Deliverable D5.8

Project Title:	World-wide E-infrastructure for structural biology			
Project Acronym:	West-Life			
Grant agreement no.:	675858			
Deliverable title:	Final report on access and usage statistics of the various services			
WP No.	5			
Lead Beneficiary:	8: Utrecht University			
WP Title	Virtual Research Environment			
Contractual delivery date:	36			
Actual delivery date:	36			
WP leader:	Alexandre M.J.J. Bonvin Utrecht University			
Contributing partners:	STFC, NKI, EMBL, MU, CSIC, CIRMMP, Instruct, UU, Luna, INFN			

COPYRIGHT NOTICE

This work by Parties of the West-Life Consortium is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). The West-Life VRE project is funded by the European Union Horizon 2020 programme under grant number 675858.

DELIVERY SLIP

	Name	Partner/Activity	Date
From:	B. Jimenez Garcia / M. Trellet / A.	UU/WP5	27.10.2018
	Bonvin		
Approved by:			

DOCUMENT LOG

Issue	Date	Comment	Author/Partner
v.1	23.10.2017	First version	B. Jimenez Garcia / M. Trellet / A.
			Bonvin / UU
v.2		Second version with input from all	B. Jimenez Garcia / M. Trellet / A.
		partners	Bonvin / UU

Contents

1.	Executive summary4						
2.	Proje	ct objectives4					
3.	Detail	led report on the deliverable5					
1	.1 E	Background5					
1	.2 C	Description of new portals5					
	1.2.1	CCP4-SIMBAD5					
	1.2.2	DipCheck6					
	1.2.3	PRODIGY-Ligand6					
1	.3 F	Portal Statistics					
	1.3.1	Portal statistics 20168					
	1.3.2	Portal statistics 20179					
	1.3.3	Portal statistics 2018 (extrapolated)10					
Арр	pendix	1: Portal summary – CCP4-SIMBAD12					
		2: Portal summary – DipCheck13					
Арр	pendix	3: Portal summary – PRODIGY-Ligand14					
Bad	ckgrour	nd information15					

1. Executive summary

- West-Life aims to bring complex data analysis in Structural Biology to a simple Web browser-based Virtual Research Environment (VRE). Capitalizing on European and National projects, such as Instruct, WeNMR, and CCP4, as well as other projects, like EGI-Engage, through the MoBrain Competence Center, West-Life thus started from a leading position in the Structural Biology field, in that its partners were already providing valuable services in specific disciplines. After defining the baseline performance of 19 pre-existing web services provided by 6 project partners in Deliverable 5.2, and providing usage statistics for 2017 in Deliverable 5.7, we are now providing statistics for 2018 for all services in operation at this date. Furthermore, we are providing statistics for three new services: CCP4-SIMBAD, DipCheck and PRODIGY-Ligand.
- Comparing the statistics and their associated KPIs over the three years of the project, we can observe a sustained growth in both users and usage for the majority of services, which translates into a sustained overall 25-40% increase rate per year.

2. Project objectives

This deliverable is contributing to the following objectives:

No.	Objective	Yes	No
1	Provide analysis solutions for the different Structural Biology approaches	x	
2	Provide automated pipelines to handle multi-technique datasets in an integrative manner		X
3	Provide integrated data management for single and multi- technique projects, based on existing e-infrastructure		Х
4	Foster best practices, collaboration and training of end users		Х

3. Detailed report on the deliverable

1.1 Background

The overarching objective of the West-Life project is to bring the world of complex data analysis in Structural Biology to a simple Web browser-based Virtual Research Environment (VRE), available to any laboratory involved in the experimental structural characterization of biomolecules and their complexes and assemblies. Capitalizing on European and National projects such as Instruct, WeNMR, CCP4, as well as other projects like EGI-Engage, through the MoBrain Competence Center formed by several West-Life partners, a series of Web Services addressing specific pipelines in NMR, X-ray diffraction, SAXS and cryo Electron Microscopy data analysis are offered with direct impact on a large and worldwide user base. By now, West-Life has been operating for almost three years web services for the Structural Biology community. In the following, an update is given on the use and adoption of the 23 portals operated by West-Life partners. One of those is a newly developed portal added to the West-Life portfolio.

1.2 Description of new portals

The pre-existing services provided by the West-Life partners have been described in Deliverable 5.7. Here we briefly summarize the new services introduced since the publication of Deliverable 5.7 a year ago. These consist of three new services: CCP4-SIMBAD, which is a pipeline for solving crystal structures by sequence-independent molecular replacement, DipCheck, which is a structure validation tool; and PRODIGY-Ligand, which is an extension of the PRODIGY web portal to support binding affinity prediction for protein-small molecule complexes.

1.2.1 CCP4-SIMBAD

SIMBAD is a pipeline for sequence-independent molecular replacement, good for identifying if a crystal contains a contaminant protein. It can also help to find homologous structures in difficultto-solve novel target cases (see Appendix 1). It implements a 3-stage protocol consisting of (1) a lattice parameter search of the PDB, (2) molecular replacement using a small set of common crystallisation contaminants, and (3) molecular replacement using the MoRDa database of representative domain structures. The portal was in test phase the previous period but now officially in production.

1.2.2 DipCheck

DipCheck is a validation tool for protein backbone geometry, developed by Joana Pereira and Victor Lamzin at EMBL Hamburg. The tool uses a Euclidean 3D space (DipSpace) of the orthogonal descriptors of the geometry of a 5-atom dipeptide unit: CA(i-1)-O(i-1)-CA(i)-O(i)-CA(i+1). The DipSpace database contains 1,024,000 data points derived from the selected set of 1,300,000 dipeptide fragments from the well-refined structures deposited in the PDB.

DipCheck classifies the geometry of the middle, CA(i) atom in four categories: Favoured region, Allowed region, Generously allowed region and Disallowed region. DipCheck also classifies the overall geometry of a protein model, according to its DipScore distribution, in the same four categories. DipCheck thus adds a structure validation tool to the WestLife services portofolio (see Appendix 2).

1.2.3 PRODIGY-Ligand

PRODIGY-Ligand is an extension of our PRODIGY web-server for the prediction of binding affinity in protein-protein complexes. By using a combination of simple structural properties, such as the residue-contacts made at the interface, PRODIGY has demonstrated a top performance compared to other state-of-the-art predictors in the literature.

PRODIGY-Ligand is an extension of it, aimed at the prediction of affinity in proteinsmall ligand complexes. The predictive method, properly readapted for small ligand by making use of atomic instead of residue contacts, has been successfully applied for the blind prediction of 102 protein-ligand complexes during the D3R Grand Challenge 2. PRODIGY-LIG has the advantage of being easy to use, generic and applicable to any kind of protein-ligand complex. It provides an automatic, fast and userfriendly tool ensuring broad accessibility. For further details see Appendix 3.

Figure 1: View of the new PRODIGY-Ligand web portal.

PRO	DIG			
@Bonvin				
@Bonvin	lab			
PRODIGY - Ho	me Manual Metho	d Dataset Example Reference User	Forum	Login -
WELCOME TO THE UTRECH	T BIOMOLECULAR INT	ERACTION WEB PORTAL >>		
protein (PRODIGY) and pr provide the three-dimensi entry. Depending on the i	otein-small ligand (P onal structure of you nput data to be used,)) is a web server that predicts binding affit RODIGY-LIG) complexes To use PRODIGY r complex/complexes in PDB/mmCIF form your request is expected to take a few se vided, you will be notified when your job has vided, you will be notified when your job has	ou just need to at or the ID of its PDB conds before you	Powered sy
Number of successfully	served jobs since	April 2018: 417		EOSC-hub
PRODIGY-Webinar: lear	m more about PRODI	GY in the 7th BioExcel webinar. Yes		bio🎇el
RUN PRODI	GY			WOst-Life
PRODIGY PRO	DIGY-LIGAND			
(protein-probein) (pro	tein-small molecule)			
	DB/mmCIF files (.tar	plex or submit a file in PDB or mmCIF form ; .tgz, .zip, .bz2 or .tar.gz) can also be pro		
		ve approach can be found at the online me	thod page.	
Structure(s)*	PDB_ID	OR Choose File no file selected		
Protein Chain ID*	ID_chain(s) - Eg. A or A,B,		
Ligand ID*	Ligand (Ch	ain:ResID) - Eg. A:LIG		
Electrostatic Energy	TIADDOCK	HADDOCK electrostatic energy - Optional		
		Electrostatic bitaraction (from HADDOCK)		
Job ID		Custom tag - Optional Add e custom Job ID to identify your run.		
Email	Email			
	Optional email addr	ess to which the results will be send.		
Submit Prodig	y-Ligand			
Once you click on the b to the output page will	utton, your job will b be emailed to you	e processed. If you have provided an emai	l address, the link	

1.3 Portal Statistics

The following table reports on the total statistics of all portals aggregated over the entire duration of the project.

	Users total	New users	Job submissions	Grid/cloud jobs	%increase #Users total	%increase #new users	%increase #Job submissions	%increase #Grid/cloud jobs
Baseline 2015	16788	4437	43090	7692083	n.a.	n.a.	n.a.	n.a.
TOTAL 2016	21218	5534	52914	9246639	26%	25%	23%	20%
TOTAL 2017	24985	8081	72684	8935684	18%	46%	37%	-3%
TOTAL 2018	35695	10566	85800	7501906	43%	31%	18%	-16%

The percentage reported are always with respect to the previous period.

Overall we can observe an increasing trend in both number of new users using the WestLife portals per year and number of job submitted indicating a sustained increased usage of our services over all years.

The only decreased observed is in the number of grid/cloud jobs submitted. This can be explained by some shifts in portal usage. However, while the total number of jobs submitted to HTC resources has slightly decreased in 2018, it is still at a high level of 7.5 million jobs per year. Note also that actually the total CPU usage on the grid has increased in 2018 from around 18 to 21 million of normalized CPU hours, as reported in D4.6. So while the total number of HTC jobs has decreased in 2018, their average duration has increased.

Below, we report usage statistics of the West-Life associated services including, where applicable, the number of users and job submissions for 2016, 2017 (both reported in previous deliverables) and for 2018, with statistics extrapolated to the full 2018 (the statistics were collected until late September, beginning of October and were extrapolated to the entire 2018 year).

Two services have been discontinued in 2018: UNIO, because of a lack of user interest, and GROMACS for which a cloud version has been developed by the MU partner but not yet put into production. Those were already flagged in the 2017 statistics (in red) and are no longer shown in the 2018 statistics.

KPIs are presented for each period compared to the previous year. New services for a given year are highlighted by a green background. In general, the majority of portals show a sustained growth. We can also observe a good adoption and increasing usage of the newly introduced services.

1.3.1 Portal statistics 2016

		Stats 2016				KPIs 2016			
	Users total	Users 2016	Job submissions	Grid/cloud jobs	%increase #Users total	%increase #Users 2016	%increase #Job submissions	%increase #Grid/cloud jobs	
AMPS-NMR	390	90	185	3655	30%	80%	n.a.	-54%	
ARP/wARP	4418	666	3466	0	8%	57%	7%	n.a.	
Auto-Rickshaw	2550	430	4357	0	10%	-6%	22%	n.a.	
CCD	0	0	4000	0	n.a.	n.a.	33%	n.a.	
CCP4-AMPLE	187	187	535	0	n.a.	n.a.	n.a.	n.a.	
CCP4-BALBES	1521	700	3148	0	32%	-4%	-5%	n.a.	
CCP4-Crank2	94	94	587	0	n.a.	n.a.	n.a.	n.a.	
CCP4-MORDA	202	202	790	0	n.a.	n.a.	n.a.	n.a.	
CCP4-MRBUMP	874	453	1721	0	51%	-4%	32%	n.a.	
CCP4-SHELX	151	151	656	0	n.a.	n.a.	n.a.	n.a.	
CCP4-ZANUDA	390	196	598	0	47%	4%	61%	n.a.	
CS-ROSETTA3	228	9	33	263871	4%	-44%	-51%	40%	
DisVis	39	38	172	64	n.a.	n.a.	n.a.	n.a.	
FANTEN				0	n.a.	n.a.	n.a.	n.a.	
GROMACS	121	9	107	368	8%	-65%	-38%	-37%	
HADDOCK	8320	1621	27291	8947942	24%	12%	10%	19%	
PDB_REDO	1200	500	4400	0	71%	0%	47%	n.a.	
PowerFit	21	21	34	13	n.a.	n.a.	n.a.	n.a.	
SCIPION	0	0	418	30446	n.a.	n.a.	318%	1347%	
UNIO	80	21	72	280	36%	-32%	16%	-88%	
ViCi	417	131	196	0	43%	42%	111%	n.a.	
	Users total	Users 2016	Job submissions	Grid/cloud jobs	%increase #Users total	%increase #Users 2016	%increase #Job submissions	%increase #Grid/cloud jobs	
TOTAL	21203	5519	52766	9246639	26%	24%	22%	20%	

1.3.2 Portal statistics 2017

		s	tats 2017		KPIs 2017			
	Users total	Users 2017	Job submissions	Grid/cloud jobs	%increase #Users total	%increase #Users 2017	%increase #Job submissions	%increase #Grid/cloud jobs
AMPSNMR	468	78	454	1383	20%	-13%	145%	-62%
ARPWARP	4974	894	5362	0	13%	34%	55%	n.a.
AUTORICK	2893	461	4517	0	13%	7%	4%	n.a.
CCD	n.a.	n.a.	4412	0	n.a.	n.a.	10%	n.a.
CCP4-AMPLE	237	205	708	0	27%	10%	32%	n.a.
CCP4-BALBES	1581	823	3800	0	4%	18%	21%	n.a.
CCP4-Crank2	123	112	601	0	31%	19%	2%	n.a.
CCP4-MORDA	475	457	1775	0	135%	126%	125%	n.a.
CCP4-MRBUMP	918	509	1837	0	5%	12%	7%	n.a.
CCP4-SHELX	164	134	645	0	9%	-11%	-2%	n.a.
CCP4-SIMBAD	72	70	143	0	380%	367%	-3%	n.a.
CCP4-ZANUDA	410	222	554	0	5%	13%	-7%	n.a.
CS-ROSETTA3	228	0	20	817	0%	n.a	-39%	-100%
DISVIS	160	121	553	218	310%	218%	222%	241%
FANTEN	n.a.	n.a.	1246	0	n.a.	n.a.	n.a.	n.a.
GROMACS	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
HADDOCK	10190	1870	33300	8893000	22%	15%	22%	-1%
PDB-REDO		468	4947	0	n.a	-6%	12%	n.a.
PRODIGY- Ligand								
POWERFIT	99	78	150	96	371%	271%	341%	638%
SpotOn	105	105	165	0	n.a.	n.a.	n.a.	n.a.
SCIPION	n.a.	n.a.	443	40170	n.a.	n.a.	6%	32%
UNIO	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
VICI	482	68	98	0	16%	-48%	-50%	n.a.
3DBIONOTES	1406	1406	6954	n.a.	n.a.	n.a.	n.a.	n.a.
	Users total	Users 2017	Job submissions	Grid/cloud jobs	%increase #Users total	%increase #Users 2017	%increase #Job submissions	%increase #Grid/cloud jobs
TOTAL	24985	8081	72684	8935684	18%	46%	37%	-3%

	Stats 2018 (extrapolated)				KPIs 2018			
	Users total	Users 2018	Job submissions	Grid/cloud jobs	%increase #Users total	%increase #Users 2017	%increase #Job submissions	%increase #Grid/cloud jobs
AMPSNMR	578	110	2482	13277	23%	40%	447%	860%
ARPWARP	5789	815	8492	0	16%	-9%	58%	n.a.
AUTORICK	3247	354	3765	0	12%	-23%	-17%	n.a.
CCD	n.a.	n.a.	8850	0	n.a.	n.a.	101%	n.a.
CCP4-AMPLE	342	226	764	0	44%	10%	8%	n.a.
CCP4-BALBES	1955	774	3213	0	24%	-6%	-15%	n.a.
CCP4-Crank2	159	107	442	0	29%	-4%	-26%	n.a.
CCP4-MORDA	557	499	1783	0	17%	9%	0%	n.a.
CCP4- MRBUMP	1165	494	1401	0	27%	-3%	-24%	n.a.
CCP4-SHELX	231	138	365	0	41%	3%	-43%	n.a.
CCP4-SIMBAD	102	57	169	0	42%	-19%	18%	n.a.
CCP4-ZANUDA	535	212	472	0	30%	-4%	-15%	n.a.
DISVIS	606	446	646	537	279%	269%	17%	146%
FANTEN	n.a.	n.a.	821	0	n.a.	n.a.	-34%	n.a.
HADDOCK	12199	2009	28081	7396787	20%	7%	-16%	-17%
PDB-REDO	1800	709	5763	0	n.a.	52%	16%	n.a.
PRODIGY- Ligand	n.a.	n.a.	577	0	n.a.	n.a.	n.a.	n.a.
POWERFIT	416	317	236	168	321%	307%	57%	75%
SpotOn	456	351	8047	0	334%	234%	4777%	n.a.
SCIPION	n.a.	n.a.	649	21492	n.a.	n.a.	46%	-46%
VICI	695	56	52	0	44%	-18%	-47%	n.a.
3DBIONOTES	4418	2675	8704	n.a.	214%	90%	25%	n.a.
	Users total	Users 2017	Job submissions	Grid/cloud jobs	%increase #Users total	%increase #Users 2017	%increase #Job submissions	%increase #Grid/cloud jobs
TOTAL	35695	10566	85800	7501906	43%	31%	18%	-16%

1.3.3 Portal statistics 2018 (extrapolated)

West-Life Deliverable D5.2

Appendix 1: Portal summary – CCP4-SIMBAD

Portal name	CCP4 online - SIMBAD
Short description	SIMBAD is a pipeline for sequence-independent molecular replacement, good for identifying if your crystal contains a contaminant protein. Can also help to find homologous structures in difficult-to-solve novel target cases
Keywords	Crystallography, molecular replacement
URL	http://www.ccp4.ac.uk/ccp4online
Grid-enabled	No
Cloud-enabled	No
Total number of registered users	102 (since August 2016)
Key references	Simpkin, A. J., Simkovic, F., Thomas, J. M. H., Savko, M., Lebedev, A., Uski, V., Ballard, C., Wojdye, M., Wu, R., Sanishvili, R., Xu, Y., Lisa, MN., Buschiazzo, A., Shepard, W., Rigden, D. J. & Keegan, R. M. (2018). SIMBAD: a sequence-independent molecular-replacement pipeline. Acta Crystallogr D Struct Biol., 74, 595-605.

Appendix 2: Portal summary – DipCheck

Portal name	DipCheck Validation
Short description	 DipCheck is a validation tool for protein backbone geometry, developed by Joana Pereira and Victor Lamzin, EMBL Hamburg. The tool uses a Euclidean 3D space (DipSpace) of the orthogonal descriptors of the geometry of a 5-atom dipeptide unit: CA(i-1)-O(i-1)-CA(i)-O(i)-CA(i+1). The DipSpace database contains 1,024,000 data points derived from the selected set of 1,300,000 dipeptide fragments from the well-refined structures deposited in the PDB. DipCheck classifies the geometry of the middle, CA(i) atom in four categories: Favoured region, Allowed region, Generously allowed region and Disallowed region. DipCheck also classifies the overall geometry of a protein model, according to its
	DipCneck also classifies the overall geometry of a protein model, according to its DipScore distribution, in the same four categories.
Keywords	Integrative modelling; biomolecular structures; validation
URL	https://arpwarp.embl-hamburg.de/
Grid-enabled	no
Cloud-enabled	no
Operational since	1 September 2017. Integrated to ARP/wARP web service on 10 April 2018
Total number of registered users	Not available as the user registration was introduced in April 2018 when the DipCheck web service was integrated into ARP/wARP web service
Number of user submissions processed (1 September 2017 to 30 September 2018)	158 submissions
Number of grid/cloud jobs	0
Key references	Pereira J, Lamzin VS. A distance geometry-based description and validation of protein main-chain conformation. IUCrJ (2017) 4, 657-670.

Appendix 3: Portal summary – PRODIGY-Ligand

Portal name	PRODIGY-Ligand
Short description	 PRODIGY-Ligand is an extension of our PRODIGY web-server for the prediction of binding affinity in protein-protein complexes. By using a combination of simple structural properties, such as the residue-contacts made at the interface, PRODIGY has demonstrated a top performance compared to other state-of-the-art predictors in the literature. PRODIGY-Ligand is an extension of it, aimed at the prediction of affinity in protein-small ligand complexes. The predictive method, properly readapted for small ligand by making use of atomic instead of residue contacts, has been successfully applied for the blind prediction of 102 protein-ligand complexes during the D3R Grand Challenge 2. PRODIGY-LIG has the advantage of being simple, generic and applicable to any kind of protein-ligand complex. It provides an automatic, fast and user-friendly tool ensuring broad accessibility.
Keywords	Drug design; biomolecular structures; protein-ligand complexes; binding affinity
URL	https://wenmr.science.uu.nl/prodigy/
Grid-enabled	no
Cloud-enabled	no
Operational since	1 April 2018. Added as a separate tab on the PRODIGY server
Total number of registered users	The service does not require registration
Number of user submissions processed (1 April 2018 to 9 October 2018)	417
Number of grid/cloud jobs	N.A.
Key references	A. Vangone*, J. Schaarschmidt, P. Koukos, C. Geng, N. Citro, M.E. Trellet, L.C. Xue and A.M.J.J. Bonvin. <u>Large-scale prediction of binding affinity in protein-small ligand complexes: the PRODIGY-LIG web server</u> . Bioinformatics, Advanced Online Publication (2018).

This deliverable relates to WP5; background information on this WP as originally indicated in the description of work (DOW) is included below.

WP5 Title: Virtual Research Environment Lead: Alexandre M.J.J. Bonvin (UU) Participants: STFC, NKI, EMBL, MU, CSIC, CIRMMP, Instruct, UU, Luna, INFN

Work package number	5		Start date or starting event:		0	
Work package title	Virtu	Virtual Research Environment				
Activity Type	Suppo	Support				
Participant number	1	2	3	4	5	
Person-months per participant:	6	3	22	9	27	
Participant number	6	7	8	9	10	
Person-months per participant:	24	9	22	22	15	

Objectives

This WP is centered on building and operating the VRE web portal that will provide the entry point for users, developers and all other stakeholders. We will build a web portal integrating all already existing and operating services from the various partners and the WeNMR Virtual Research Community (O5.1), and expand it to include new portals, training material and knowledge, and a support center (O5.2, O5.3). In order to better serve the community, customized end-user VMs and/or application containers (e.g. via Docker) will be built for various scenarios (O5.4), to be used on local infrastructures (e.g. within a company) or on the EGI federated cloud resources. Additionally, portals for newly identified applications will be developed and put in production during the project to increase the service portfolio of the VRE (O5.5). The list of objectives is thus:

• **O5.1**: Deployment and operation of the West-Life-VRE portal, integrating all relevant existing services, training and support components (from WeNMR and other partner sites) and extending them.

• **O5.2**: Establishment and operation of the West-Life-VRE support and expertise center for users and software developers, covering all VRE areas. This task will cooperate closely with the

relevant EGI-Engage Competence Centers (e.g. MoBrain).

• **O5.3**: Provision of information and training material covering all VRE areas and offered services.

- **O5.4**: Development and integration of new service portals.
- **O5.5**: Provision of customized end-users VMs and/or containers for various applications.

Description of work and role of participants

The above objectives will be addressed through the following tasks:

Task 5.1 – Deployment and operation of the West-Life portal (Luna, all).

This task will directly address **O5.1**. It will start by defining the baseline of existing services across all partners (such as X-ray crystallography from CCP4 and the corresponding ones for cryoEM from the CSIC) together with those of the WeNMR VRC. The CSIC will contribute with the Web Services developed at the Instruct Image Processing Center in Madrid, making use of the Web interface of the SCIPION platform for software integration. These will then be integrated into a new VRE portal which will provide end users with a friendly and dynamical entry point to all services, knowledge and support center. The portal will be built on innovative technology developed by LUNA and we aim to migrate when possible existing portals to make direct use of the technology solutions offered by LUNA. In this task, we will also investigate and harmonize user authentication and authorization mechanisms (AAI) (e.g. both the Instruct and the WeNMR sites have user registration mechanisms in place, and WeNMR has implemented a single-sign-on (SSO) mechanism connected to Edugain). The choice and implementation of AAI mechanism will be done in close collaboration with EGI-Engage to maximize compatibility and impact. The new VRE portal will also implement tools and services related to data discovery and access (see WP6).

Task 5.2 – Knowledge and support center (Instruct, all). This task will directly address O5.2 and O5.3. We will integrate the existing knowledge and support center of WeNMR, covering NMR and SAXS services into the new VRE portal, and add all the missing components (tutorials, use cases, help center) to support X-ray crystallography, cryo-electron microscopy and the related integrative methods. A choice will have to be made early on in the project for technology platform to build this knowledge and support center, since various existing components currently use different solutions (e.g. the Instruct web site is based on php while WeNMR operates on Drupal). As in Task 5.1, this will be done in close collaboration with the related EGI-Engage Competence Centers to minimize heterogeneity and maximize impact. Again, in this task, we will as much as possible built on the integrated solutions developed by LUNA.

Task 5.3 – Development and integration of new service portals (UU, all). This task will directly address **O5.5**. While most of the existing WeNMR portals are already making use of the EGI Grid infrastructure with support from several NGIs within and outside Europe, this VRE project will be adding several portals that are already in place but depend on local and possibly limited resources, as is currently the case for most services for X-ray crystallography and cryoEM. This task will interface those portals (and newly identified ones during the projects) to the most suited e- Infrastructure solution(s), being it grid, CLOUD or HPC

resources. Note that we will benefit here from the interaction with various Competence Centers under the new EGI-Engage project, specially the MoBrain Competence Center, to which several partners of West-Life VRE participate (UU, CSIC, CIRMMP and STFC). Care will be taken to offer user-friendly interfaces, with a VRE- integrated AAI. The most suited submission mechanisms will be selected. For example, we might adopt the efficient DIRAC4EGI service, but could also build on CLOUD and desktop grid (crowd computing) resources offered by the International Desktop Grid Federation (IDGF). A commercial service will also be offered by LUNA for users (both for profit and non-profit) requesting priority access to resources.

Task 5.4 – **Customized end-users VMs** (**STFC**, all). This task will directly address **O5.5**. Structural biology research has been targeting increasingly larger macromolecular machinery of the cell. Consequently, researchers need access to a wide range of techniques and expertise in order to truly exploit structural biology data. In most cases, however they are expert in only one or a few techniques and associated software. In this task we will build custom VMs for different use cases, with all the necessary software, documentation and examples. Thanks to their suitably designed customization, these VMs will be useful not only to expert structural biologists but also to researchers who want to exploit structural biology as a tool to gain insight in their biological/biomedical research. Different VM types and/or application containers (e.g. via Docker) will be provided, to allow use on both the EGI Federated Cloud and OpenStack/Nebula resources for example, but also local installation on a user's laptop (e.g. with VirtualBox and VMware). This will also potentially be an attractive mechanism for offering commercial services to companies, on their own internal infrastructure when IP issues are preventing external use.

Deliverables					
No.	Name	Due month			
5.1	Project portal	3			
5.2	Overview (baseline) of services and portals to be integrated into the new VRE	4			
5.3	Prototype of the new VRE portal functionality	6			
5.4	Report on activities of the Helpdesk	18			
5.5	VRE-integrated PDBe search and query API's	18			
5.6	Report on available VMs with associated documentation/use case for each of them	24			
5.7	Report on access and usage statistics of the various services	24			
5.8	Report on access and usage statistics of the various services	36			
5.9	Update Report on activities of the Helpdesk	36			

