Solar-like pulsations across the HR diagram

PHOST 03/09/2018

Othman Benomar, Research associate New york university Abu Dhabi

PHOST 03/09/2018

Othman Benomar, Research associate New york university Abu Dhabi

Before CoRoT / After Kepler

Before CoRoT (2008):
A handful of stars with detected pulsations

Nowadays:
RGB: ~ 15000 detections
MS: ~200 detections

Credit: Daniel Huber

Example of importance of seismology for exoplanets

Seismology increases the level of details:
> Clear gap
$>$ Gap position decreases with orbital period

A gap requires rocky cores (Owen+2017, Jin+2018)
A decrease of the gap position is likely due to photo-evaporation and rules out other scenarii

Example of importance of seismology for exoplanets

More on Friday about Planets - Seismo synergies by:
A. Wolszczan
T. Campante

Seismology increases the level of details:
> Clear gap
> Gap position decreases with orbital period

A gap requires rocky cores (Owen+2017, Jin+2018)
A decrease of the gap position is likely due to photo-evaporation and rules out other scenarii

Mode asymmetry for the Sun

Sun: Photometry

Duvall's interpretation for asymmetry: Interference of inward with outward waves near the surface and with a source located outside the mode cavity
Sign reversal: Favoured hypothesis Noise-Waves correlation Roxburgh+1997, Nigam+1998

Mode asymmetry for solar-like stars

Sample: 43 Legacy stars with clear $l=0,2$
$\log (\mathrm{g}) / \mathrm{T}_{\text {eff }}$ from spectroscopy summarized in Creevey+2017 or Silva-Aguirre+2017

Mode asymmetry for solar-like stars Implications/Interpretation

Relative depth of the excitation source

Cool stars (e.g. Sun):

- Source below photosphere
- Upper turning point below source

Hotter stars (e.g. F type stars):

- Source near or above the photosphere
- Upper turning point above source

Radial differential rotation in the MS

Benomar+ 2015, MNRAS

ZAMS model hypothesis:

- Total AM conserved (e.g. no mass loss)
- Local AM conserved in radiative zone
- Constant rotation in convective zone

Nearly uniform rotation

Consistent with Nielsen+2017

Angular momentum transport in main-sequence solar-like stars

Latitudinal differential rotation in the MS

Benomar+ 2018, accepted to Science (Embargo until 21 September 2018)
a-coefficients: Parametrisation of the frequency splittings such that they form an orthogonal basis (Ritzwoller \& Lavely, 1991) with:

- Even coefficients: depend only on the shape of the star
- Odds coefficients: depend only on the rotation profile $\Omega(r, \theta)$

Latitudinal differential rotation in the MS

\rightarrow Need year-long observations
\rightarrow Need clear $\mathrm{I}=0,1,2$ modes

Latitudinal differential rotation in the MS anti-solar vs. solar-like rotation

Detection of solar-like rotation Significant at more than 3σ

No detection

Latitudinal differential rotation in the MS anti-solar vs. solar-like rotation

Mass: $[0.8,1.3] \mathrm{M}_{\text {sun }}$
Radius: $[0.8,2.0] R_{\text {sun }}$

Inversion of the differential rotation profile

- Solar-like profile in the convective zone : $\propto \Omega_{1} \cos ^{2}(\theta)+\Omega_{2} \cos ^{4}(\theta)$
- Two observables $\left(a_{1}, a_{3}\right) \rightarrow$ Two-zone model only :
- Average rotation :

$$
\Omega_{0}
$$

- Convective zone: $\quad \propto \Omega_{1} \cos ^{2}(\theta)$

Inversion of the differential rotation profile

- Solar-like profile in the convective zone : $\propto \Omega_{1} \cos ^{2}(\theta)+\Omega_{2} \cos ^{4}(\theta)$
- Two observables $\left(\mathrm{a}_{1}, \mathrm{a}_{3}\right) \rightarrow$ Two-zone model only: Gizon+2004
- Average rotation : Ω_{0}
- Convective zone: $\quad \propto \Omega_{1} \cos ^{2}(\theta)$
- Orthonormal basis implies one-to-one relations: $a_{1}=\kappa_{0} \Omega_{0} \quad a_{3}=\kappa_{1} \Omega_{1}$
- In the Sun this approximation is accurate for latitudes lower than 45 degrees

For Slow rotators, the latitudinal differential rotation can be reliably measured for latitude lower than 45 degrees...
(If the Sun is an accurate prototype of solar-like star)

Inversion of the differential rotation profile

Ages: Silva Aguirre+2017
a_{1} vs age: The well-established Age-rotation relation is evident
\Rightarrow Significant detections: strong latitudinal differential rotation: ~2-5 times the Sun

Others:

> Weaker differential rotation
> Too slow rotators to detect it
\square Strong AM transport from pole to
equator: Weak large scale magnetic field + strong small scale field?

Thank you

Sensitivity to stellar interior rotation

How to take advantage of the large sensitivity on the radiative zone?
Comparing surface rotation with radiative zone rotation

Average rotation in the radiative zone
$\underline{2}$ zone model:

$$
I_{c o n v}+I_{\text {rad }}=1,
$$

$$
\delta \nu_{n, l} \simeq I_{\text {rad }} \Omega_{\text {rad }}+I_{\text {conv }} \Omega_{c o n v}
$$

Integral of Kernel in radiative zone

$$
\left\langle\Omega_{r a d}\right\rangle=\Omega_{s}+\left\langle I_{r a d}^{-1}\right\rangle\left(\left\langle\delta \nu_{n, l}\right\rangle-\Omega_{s}\right)
$$

Average splitting Surface rotation

Surface rotation: Measured either by using vsin(i) or surface spot

Sensitivity to stellar interior rotation

Rotational splitting : weighted average of internal rotation
Kernel integral (Sensitivity): weight for a mode (n, l)

Mode penetrate deep enough to be sensitive to the radiative zone $\sim 50 \%$ of the rotational splitting value is due to the rotation within the radiative zone

Thin convective zone \rightarrow Greater sensitivity to radiative zone

If differential rotation between radiative/convective zone \rightarrow Splitting must be different than surface rotation

Inversion of the latitudinal differential rotation

Modes of different I,m probe different region of the star (radialy and latitudinally)

Lund+2015, ApJ

(a) $l, n, m=(1,20,1)$

(d) $l, n, m=(3,20,1)$

(b) $l, n, m=(2,20,1)$

(e) $l, n, m=(3,20,2)$

(c) $l, n, m=(2,20,2)$

(f) $l, n, m=(3,20,3)$

Figure 1. Contour plots of the rotation kernels for modes of degree $l=1,2,3$, all with radial order $n=20$. Only one quadrant of the star is shown and in units of the stellar radius. The displayed kernel may by mirrored in both axes. The dashed red circle indicates the base of the convection zone, $n_{\text {bcz }}$, for the model considered. For kernels where the maximum in latitude is different from the equator $\left(\theta=90^{\circ}\right)$, a dashed line indicates the co-latitude of kernel maximum.
(A color version of this figure is available in the online journal.)

Rotation: Main sequence solar-like stars

In case of a solid-body rotation of a sphere: $\mathrm{S}_{\mathrm{nlm}}=\mathrm{S}_{\mathrm{nl}-\mathrm{m}}=\delta v_{\mathrm{s}}$ δv_{s} is the average rotation rate of the star

Gizon \& Solanki, 2003, ApJ

Benomar+2015, MNRAS

(2) KIC 2837475

6) KIC 6679371

(8) KIC 7206837

(7) KIC 7103006

Rotation: Asphericity and latitudinal rotation effects

Schou+ 1994, ApJ
In case of a solid-body rotation of a sphere: $S_{n \mid m}=S_{n l-m}=\delta v_{s}$ δv_{s} is the average rotation rate of the star

Rotation: Asphericity and latitudinal rotation effects

Schou+ 1994, ApJ
In case of a solid-body rotation of a sphere: $S_{n \mid m}=S_{n l-m}=\delta v_{s}$ δv_{s} is the average rotation rate of the star
Higher frequency

In case of a solid-body rotation of a spheroid
Oblate star (e.g. centrifugal force) $\rightarrow \mathrm{m}=0$ frequency increases

Rotation: Evolved solar-like stars

Rotation in evolved stars: Subgiants and (low-mass) early red giants

Propagation diagram of the Sun

Lamb frequency: delimits the p modes cavities
Brunt Vaisala frequency: delimits the g modes cavity

Space-based seismology reveals details on core structure

Measure of the spin-orbit angle

$$
\Psi_{\text {SUN }}=7 \text { deg. }
$$

- 3D spin-orbit angle is difficult to measure
- Use instead other indicators

Benomar+2014, Campante+2016:
Kepler-25: possibly aligned HAT-P-7: Confirmed misalignement

