Solar-like pulsations across the HR diagram

PHOST 03/09/2018

Othman Benomar, Research associate New york university Abu Dhabi A (biased) perspective on solar-like pulsation of MS stars

PHOST 03/09/2018

Othman Benomar, Research associate New york university Abu Dhabi

Before CoRoT / After Kepler

Before CoRoT (2008): A handful of stars with detected pulsations

Nowadays:

RGB: ~ 15000 detections MS: ~200 detections

PHOST 3-7 Sep. 2018

Example of importance of seismology for exoplanets

Fulton+2017: Spectroscopy only (gray) Van Eylen+2018: Spectroscopy + seismology (red)

Seismology increases the level of details:

- Clear gap
- Gap position decreases with orbital period

A gap requires rocky cores (Owen+2017, Jin+2018)

A decrease of the gap position is likely due to photo-evaporation and rules out other scenarii

Example of importance of seismology for exoplanets

A gap requires rocky cores (Owen+2017, Jin+2018)

A decrease of the gap position is likely due to photo-evaporation and rules out other scenarii

Mode asymmetry for the Sun

<u>Duvall's interpretation for asymmetry</u>: Interference of inward with outward waves near the surface and with a source located outside the mode cavity

Sign reversal: Favoured hypothesis Noise–Waves correlation Roxburgh+1997, Nigam+1998

Mode asymmetry for solar-like stars

Mode asymmetry for solar-like stars Implications/Interpretation

Relative depth of the excitation source

Constraints on the dynamic of upper layers of solar-like stars

PHOST 3-7 Sep. 2018

Radial differential rotation in the MS

Benomar+ 2015, MNRAS

Angular momentum transport in main-sequence solar-like stars

Latitudinal differential rotation in the MS

Benomar+ 2018, accepted to Science (Embargo until 21 September 2018)

<u>a-coefficients:</u> Parametrisation of the frequency splittings such that they form an orthogonal basis (**Ritzwoller & Lavely, 1991**) with:

- Even coefficients: depend only on the shape of the star
- Odds coefficients: depend only on the rotation profile $\Omega(r,\theta)$

Latitudinal differential rotation in the MS

PHOST 3-7 Sep. 2018

Latitudinal differential rotation in the MS anti-solar vs. solar-like rotation

Detection of solar-like rotation Significant at more than 3σ

No detection

Latitudinal differential rotation in the MS anti-solar vs. solar-like rotation

<u>Mass:</u> [0.8, 1.3] M_{sun}

Radius: [0.8, 2.0] R_{sun}

PHOST 3-7 Sep. 2018

Inversion of the differential rotation profile

• Solar-like profile in the convective zone : $\propto \Omega_1 \cos^2(\theta) + \Omega_2 \cos^4(\theta)$

- Two observables $(a_1, a_3) \rightarrow$ Two-zone model only :
 - Average rotation : Ω_0
 - Convective zone: $\propto \Omega_1 \cos^2(\theta)$

Inversion of the differential rotation profile

• Solar-like profile in the convective zone : $\propto \Omega_1 \cos^2(\theta) + \Omega_2 \cos^4(\theta)$

- Two observables (a₁, a₃) → Two-zone model only : Gizon+2004
 - Average rotation : Ω_0
 - Convective zone: $\propto \Omega_1 \cos^2(\theta)$
- Orthonormal basis implies one-to-one relations:
- In the Sun this approximation is accurate for latitudes lower than 45 degrees

For Slow rotators, the latitudinal differential rotation can be reliably measured for latitude lower than 45 degrees... (If the Sun is an accurate prototype of solar-like star)

 $a_1 = \kappa_0 \Omega_0$

PHOST 3-7 Sep. 2018

Integrals of

 $a_3 = \kappa_1 \Omega_1$

Rotational Kernels

Inversion of the differential rotation profile

Ages: Silva Aguirre+2017

 a_1 vs age: The well-established Age-rotation relation is evident

Significant detections: strong latitudinal differential rotation: ~2 -5 times the Sun

<u>Others:</u>

- Weaker differential rotation
- Too slow rotators to detect it

Strong AM transport from pole to equator: Weak large scale magnetic field + strong small scale field?

Thank you

Sensitivity to stellar interior rotation

How to take advantage of the large sensitivity on the radiative zone?

Comparing surface rotation with radiative zone rotation

Sensitivity to stellar interior rotation

Rotational splitting : weighted average of internal rotation **Kernel integral (Sensitivity):** weight for a mode (n,l)

Mode penetrate deep enough to be sensitive to the radiative zone ~ 50% of the rotational splitting value is due to the rotation within the radiative zone

Thin convective zone

Greater sensitivity to radiative zone

If differential rotation between radiative/convective zone → Splitting must be different than surface rotation

Inversion of the latitudinal differential rotation

Modes of different I,m probe different region of the star (radialy and latitudinally)

Figure 1. Contour plots of the rotation kernels for modes of degree l = 1, 2, 3, all with radial order n = 20. Only one quadrant of the star is shown and in units of the stellar radius. The displayed kernel may by mirrored in both axes. The dashed red circle indicates the base of the convection zone, r_{bcz} , for the model considered. For kernels where the maximum in latitude is different from the equator ($\theta = 90^{\circ}$), a dashed line indicates the co-latitude of kernel maximum.

(A color version of this figure is available in the online journal.)

Rotation: Main sequence solar-like stars

In case of a solid-body rotation of a sphere: $S_{nlm} = S_{nl-m} = \delta v_s$ δv_s is the average rotation rate of the star

Benomar+2015, MNRAS

Rotation: Asphericity and latitudinal rotation effects

In case of a solid-body rotation of a sphere: $S_{nlm} = S_{nl-m} = \delta v_s$ δv_s is the average rotation rate of the star

Rotation: Asphericity and latitudinal rotation effects

In case of a solid-body rotation of a sphere: $S_{nlm} = S_{nl-m} = \delta v_s$ δv_s is the average rotation rate of the star

Rotation: Evolved solar-like stars

Rotation in evolved stars: Subgiants and (low-mass) early red giants

During the subgiant/early red giant phase:

- ♦ Spin-up of the core (core contraction)
- ♦ Spin-down of the envelope (envelope expansion)

Deheuvels+ 2014, A&A

Propagation diagram of the Sun

<u>Lamb frequency:</u> delimits the p modes cavities <u>Brunt Vaisala frequency:</u> delimits the g modes cavity

Space-based seismology reveals details on core structure

l=1 (and *l*=2) are mixed modes

Measure of the spin-orbit angle

Use instead other indicators

Benomar+2014, Campante+2016:

Kepler-25: possibly aligned HAT-P-7: Confirmed misalignement