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ABSTRACT 

A challenging but central question in population genetics is the detection of genomic regions 

underpinning recent adaptation. To this end, we recently devised a machine learning method, 

termed S/HIC, which detects both “hard” selective sweeps on de novo mutations and “soft” 

sweeps on standing genetic variation with high sensitivity and specificity, while being 

exceptionally robust to demographic model misspecification. We previously applied S/HIC to 

human population genomic data and uncovered evidence of a large number of recent selective 

sweeps across the genome, most of which we classified as soft sweeps. A critique of recent 

efforts to detect soft sweeps, including our own, has made the argument that S/HIC is in fact so 

vulnerable to demographic misspecification that our analyses with it should be completely 

discounted. Through a careful consideration of the claims of this critique, we argue that the 

impact of such misspecification on our analysis in humans is minimal with respect to our 

conclusions. The critique in question also argued that our false discovery rate in humans was 

essentially 100%; however we show that this inaccurate claim is due to a regrettable error on the 

part of its authors. We argue that our scan for selection has produced several interesting 

observations on recent adaptation in humans that are highly concordant with independent efforts 

to detect signatures of more ancient positive selection. We conclude that the evidence for the 

utility of S/HIC, and the validity of our application of it to human data, is highly compelling, and 

that strictly demographic explanations for our results are clearly untenable. 
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A recent preprint by Harris et al. (2018) levels a series of critiques at the work done by us as well 

as other groups on finding soft selective sweeps in genomes. While we will leave the defense of 

our colleagues’ work to them, we here respond to the criticisms raised by Harris et al. of the 

work presented in Schrider and Kern (2016) and Schrider and Kern (2017). In the first of these 

two papers we describe a supervised machine learning approach for detecting both hard and soft 

selective sweeps, termed S/HIC. In the second, we apply S/HIC to six human population samples 

where we classify the majority of sweeps as soft. Harris et al. argue that 1) the results from our 

scan for selection in humans are essentially all false positives, and 2) our scan does not 

accurately discriminate between hard and soft selective sweeps. In short, Harris et al.’s criticisms 

of our work fall into one of two categories: statistical errors on the part of those authors, or 

highlighting issues related to model misspecification that loom generally for population genomic 

inference, and whose impact on S/HIC we have characterized previously. We address the 

specifics of each of their claims below. 

 

By way of background, detecting selective sweeps is an exceedingly difficult problem, largely 

due to the propensity of non-equilibrium demographic processes to mimic the effects of selection 

(Simonsen et al. 1995; Jensen et al. 2005). Indeed, it was our awareness of the need for a method 

that is both sensitive to selective sweeps and also far more robust to non-equilibrium 

demography than previously existing methods that motivated us to develop S/HIC in the first 

place.  

 

Harris et al. argue that Schrider and Kern (2017) present results that are nearly all false positives. 

Their main assertion is summarized in Table 1 of Harris et al. in which they present an analysis 

of our false discovery rate (FDR) to suggest that the number of “significant tests” (i.e. genomic 

windows classified as sweeps) could be completely explained by the false positive rate that we 

reported. Unfortunately, Harris et al. have used the wrong numbers. Harris et al have apparently 

used data from Table 1 of Schrider and Kern (2017), even though this table does not give the raw 

number of windows classified as sweeps. As we explain in the methods section of the paper, 

those numbers instead represented the “merged” set of window classifications, such that 

physically neighboring sweep classifications were collapsed to a single call in an effort to arrive 
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at a more conservative estimate of the number of distinct sweep candidate regions. The total 

uncollapsed number of windows classified as sweeps is roughly 35% higher than what we report 

in our merged set of sweep candidate regions. Indeed the total number of windows that we 

classified as hard and soft sweeps in each population was given in the supplementary table S2 of 

our original paper and even plotted by Harris et al in their Fig S2. For clarity, we show each 

population sample’s correct false positive rate, total number of sweep classifications, FDR-

corrected number of sweep classifications, and number of windows expected to be misclassified 

as sweeps given our FDR in Table 1 in this paper. This table contains the total number of 

windows that we examined in our analysis (i.e. the total number of “tests”). In Schrider and Kern 

(2017) we performed downstream analysis on a set of windows that were filtered of low-

recombining regions; an equivalent table for those windows is shown in Table 2. For the 

interested reader, BED files listing each window classification have been and still are available 

in the S/HIC GitHub repository (https://github.com/kern-

lab/shIC/tree/master/humanScanResults).  

 

Because Harris et al. used the number of merged sweep candidate regions instead of the total 

number of windows classified as sweeps, the denominator in their FDR calculation is 

underestimated, leading them to overestimate our FDR. Rather than the 100% FDR as reported 

by Harris et al., the correct FDR averaging across each population is approximately 65% for both 

hard and soft sweeps taken together or 67% for soft sweeps alone. This means that even after one 

accounts for the high FDR inherent with our classifier, hundreds of significant true positive 

sweep windows are detected (~500 in each population on average), with the overwhelming 

majority of them classified as soft sweeps. Harris et al. also claim that the posterior probability 

estimates produced by S/HIC imply very few high-confidence sweep candidates. However, these 

estimates are often miscalibrated unless a very large number of training examples are used. As 

we discuss in Schrider et al. (2018), these estimates are useful for ranking candidates, but false 

positive rates assessed on an independent test set (as we have done for the FDR estimate above) 

are far more reliable. 

 

Harris et al. also make the case for increasing posterior probability thresholds in such a way as to 

strictly control the false positive rate (they plot our analysis of this in their Fig S2). There is of 
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course a well-known tradeoff between type 1 and type 2 error rates, so one sacrifices the false 

negative rate for an extremely low false positive rate. For experimentalists, who might invest 

much time and money in functionally characterizing an individual sweep candidate, such an 

emphasis on reduced FDRs would make sense. However in population genomics we are often 

more interested in describing broader-scale patterns of evolution. Thus in Schrider and Kern 

(2017), we chose to cast a wide net in an attempt to capture as many sweeps as possible, while 

cognizant of the fact that any individual candidate has a high probability of being a false positive 

(though substantially lower than Harris et al. argue). 

 

While the erroneously inflated FDR estimate was a fundamental misunderstanding in Harris et 

al.’s criticism of our work, their piece also reiterates our own concerns about model 

misspecification. This is a general problem for population genetic inference and one that we take 

quite seriously. Indeed these were the reasons we presented a scenario of catastrophic model 

misspecification of the underlying population model in the original S/HIC paper (i.e. Figures 6, 

7, S9, S10, S11, and S12 of Schrider and Kern 2016). Specifically, we presented results of a 

classifier trained on equilibrium population simulations and then tested on data simulated under 

the exponential growth dynamics estimated from African and non-African human populations, as 

well as simpler bottleneck scenarios.  Harris et al. reiterate our original point—that completely 

ignoring population size changes may cause a large fraction of hard sweeps to be misclassified as 

soft. Importantly, as they point out and as we showed in Schrider and Kern (2016), in this case 

accuracy to discriminate between sweeps and unselected regions of the genome, the primary goal 

of any sweep scan, is relatively unaffected. However, such extreme model misspecification can 

reduce accuracy in discriminating between hard and soft sweeps. Thus under an unrealistically 

pessimistic scenario of demographic misspecification, S/HIC suffers no drop in its ability to 

distinguish between selected and unselected regions of the genome, although misclassification 

rates between selected classes increases. This was all clearly shown in Schrider and Kern (2016). 

 

As an aside, the authors point out that our detailed results of applying a S/HIC classifier trained 

under equilibrium demography but to data simulated under a demographic model estimated by 

Tennessen et al. (2012) from African exome data is relegated to a supplementary figure that is 

not described in detail in the main text. The authors neglect to mention that we instead 
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prominently feature results from an even more challenging scenario wherein the equilibrium-

trained S/HIC classifier is applied to the European model from Tennessen et al. In this latter 

scenario ~50% hard sweeps may be misclassified as soft. 

 

So to what extent might misclassification caused by demographic misspecification affect the 

conclusion of Schrider and Kern (2017) that soft sweeps are the predominant mode of adaptation 

in six human subpopulations? If 50% of hard sweeps are misclassified as soft, as under the 

overly pessimistic scenario of demographic misspecification described above, then we expect 48 

soft sweep windows on average in each population to actually represent hard sweeps. Given that 

after correcting for our false discovery rates we expect on the order of 500 windows to be 

classified as soft sweeps on average across the six population samples, our conclusion that the 

vast majority of selective sweeps in humans are soft is unaffected. 

 

Harris et al. also explore misspecification of the distribution of selection coefficients used in 

sweep simulations. We originally simulated moderate to strong selection coefficients (s ranging 

from 0.005 to 0.1) as such sweeps are more likely to reach fixation. However, we cannot rule out 

the possibility that some completed selective sweeps have lower s in practice. While that is so, 

estimates of selection coefficients in well characterized completed selective sweeps are fairly 

high (e.g. ranging from 0.023 to 0.14 in the loci examined by Peter et al. 2012), but this is 

probably a biased subset of sweeps and more work in estimating selection coefficients is needed. 

Under a scenario of misspecification where S/HIC is applied to data with weaker selection than it 

was trained upon, Harris et al. report a misclassification rate of hard sweeps to soft sweeps at 

47%. We show a similar result in Figure S5 from Schrider and Kern (2016)—when using 

training data encompassing a very wide range of selection coefficients but applying the classifier 

to test data with weak selection, S/HIC accurately detects sweeps, though the mode of selection 

may be misinferred. Harris et al. have simply confirmed this result. Again, given the numbers of 

hard and soft sweeps that we report in Schrider and Kern (2017), this would mean that 1) there 

are significantly more hard sweeps that we estimate and 2) that there would still be many more 

soft sweeps than hard. So while such misspecification is important, and well worth being wary 

of, it does not affect the qualitative conclusions of Schrider and Kern (2017).  
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One type of model misspecification that Harris et al. examine that we did not address previously 

is that of population structure. As one might expect, the authors find that cryptic population 

subdivision or unmodeled migration can reduce accuracy. This is an important analysis, and 

population structure may contribute to our reduced accuracy in the admixed PEL population of 

the 1000 Genomes Project relative to the other population samples we examined (supplementary 

fig. S1 Schrider and Kern 2017). It is important to note however that there is no reason to believe 

that well-studied population samples such as CEU or JPT harbor sufficient cryptic population 

structure or have received enough recent ancestry from other, genetically distant populations so 

as to bias our results. Indeed, all five populations we examined besides PEL appear to be far 

more homogenous (Auton et al. 2015). Given that our results demonstrate that soft sweeps are 

more frequent in every population, this form of misspecification seems unlikely to have affected 

our conclusions. In summary, neither of Harris et al.’s primary claims—that our detected sweeps 

candidates are false positives and that our inferences about the mode of selection are incorrect—

are consistent with a careful examination of our results. 

 

Beyond defending our work from the claims of Harris et al. on the basis of S/HIC itself, we 

would like to highlight our biological results that point to coherent, interpretable clusters of loci, 

often echoing what has been reported in previous (and orthogonal) selection scans of the human 

genome. In Schrider and Kern (2017) we reported functional enrichments of sweep loci—soft 

sweeps in particular—through the use of a careful permutation procedure. Our permutation test 

accounts for: 1) the number and spatial arrangement of the genomic windows tests, 2) the 

autocorrelation of S/HIC’s classifications, 3) potential biases in the annotation (e.g. gene 

lengths), and 4) the number of terms tested (using an FDR correction). This analysis revealed 

numerous enrichments including sperm-egg recognition, spermatogenesis, cancer mutations, and 

virus-interacting proteins. Each of these annotations has been implicated previously as having 

experienced recurrent positive selection in the human genome on the basis of divergence (i.e. 

dN/dS) or McDonald-Kreitman tests (Dorus et al. 2004; Nielsen et al. 2005; Kosiol et al. 2008; 

Enard et al. 2016). In addition, we found strong evidence for enrichments of sweeps in 

interacting genes, a result that also has been reported previously using different signatures of 

selection (Qian et al. 2015). That our results should align so well with results based on 

McDonald-Kreitman tests or dN/dS ratios but in reality be false positives seems extremely 
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unlikely. Moreover, it is difficult to imagine a scenario in which demographic misspecification 

would result in a large excess of false positives from particular sets of genes, such as immune 

related proteins that are known to evolve under positive selection in numerous taxa. Thus, Harris 

et al.’s claim that our scan for positive selection in humans produced no signal of sweeps is not 

only a misinterpretation of our results, it does not seem consistent with a more detailed 

inspection of the data. 

 

In conclusion, we are well aware that S/HIC will not be completely immune to all forms of 

model misspecification, and our previous work is careful to point this out. As we (Schrider and 

Kern 2016) and Harris et al. (2018) have shown, it is possible to devise scenarios of model 

misspecification that can impact the accuracy of S/HIC (and probably any method), sometimes 

severely. It is paramount to evaluate methods under a wide variety of selective and demographic 

scenarios in order to better inform users of these potential pitfalls and we welcome Harris et al.’s 

efforts in this respect. However, the mere existence of such confounding scenarios should not be 

taken as evidence that efforts to detect positive selection are futile. Rather, a more fruitful 

question to ask is whether, in spite of the presence of potential confounders, selection scans are 

informative about evolutionary processes in practice. In our case, we can ask whether the 

application of S/HIC to human data sets (Schrider and Kern 2017) has proved illuminating about 

the landscape of recent positive selection across the genome. As we argue above, the answer to 

this question is a resounding “yes”. 
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Table 1. False positive rates, total number of sweep classifications, and expected number of 
true sweep windows from Schrider and Kern (2017). 
 

 

Proportion of 
neutral windows 
expected to be 

mis-classified as 
sweeps 

Number of 
genome-wide 

sweep windows 
reported by 
Schrider and 
Kern (2017) 

FDR-corrected 
number of true-
positive sweep 

windows 

Number of windows 
expected to be mis-
classified as sweeps 

Population Soft Hard Soft Hard Soft Hard Soft Hard 
CEU 0.066 0.001 1579 110 518.7 93.9 1060.3 16.1 
GWD 0.041 0 1254 15 547.1 15.0 706.9 0 
JPT 0.074 0 1643 123 454.2 123.0 1188.8 0 
YRI 0.044 0 1284 29 577.1 29.0 706.8 0 
PEL 0.062 0.002 1016 65 20.0 32.9 996.0 32.1 
LWK 0.045 0.001 1286 11 563.1 0* 722.9 16.1 

*rounded up from -5.0. 
 
 
 
Table 2. False positive rates, total number of sweep classifications, and expected number of 
true sweep windows from Schrider and Kern (2017), after filtering regions with low 
recombination rates. 
 

 

Proportion of 
neutral windows 
expected to be 

mis-classified as 
sweeps 

Number of 
genome-wide 

sweep windows 
reported by 
Schrider and 
Kern (2017) 

FDR-corrected 
number of true-
positive sweep 

windows 

Number of windows 
expected to be mis-
classified as sweeps 

Population Soft Hard Soft Hard Soft Hard Soft Hard 
CEU 0.066 0.001 1207 81 285.2 67.0 921.8 14.0 
GWD 0.041 0 938 5 323.4 5.0 614.6 0 
JPT 0.074 0 1282 71 248.4 71.0 1033.5 0 
YRI 0.044 0 964 14 349.4 14.0 614.6 0 
PEL 0.062 0.002 780 37 0* 9.0 865.9 28.0 
LWK 0.045 0.001 964 3 335.4 0** 628.5 14.0 

*rounded up from -86.0. 
**rounded up from -11.0. 
 
 
 


