specify step
names, step signatures, constants, and the rules for the
composition of steps. Any implementation of that specifi-
cation within a host programming language will be called
a “Gremlin language variant.” Thus, Gremlin-Java,
which in TinkerPop3 was the specification, will be on
equal footing along side Gremlin-Python, Gremlin-. NET,
Gremlin-JavaScript, etc. Next, any query language that

maintains a TinkerCode compiler (e.g. SPARQL [11, 28],
SQL [2], Graqg], etc.) will be called a “distinct language.”
All Gremlin language variants and distinct languages are
under the general category of TinkerLanguages.

TinkerPop4 will extend the bytecode and compiler ad-
vances made in TinkerPop3. One of the major changes
will be two sets of instructions: core instructions (3¢) and
provider instructions (5P). Both are under the general
category of TinkerCode. Core bytecode instructions will
form a reduced, Turing Complete instruction set that all
languages will translate to. This is the machine indepen-
dent assembly language. However, during bytecode strat-
egy application, both structure and process providers will
be able to insert custom, namespaced provider instruc-
tions of the same [op,arg*] form. These instructions
specify custom W-steps which are the integration points
between the data storage system and data processing en-
gine. If £ is a TinkerLanguage, then the full translation
process from language to traversal is

L —>compile [Bc —>strategize /Bp —>generate v])

where the TinkerMachine’s role lies within the brackets.
Note that the TinkerMachine is not responsible for the
compilation of a TinkerLanguage to TinkerCode. That
is the sole responsibility of the language provider. An in-
stance of a language-to-traversal translation process for
an example data storage system that supports global in-
dices is provided below.

g.V(Q) .has(‘name’, ‘vadas’) el
V[], has[name,vadas] € p°
e pP

ExVertexIndexStep(name,vadas) € V.

ex:vertex-idx[name,vadas]

Finally, because both TinkerPop3’s and TinkerPop4’s
bytecode specifications are Turing Complete and have
a similar [op, arg*|* structure, there will be an effort to
create a bi-directional translator between the two spec-
ifications so that aspects of TinkerPop3 can work with
aspects of TinkerPop4 and vice versa.

In TinkerPop3, there were two ways of interacting with
a TinkerPop-enabled system: 1.) direct graph objects or
2.) GremlinServer. In §III B, the removal of direct graph
objects will be discussed. In terms of GremlinServer, the
user was allowed to submit bytecode or a “script” written
in one of the many script engine languages supported by
the JVM. The goal of TinkerPop4 is to ensure that the
TinkerMachine is agnostic to the implementing program-
ming language and thus, there will be no ability to submit
scripts to the TinkerMachine. Serialized bytecode will be
submitted, the query executed, and a serialized stream
of results will be returned. This will greatly simplify the
I/0 requirements of any TinkerMachine implementation.

The success of any software endeavor rests on the test
suite that verifies its intended semantics. This is all the
more important in a project such as TinkerPop where
technologies from various diverse providers must come

together and interact in concert at the TinkerMachine.
TinkerPopl and TinkerPop2 provided a test suite to en-
sure that that the underlying data storage system main-
tained a proper property graph implementation. In Tin-
kerPop3, the test suite was extended to make sure all
Gremlin language variants and distinct query languages
correctly answered a standard suite of queries. Tinker-
Pop4 will drop the G-specific test suite and focus solely
on a language-based test suite as it is ultimately the lan-
guage that drives the TinkerMachine and semantic cer-
tainty will be approached by testing every combination
of language, storage system, and processing engine.

A review of the major changes at the data query lan-
guage level are itemized below.

e A Gremlin language variant specification: A
host language agnostic Gremlin language specifica-
tion will be published for use by Gremlin language
variant providers. This document will define step
signatures and their rules for composition.

e A generalized parameterization: Leveraging
runtime results in traversal step parameters was
available primarily in the mutation steps (e.g. addV,
addE, etc.). Dynamic parameterization will be gen-
eralized to all steps such that, for example, out (x)
will be dynamically determined by what the cur-
rent traverser references as x.

e An extended step library: There is a growing
need for string manipulation and complex math
functions in the Gremlin language. The Gremlin
language will be extended to handle these new re-
quirements.

¢ An attempt to remove lambda support:
Lambdas were a critical element of the Gremlin lan-
guage prior to TinkerPop3, but in that version the
expressiveness of the language improved such that
reliance on lambdas reduced considerably. Tinker-
Pop4 will examine the possibility of Gremlin with-
out any lambda support, which will improve secu-
rity and simplify the codebase.

e A more concise bytecode instruction set: The
number of core operands will be reduced to a Tur-
ing Complete set denoted S°.

e A custom bytecode infrastructure: Structure
and process providers will be able to insert custom
BP instructions to take unique advantage of their
system-specific optimizations.

e A bytecode optimizer: Traversal strategies will
be abandoned in favor of bytecode strategies which
will operate at the bytecode level, not at the traver-
sal/machine code level. Simpler regular expression
pattern matching and transformations will be pos-
sible over a recursive list of [op, arg*]* instructions
versus over a nested, machine-specific traversal ob-
ject.

e An extended optimization algebra: A num-
ber of traversal strategies were not implemented in
TinkerPop3 because they were difficult to reason
on at the traversal level. With all optimization oc-
curring at the bytecode level in TinkerPop4, a more
complete path algebra will emerge.

e A generalized runtime optimizer: The match-
step based runtime optimizer will be generalized
to support single patterns that can be explored by
multiple algebraically equivalent patterns and thus,
the pattern that executes fastest and/or with less
memory will be leveraged in the final computation.

e A deprecation of bytecode-level step-
modulators: There are various inconsistencies in
the bytecode of TinkerPop3 that will be rectified
in TinkerPop4. In particular, Gremlin step-
modulators such as by (), as(), to(), from(), etc.
will act at the Gremlin language variant’s compiler
level as “pop-push” bytecode stack operators
affecting the previous instruction and will not
be represented as instructions at the TinkerCode
level.

e A language driven test suite: TinkerPop4 will
verify that all compiling languages answer a stan-
dard suite of queries correctly where, in turn, those
answers will require the correct semantics in both
the underlying tested storage system and process-
ing engine.

e A bytecode/result serializer and protocol:
The only means of communicating with the Tinker-
Machine is via bytecode and a compact, efficient,
platform-independent serialization format will be
created. There will no longer be direct access to
the underlying data storage system’s graph objects.
All communication will be via a language agnostic
network protocol for sending bytecode and receiv-
ing results.

e A bytecode translator: A translator will be de-
veloped that maps TinkerPop3’s Gremlin bytecode
to TinkerPop4’s TinkerCode. This will smooth
user adoption and enable aspects of TinkerPop3 to
leverage aspects of TinkerPop4 and vice versa.

B. Data Storage System

A structure provider is any developer of a data storage
system. When the provider implements custom byte-
code instructions in BP and subsequent traversal steps
in U, this exposes their underlying data structure to be
interpreted as a property graph G. At this point, the
provider’s system is considered TinkerPop-enabled. If G
is the underlying graph storage system, then

G ngnerate [V) E7)\ <_trawerse t S T] 9

where the TinkerMachine’s role lies in ensuring the tra-
versers in T access the vertex, edge, and property data
in G as dictated by V.

A significant change to come is the definition of the
property graph G. Originally, in TinkerPopl and Tin-
kerPop2, the property graph specification was inspired
by the Neo4j graph database, where every vertex and
edge has a set of key/value pair “properties” associated
with them. In later years, use cases emerged that re-
quired a vertex to support multiple property values for
the same key. Moreover, it was important that these
“multi-properties” had properties on them called “meta-
properties.” The uses cases that spawned the inclusion
of multi- and meta-properties in TinkerPop3 were au-
dit, provenance, permission, and time-encoded graphs.
Unfortunately, the implementation of multi- and meta-
properties in TinkerPop3 is semantically “clunky” and as
such TinkerPop4 plans to rectify the situation by lever-
aging the RDF literal model [9]. In TinkerPop4, edges
will be able to point to both vertices and literals, where
the set of literals . = X* UNU ... UR. A simple iso-
morphism exists between TinkerPop3’s and TinkerPop4’s
property graph definition as vertex properties will be
literals and meta-properties will be properties on those
edges leading to literals [6]. Thus, TinkerPop4’s property
graph G = (V, E,\), where E C V x £* x (VUL) and
A E x ¥* — L. This will yield a graph that looks simi-
lar to the RDF graph specification save that edges, and
only edges, can have any number of key /value pairs asso-
ciated with them. The relationship between multi/meta-
properties and literals is presented in Table III.

TinkerPop3

out () .values()

TinkerPop4
out().literals()
out().literals()
out().literalE()

out().literals(‘name’)

out () .properties().value()
out () .properties()
out () .values(‘name’)
out().literals(‘name’)
out () .literalMap()
literalE(‘name’) .valueMap()

out () .properties(‘name’).value()
out () .valueMap ()
properties(‘name’) .valueMap()
properties(‘name’) .values() literalE(‘name’).values()
properties(‘name’).values(‘acl’) |literalE(‘name’).values(‘acl’)
N/A literalE(‘name’).inL()
properties() .properties() literalE() .properties()
outE() .properties()
outE() .valueMap()

outE() .values(‘time’)

outE() .properties()
outE() .valueMap ()

outE() .values(‘time’)

TABLE III: Gremlin4 and Literal Vertices

Another important change will be the removal of the
structure/ interfaces that define Graph, Vertex, Edge,
Property, etc. Users will no longer have access to the
underlying storage system via direct objects. Instead, all
reads and writes will be through a TinkerLanguage and
thus, via the TinkerMachine. Every structure provider
will develop a set of provider instructions in 8P and con-
sequently, a set of custom traversal steps in ¥ that will re-
turn unconnected TinkerPop-specific graph objects. Tin-
kerPop4 will have no steps that access data from the data

storage system. Those steps will be fully developed by
the provider. The semantics of the provider’s property
graph encoding will take place at the language level where
a suite of test queries will ensure that the provider has a
correctly encoded graph.

A review of the major changes at the data storage sys-
tem level are itemized below.

e No vertex properties or meta-properties:
The only elements that will support key/value
properties will be edges. A new type of literal
vertex will be introduced which will make G anal-
ogous to an “RDF property graph.” This struc-
ture will support the concept of multi- and meta-
properties more elegantly, though they will not be
called multi- and meta-properties.

e No graph interface: The graph structure/ in-
terfaces will no longer exist. It will be up to partic-
ular provider/vendor step implementations to han-
dle populating vertex, edge, property, etc. objects
that are universal to all TinkerPop-enabled sys-
tems. These graph objects will not be connected
and will only provide the associated incident data
(e.g. label, id).

e No graph test suite: There will no longer be a
graph test suite. All testing of the semantics of the
underlying storage system will be via the language
test suite discussed in §IIT A.

e No transaction interface: Transactions will be
handled by the graph system and will not be
wrapped by a TinkerPop interface package. This
is in line with the trend in TinkerPop3 to remove
index and schema handling support as such subsys-
tems are too varied among providers to be elegantly
generalized.

C. Data Processing Engine

TinkerPop4’s traversal processing framework will fo-
cus on the agency of a traverser and the logical entail-
ments of that agency. In TinkerPop3, traversals were
the primary thread of execution, where the parallel dis-
tributed OLAP graph computer engine had to isolate
each step to ensure functional, thread safe semantics.
TinkerPop4 plans to support various processing mod-
els including single-machine serial, single-machine par-
allel, multi-machine distributed, and all the various dis-
tributed computing techniques and engines in existence
that implement them. As such, it is important to de-
velop a framework that is thread-safe and distributed at
its core. In order to do this, TinkerPop4 will provide a
traverser-centric framework where the primary thread of
execution lies at the individual traverser and thus, each
traverser can evaluate independent of all other traversers
in the traversal swarm. One of the major consequences

of this effort will be the co-location of a traverser with
the vertex/edge it is referencing and thus, TinkerPop4
will support dynamic query routing. There were prelim-
inary efforts to accomplish this in TinkerPop3 with the
“graph actors” framework, but this was abandoned in
lieu of designs for TinkerPop4.

If f is the function of a step in ¥, then the execution
of a traverser t € T will appear as

[t S T —execute f] <;generate lI/’

where f : T* — T* is the standard traverser stream
construct employed by every step of a traversal. A review
of the major changes at the data process engine level are
itemized below.

e A traverser-centric framework: In Tinker-
Pop3, traversers were processed by traversals.
In TinkerPop4, traversers will be the primary
agent/thread of execution and will be responsible
for the evaluation of the step functions. Traversers
will be decoupled, stateful entities moving about G
according to ¥ and can execute independently of
one another. This will more easily enable the lever-
aging of various serial, parallel, and distributed pro-
cessing techniques.

e A traverser-stream function library: Traver-
sal steps will be decoupled from their executing
function. It will be up the processing engine to de-
termine how to compose steps from a map, flatMap,
filter, etc. library of functions.

e A completely stateless traversal: All step state
will be completely removed. Side-effect steps will
store their side-effects in “stationary”, side-effect
traversers. This will ease thread safety concerns
when integrating with arbitrary process providers.

e A configurable traverser bulk: Traversers will
be able to support any standard numeric object
and split/merge function as their bulk [18]. This
will enable massive-scale traversals that spawn lo-
calized populations larger than can be counted in
the 64-bit long space and, more interestingly, will
enable wave-based graph computing with complex
numbers in C [24].

e A graph partition interface: Data storage sys-
tems will be able to specify where a particular ver-
tex/edge/etc. is located in the cluster. This will
enable the co-location of process (traverser) and
structure (vertex/edge/etc.). An interesting entail-
ment of this feature will be query routing.

IV. CONCLUSION

The TinkerPop project has been through many
changes over the years. The one constant is that it has

always strived to provide a vendor-agnostic graph com-
puting framework. In the beginning, TinkerPop provided
an open graph framework for integration with any data
storage system. More recently, TinkerPop has opened
up its language framework for any data query language
to leverage. Moving forward, TinkerPop will open up
its traversal framework to enable the integration of any
data processing engine. While the common conception
of TinkerPop is that it is about the Gremlin language,
the mythology of TinkerPop tells a different story. The
fables of The TinkerPop have taken the project to realize
the Gremlin language as a particular style of expressing a
graph computation and if Gremlin is to understand The
TinkerPop, he must shed this skin and look for a deeper
meaning in himself, ¢t. TinkerPop will continue to down-
play the importance of the Gremlin language in support
of a bytecode-based graph traversal machine that is open
to attract the work of experts in the fields of data storage,
data processing, and query language design.

Acknowledgments

This article represents the authors’ current boundaries
of thought after many years of exploring the wonder-
ful world of graphs. Many individuals have supported
the Apache TinkerPop™ project over the years from
project members to individuals on related efforts in both
the open source and commercial sectors. Particular in-
dividuals who have provided a steadfast, concerted ef-
fort on TinkerPop over the years include Daniel Kuppitz
(Gremlin language design) and Ketrina Yim (Gremlin
artwork). Finally, the authors would like to thank Peter
Neubauer and Joshua Shinavier for their original collab-
orations with Marko A. Rodriguez in the founding of the
TinkerPop project back in 2009. The authors look for-
ward to the developments to come in “TinkerPop4: Rise
of Enki.”

[1] M. Brocheler, A. Pugliese, and V. S. Subrahmanian. A
budget-based algorithm for efficient subgraph matching
on huge networks. In Workshops Proceedings of the 27th
International Conference on Data Engineering, pages 94—
99, 2011. doi: 10.1109/ICDEW.2011.5767618. URL
http://dx.doi.org/10.1109/ICDEW.2011.5767618.

[2] E. F. Codd. A relational model of data for large shared
data banks. Communications of the ACM, 13(6):377-387,
1970. ISSN 0001-0782. doi: 10.1145/362384.362685.

[3] I. D. Craig. Virtual Machines. Springer, 2005.

[4] K. Dharma. Mahabharata. Om Books International,
1999. ISBN 978-81-87108-99-3.

[5] H. Griffith. The gremlin question. Royal Airforce Jour-
nal, (13), April 1942.

[6] O. Hartig. Reconciliation of RDF* and property graphs.
Technical report, University of Waterloo, 2014. URL
http://arxiv.org/abs/1409.3288.

[7] G.Lachman. The Secret Teachers of the Western World.
TarcherPerigee, December 2015. ISBN 0399166807.

[8] P. Maes. Computational Reflection. PhD thesis, Vrije
Universiteit Brussel, Brussels, Belgium, January 1987.

[9] E. Miller. An introduction to the Resource Description
Framework. Bulletin of the American Society for Infor-
mation Science and Technology, 25(1):15-19, November
1998. doi: 10.1002/bult.105.

[10] R. K. Narayan. The Ramayana. Penguin Group, 1972.

[11] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF. Technical report, World Wide Web
Consortium, October 2004. URL http://wuw.w3.org/
TR/rdf-sparql-query/.

[12] S. Radhakrishnan. Indian Philosophy: Volume 1. Oxford
University Press, 1923.

[13] M. Riesenhuber and T. Poggio. Hierarchical models of
object recognition in cortex. Nature Neuroscience, 2:
1019-1025, 1999.

[14] M. A. Rodriguez. A methodology for studying various
interpretations of the N,N-dimethyltryptamine-induced
alternate reality. Journal of Scientific Exploration, 21
(1):67-84, 2007. ISSN 0892-3310.

[15] M. A. Rodriguez. Grammar-based random walkers in
semantic networks. Knowledge-Based Systems, 21(7):
727-739, 2008. doi: 10.1016/j.knosys.2008.03.030. URL
http://arxiv.org/abs/0803.4355.

[16] M. A. Rodriguez. Emergent Web Intelligence: Advanced
Semantic Technologies, chapter General-Purpose Com-
puting on a Semantic Network Substrate, pages 57—
104. Advanced Information and Knowledge Process-
ing. Springer-Verlag, June 2010. ISBN 78-1-84996-076-2.
URL http://arxiv.org/abs/0704.3395.

[17] M. A. Rodriguez. A TinkerPop story, December
2011. URL https://markorodriguez.com/2011/12/12/
a-tinkerpop-story/.

[18] M. A. Rodriguez. The Gremlin graph traversal ma-
chine and language. In Proceedings of the 15th Sympo-
stum on Database Programming Languages, DBPL 2015,
pages 1-10. ACM, October 2015. ISBN 978-1-4503-3902-
5. doi: 10.1145/2815072.2815073. URL http://arxiv.
org/abs/1508.03843.

[19] M. A. Rodriguez. A Gremlin implementa-
tion of the Gremlin traversal machine, October
2016. URL https://wuw.datastax.com/dev/blog/
a-gremlin-implementation-of-the-gremlin...

[20] M. A. Rodriguez. The Von Gremlin architecture, Au-
gust 2017. URL https://wuw.datastax.com/dev/blog/
the-von-gremlin-architecture.

[21] M. A. Rodriguez and P. Neubauer. A path algebra for
multi-relational graphs. In Proceedings of the 2"*d Inter-
national Workshop on Graph Data Management, pages
128-131, Hannover, Germany, April 2011. IEEE. doi: 10.
1109/ICDEW.2011.5767613. URL http://arxiv.org/
abs/1011.0390.

[22] M. A. Rodriguez and J. Shinavier. Exposing multi-
relational networks to single-relational network analysis
algorithms. Journal of Informetrics, 4(1):29-41, 2009.
doi: 10.1016/j.j0i.2009.06.004. URL http://arxiv.org/
abs/0806.2274.

[23] M. A. Rodriguez and D. J. Steinbock. A social net-
work for societal-scale decision-making systems. In Pro-

24]

(26]

27]

ceedingss of the North American Association for Compu-
tational Social and Organizational Science Conference,
Pittsburgh, PA, 2004. URL http://arxiv.org/abs/cs.
CY/0412047.

M. A. Rodriguez and J. H. Watkins. Quantum walks
with Gremlin. In L. Bender, editor, Proceedings of the
GraphDay Conference, volume 1, pages 1-16, Austin,
Texas, January 2016. URL https://arxiv.org/abs/
1511.06278.

M. A. Rodriguez, D. Kuppitz, and K. Yim. Tales from
the TinkerPop, July 2015. URL https://www.datastax.
com/dev/blog/tales-from-the-tinkerpop.

D. E. Rumelhart and J. L. McClelland. Parallel Dis-
tributed Processing: FExplorations in the Microstructure
of Cognition. MIT Press, July 1993. ISBN 0262181231.
R. J. Strassman. DMT the Spirit Molecule: A doctor’s

(28]

29]

10

revolutionary research into the biology of near-death and
mystical experiences. Park Street Press, Rochester, VT,
2001.

H. Thakkar, D. Punjani, J. Lehmann, and S. Auer.
Two for one: querying property graph databases using
SPARQL via Gremlinator. In Proceedings of the 1st
ACM SIGMOD Joint International Workshop on Graph
Data Management Experiences € Systems (GRADES)
and Network Data Analytics (NDA), pages 12:1-12:5,
Huston, TX, June 2018. ACM. ISBN 978-1-4503-5695-4.
doi: 10.1145/3210259.3210271.

A. M. Turing. On computable numbers, with an appli-
cation to the entscheidungsproblem. Proceedings of the
London Mathematical Society, 42(2):230-265, 1937.

