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We intend to study a new class of algebraic approximations, called 𝑆-approximations, and their properties. We have shown that
𝑆-approximations can be used for applied problems which cannot be modeled by inclusion based approximations. Also, in this
work, we studied a subclass of 𝑆-approximations, called 𝑆M-approximations, and showed that this subclass preserves most of the
properties of inclusion based approximations but is not necessarily inclusionbased. The paper concludes by studying some basic
operations on 𝑆-approximations and counting the number of 𝑆-min functions.

1. Introduction

Uncertainty is often present in real-life applications. Uncer-
tainty in noncrisp sets is characterized by nonempty bound-
ary regions, inwhich nothing can be said about their elements
with certainty. In classical set theory, a subset 𝐴 of a universe
𝑈 induces a partition {𝐴, 𝑈 − 𝐴} over that universe. This
partition can be interpreted as a knowledge on elements of
𝑈; that is, elements in 𝐴 are indiscernible to each other and
also the same thing holds for items in𝑈−𝐴. This knowledge
may be improved to another partition, for example,P, whose
items in each partition are indiscernible to each other. In
consequence, for a subset 𝐴 of 𝑈, the problem of whether
𝑥 belongs to 𝐴 or not, with respect to knowledge P, may
become undecidable; that is, some elements indiscernible
to 𝑥 with respect to knowledge P may be in 𝐴, whereas
some other indiscernible elements to 𝑥 with knowledge P
may not belong to 𝐴. To cope with such uncertainty, some
tools were invented such as the Dempster-Shafer theory
of evidence [1], theory of fuzzy sets [2–5], and theory of
rough sets [6–8]. Rough set theory and fuzzy set theory
are two independent approaches for uncertainty. There is a
connection between rough set theory and Dempster-Shafer
theory. Strictly speaking, lower and upper approximations
of rough set theory correspond to the inner and outer
reductions from Dempster-Shafer theory [9].

Rough set theory and its generalizations are all based on
the inclusion relation [7, 8, 10–15], which is a limitation in
approximations. In this work, we introduce a new concept
named 𝑆-approximation set. This concept is independent
of inclusion relation and contains rough sets and their
generalizations as special cases. We provide some examples
of approximations using this new concept, which cannot be
obtained by rough set theory.

This paper is organized as follows. The notion of 𝑆-
approximation sets is proposed in Section 2, followed by
considering some operations on them. The definition of 𝑆M
conditioned rough sets is proposed in Section 3 and the
number of such sets is counted. Then we conclude the paper.

2. S-Approximation

In this section, with regard to Dempster’s multivalued map-
pings [16], we propose a newmathematical approach to study
approximation spaces and we will show that this concept can
be independent of inclusion relations and the rough set and
its generalizations are all special cases of this concept.

Definition 1. An S-approximation is the quadruple 𝐺 =

(𝑈,𝑊, 𝑇, 𝑆), where 𝑈 and𝑊 are finite nonempty sets, 𝑇 is a
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mapping of the form 𝑇 : 𝑈 → 𝑃
⋆

(𝑊), and 𝑆 is a mapping of
the form 𝑆 : 𝑃⋆(𝑊) × 𝑃⋆(𝑊) → {0, 1}.

For a nonempty subset 𝑋 of 𝑊, the upper and lower
approximations of𝑋 are defined as follows:

apr
𝐺
(𝑋) = {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝑋

𝑐

) = 0} ,

apr
𝐺

(𝑋) = {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝑋) = 1} ,

(1)

where𝑋𝑐 is the complement of𝑋 with respect to𝑊.

Example 2. Let𝑈 and𝑊 be nonempty finite sets and let 𝑅 be
a relation from 𝑈 to𝑊. We define 𝐺 = (𝑈,𝑊, 𝑇, 𝑆), where 𝑇
and 𝑆 are defined as

𝑇 (𝑥) = [𝑥]
𝑅
= {𝑦 ∈ 𝑊 | 𝑥𝑅𝑦} ,

𝑆 (𝐴, 𝐵) = {
1, 𝐴 ⊆ 𝐵,

0, otherwise.

(2)

The upper approximation of𝑋 with respect to 𝐺, apr
𝐺
(𝑋), is

equal to 𝑅(𝑋), the upper approximation of set𝑋with respect
to 𝑅 in rough set, since

apr
𝐺
(𝑋) = {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝑋

𝑐

) = 0}

= {𝑥 ∈ 𝑈 | 𝑇 (𝑥) ̸⊆ 𝑋
𝑐

}

= {𝑥 ∈ 𝑈 | 𝑇 (𝑥) ∩ 𝑋 ̸= 0}

= {𝑥 ∈ 𝑈 | [𝑥]
𝑅
∩ 𝑋 ̸= 0} = 𝑅 (𝑋) .

(3)

Similarly, we can show that apr
𝐺

(𝑋) is equal to 𝑅(𝑋), which
is the lower approximation of set𝑋with respect to𝑅 in rough
set.

Example 3. The pair (𝑉,𝐻), where 𝑉 is a finite nonempty set
of vertices and𝐻 is a collection {𝐸

1
, . . . , 𝐸

𝑚
} of subsets of 𝑉,

is called a simple hypergraph if these two conditions hold:

(i) ∪𝑚
𝑖=1
𝐸
𝑖
= 𝑉,

(ii) 𝐸
𝑖
⊆ 𝐸
𝑗
implies 𝑖 = 𝑗.

Let us define the 𝑆-approximation𝐺 = (I
𝑚
, 𝑉, 𝑇, 𝑆) such that

I
𝑚
= {1, . . . , 𝑚}, 𝑇(𝑖) = 𝐸

𝑖
, and 𝑆 is the inclusion function.

A subset𝐾 of𝑉 is called a transversal of (𝑉,𝐻) if and only
if𝐾 ∩ 𝐸

𝑖
̸= 0 for each 1 ≤ 𝑖 ≤ 𝑚. It is easy to observe that𝐾 is

a transversal of (𝑉,𝐻) if and only if apr
𝐺
(𝐾) = I

𝑚
.

Remark. For the sake of simplicity, wewill use𝐺(𝑋) and𝐺(𝑋)
instead of apr

𝐺

(𝑋) and apr
𝐺
(𝑋), respectively.

2.1. Operations on 𝑆-Approximation

Definition 4. Suppose𝐺 = (𝑈,𝑊, 𝑇, 𝑆) is an 𝑆-approximation.
One defines𝐻 = (𝑈,𝑊, 𝑇, 1 − 𝑆) as the complement of 𝐺.

Proposition 5. Let 𝐺 = (𝑈,𝑊, 𝑇, 𝑆) be an 𝑆-approximation
and 𝐻 = (𝑈,𝑊, 𝑇, 𝑆

󸀠

= 1 − 𝑆) its complement. Also suppose
that𝑋 ⊆ 𝑊. Then one has

𝐺 (𝑋) = {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝑋
𝑐

) = 0}

= {𝑥 ∈ 𝑈 | 𝑆
󸀠

(𝑇 (𝑥) , 𝑋
𝑐

) = 1}

= 𝐻 (𝑋
𝑐

) ,

𝐺 (𝑋) = {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝑋) = 1}

= {𝑥 ∈ 𝑈 | 𝑆
󸀠

(𝑇 (𝑥) , 𝑋) = 0}

= 𝐻 (𝑋
𝑐

) .

(4)

Definition 6. Let 𝑊 be a finite nonempty set. Consider the
following:

Ω
𝑇
(𝑊) = {𝑆 | 𝑆 : 𝑃

⋆

(𝑊) × 𝑃
⋆

(𝑊) 󳨀→ {0, 1}} , (5)

and 𝑆
1
, 𝑆
2
∈ Ω
𝑇
(𝑊). Then one defines the following:

(𝑆
1
∧ 𝑆
2
) (𝐴, 𝐵) = 𝑆

1
(𝐴, 𝐵) ∧ 𝑆

2
(𝐴, 𝐵) ,

(𝑆
1
∨ 𝑆
2
) (𝐴, 𝐵) = 𝑆

1
(𝐴, 𝐵) ∨ 𝑆

2
(𝐴, 𝐵) ,

(6)

where 𝐴 and 𝐵 are arbitrary subsets of𝑊.

Definition 7. Let 𝐺
1
= (𝑈,𝑊, 𝑇, 𝑆

1
) and 𝐺

2
= (𝑈,𝑊, 𝑇, 𝑆

2
) be

two 𝑆-approximations. One defines 𝐺
1
∧ 𝐺
2
and 𝐺

1
∨ 𝐺
2
as

𝐺
1
∧ 𝐺
2
= (𝑈,𝑊, 𝑇, 𝑆

1
∧ 𝑆
2
) ,

𝐺
1
∨ 𝐺
2
= (𝑈,𝑊, 𝑇, 𝑆

1
∨ 𝑆
2
) ,

(7)

respectively.

Proposition 8. Let𝐺
1
= (𝑈,𝑊, 𝑇, 𝑆

1
),𝐺
2
= (𝑈,𝑊, 𝑇, 𝑆

2
), and

𝐺 = (𝑈,𝑊, 𝑇, 𝑆 = 𝑆
1
∨ 𝑆
2
) be 𝑆-approximations. Then

𝐺 (𝑋)

= {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝑋
𝑐

) = 0}

= {𝑥 ∈ 𝑈 | 𝑆
1
(𝑇 (𝑥) , 𝑋

𝑐

)

= 0 ∧ 𝑆
2
(𝑇 (𝑥) , 𝑋

𝑐

) = 0}

= {𝑥 ∈ 𝑈 | 𝑆
1
(𝑇 (𝑥) , 𝑋

𝑐

) = 0}

∩ {𝑥 ∈ 𝑈 | 𝑆
2
(𝑇 (𝑥) , 𝑋

𝑐

) = 0}

= 𝐺
1
(𝑋) ∩ 𝐺

2
(𝑋) ,

𝐺 (𝑋) = {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝑋) = 1}

= {𝑥 ∈ 𝑈 | 𝑆
1
(𝑇 (𝑥) , 𝑋) = 1 ∨ 𝑆

2
(𝑇 (𝑥) , 𝑋) = 1}

= {𝑥 ∈ 𝑈 | 𝑆
1
(𝑇 (𝑥) , 𝑋) = 1}

∪ {𝑥 ∈ 𝑈 | 𝑆
2
(𝑇 (𝑥) , 𝑋) = 1}

= 𝐺
1
(𝑋) ∪ 𝐺

2
(𝑋) .

(8)
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Similarly, for 𝐺󸀠 = (𝑈,𝑊, 𝑇, 𝑆
1
∧ 𝑆
2
), it can be shown that the

following relations hold:

𝐺󸀠 (𝑋) = 𝐺
1
(𝑋) ∪ 𝐺

2
(𝑋) ,

𝐺
󸀠

(𝑋) = 𝐺
1
(𝑋) ∩ 𝐺

2
(𝑋) .

(9)

3. 𝑆M-Approximations

In this section, we introduce and discuss a condition on 𝑆
which is sufficient for the properties in Proposition 13 to hold.
These properties are sometimes vital for many applications.

In the next example we illustrate the fact that it is not
necessary for 𝑆 to be the inclusion function in order to satisfy
the properties stated in Proposition 13.

Example 9. For arbitrary subsets 𝐴, 𝐵 ⊆ 𝑊, define the
following:

𝑆 (𝐴, 𝐵) = {
1, if 𝐴 ∪ 𝐵 = 𝑊,
0, otherwise.

(10)

It can be verified that this function is not the same as the
inclusion function, but the properties of Proposition 13 hold
for the 𝑆-approximation 𝐺 = (𝑈,𝑊, 𝑇, 𝑆) with arbitrary
chosen 𝑈,𝑊, and 𝑇.

The reason why 𝐺 in the above example satisfies the
properties of Proposition 13 is that its 𝑆 function meets the
𝑆-min condition introduced below.

Definition 10 (𝑆-min condition). Let 𝐺 = (𝑈,𝑊, 𝑇, 𝑆) be an
𝑆-approximation. One says 𝑆 : 𝑃⋆(𝑊) × 𝑃⋆(𝑊) → {0, 1} is a
function in 𝑆M class if it satisfies

𝑆 (𝐴, 𝐵 ∩ 𝐶) = min {𝑆 (𝐴, 𝐵) , 𝑆 (𝐴, 𝐶)} , (11)

for arbitrary nonempty subsets𝐴, 𝐵, and𝐶 of𝑊. One says an
𝑆-approximation 𝐺 = (𝑈,𝑊, 𝑇, 𝑆󸀠) is an 𝑆M-approximation if
𝑆
󸀠 belongs to the 𝑆M class.

Remark 11. The inclusion function does belong to the 𝑆M
class but there are other noninclusion functions in this class
as well.

Example 12. For arbitrary subsets 𝐴, 𝐵, and 𝑋 of 𝑊, define
the following:

𝑆
𝑋
(𝐴, 𝐵) = {

1, if 𝑋 ⊆ 𝐴 ∩ 𝐵,
0, otherwise.

(12)

It is easy to check that 𝑆
𝑋
is a noninclusionmember of the 𝑆M

class.

Proposition 13. Let 𝐺 = (𝑈,𝑊, 𝑇, 𝑆) be an 𝑆M-
approximation. For all 𝐴, 𝐵 ⊆ 𝑊 and 𝑥 ∈ 𝑈, the following
hold:

(1) 𝐴 ⊆ 𝐵 implies that, for all𝑋 ⊆ 𝑊, 𝑆(𝑋, 𝐵𝑐) ≤ 𝑆(𝑋, 𝐴𝑐),
(2) max{S(T(x),A), S(T(x),B)} ≤ S(T(x),A ∪ B),

(3) 𝐺(𝐴 ∪ 𝐵) = 𝐺(𝐴) ∪ 𝐺(𝐵),
(4) 𝐺(𝐴 ∩ 𝐵) = 𝐺(𝐴) ∩ 𝐺(𝐵),
(5) 𝐴 ⊆ 𝐵 implies that 𝐺(𝐴) ⊆ 𝐺(𝐵),
(6) 𝐴 ⊆ 𝐵 implies that 𝐺(𝐴) ⊆ 𝐺(𝐵),
(7) 𝐺(𝐴) ∪ 𝐺(𝐵) ⊆ 𝐺(𝐴 ∪ 𝐵),
(8) 𝐺(𝐴 ∩ 𝐵) ⊆ 𝐺(𝐴) ∩ 𝐺(𝐵),
(9) 𝐺(𝐴) = (𝐺(𝐴𝑐))𝑐,
(10) 𝐺(𝐴) = (𝐺(𝐴𝑐))𝑐.

Proof. (1) For the first property, note that 𝐴 ⊆ 𝐵 so 𝐵𝑐 =
𝐵
𝑐

∩ 𝐴
𝑐. Hence, for all 𝑋 ⊆ 𝑊, we have 𝑆(𝑋, 𝐵𝑐) = 𝑆(𝑋, 𝐵𝑐 ∩

𝐴
𝑐

) = min{𝑆(𝑋, 𝐵𝑐), 𝑆(𝑋, 𝐴𝑐)}, which implies that 𝑆(𝑋, 𝐵𝑐) ≤
𝑆(𝑋, 𝐴

𝑐

).
(2) For this property, we have

𝑆 (𝑇 (𝑥) , 𝐴) = 𝑆 (𝑇 (𝑥) , 𝐴 ∩ (𝐴 ∪ 𝐵))

= min {𝑆 (𝑇 (𝑥) , 𝐴) , 𝑆 (𝑇 (𝑥) , 𝐴 ∪ 𝐵)} ,
(13)

which implies that

𝑆 (𝑇 (𝑥) , 𝐴) ≤ 𝑆 (𝑇 (𝑥) , 𝐴 ∪ 𝐵) . (14)

By a similar argument for 𝐵, it can be shown that

𝑆 (𝑇 (𝑥) , 𝐵) ≤ 𝑆 (𝑇 (𝑥) , 𝐴 ∪ 𝐵) . (15)

By combining these inequalities,

max {𝑆 (𝑇 (𝑥) , 𝐴) , 𝑆 (𝑇 (𝑥) , 𝐵)} ≤ 𝑆 (𝑇 (𝑥) , 𝐴 ∪ 𝐵) . (16)

(3) Consider the following:

𝐺 (𝐴 ∪ 𝐵) = {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝐴
𝑐

∩ 𝐵
𝑐

) = 0}

= {𝑥 ∈ 𝑈 | min {𝑆 (𝑇 (𝑥) , 𝐴𝑐) , 𝑆 (𝑇 (𝑥) , 𝐵𝑐)} = 0}

= 𝐺 (𝐴) ∪ 𝐺 (𝐵) .

(17)

(4) Consider the following:

𝐺 (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝐴 ∩ 𝐵) = 1}

= {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝐴) = 1, 𝑆 (𝑇 (𝑥) , 𝐵) = 1}

= 𝐺 (𝐴) ∩ 𝐺 (𝐵) .

(18)

(5) Consider the following:

𝐺 (𝐴) = 𝐺 (𝐴 ∩ 𝐵) (since 𝐴 ⊆ 𝐵)

= 𝐺 (𝐴) ∩ 𝐺 (𝐵) (by property (1)) .
(19)

which implies that 𝐺(𝐴) ⊆ 𝐺(𝐵).
(6) Consider the following:

𝐺 (𝐴) = {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝐴
𝑐

) = 0}

⊆ {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝐵
𝑐

) = 0} (by property (1))

= 𝐺 (𝐵) .

(20)
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(7) Consider the following:

𝐺 (𝐴) ∪ 𝐺 (𝐵)

= {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝐴) = 1 or 𝑆 (𝑇 (𝑥) , 𝐵) = 1}

= {𝑥 ∈ 𝑈 | max {𝑆 (𝑇 (𝑥) , 𝐴) , 𝑆 (𝑇 (𝑥) , 𝐵)} = 1}

⊆ {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝐴 ∪ 𝐵) = 1} (by property (1))

⊆ 𝐺 (𝐴 ∪ 𝐵) .

(21)

(8) Consider the following:

𝐺 (𝐴 ∩ 𝐵)

= {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝐴
𝑐

∪ 𝐵
𝑐

) = 0}

⊆ {𝑥 ∈ 𝑈 | max {𝑆 (𝑇 (𝑥) , 𝐴) , 𝑆 (𝑇 (𝑥) , 𝐵)} = 0}

(by property (2))

= {𝑥 ∈ 𝑈 | 𝑆 (𝑇 (𝑥) , 𝐴) = 0, 𝑆 (𝑇 (𝑥) , 𝐵) = 0}

= 𝐺 (𝐴) ∩ 𝐺 (𝐵) ,

(22)

The proof of properties (9) and (10) is entirely straightfor-
ward.

In the next example, we show that, in 𝑆-rough sets, it is
not always the case that𝐺(𝐴) ⊆ 𝐺(𝐴), although this property
always holds in Pawlak’s rough sets.

Example 14. Suppose 𝐺 = (𝑈,𝑊, 𝑇, 𝑆) is an 𝑆M-
approximation, where

𝑆 (𝐴, 𝐵) = {
1, 𝐴 ∪ 𝐵 = 𝑊,

0, otherwise,
(23)

𝑈 = {𝑎}, and 𝑇(𝑎) = 𝑊 = {1, 2}.
In this case 𝐺({1}) = {𝑥 ∈ 𝑈 | 𝑇(𝑥) ∪ {2} ̸=𝑊} = 0, while

𝐺 ({1}) = {𝑥 ∈ 𝑈 | 𝑇 (𝑥) ∪ {1} = 𝑊} = {𝑎} , (24)

so 𝐺({1}) ̸⊆ 𝐺({1}).

3.1. Cardinality of the 𝑆M Class

Definition 15. Let𝑊 be a nonempty finite set. A function 𝑓 :
𝑃
⋆

(𝑊) → {0, 1} is said to be minimizing if, for each 𝐴, 𝐵 ⊆
𝑊,

𝑓 (𝐴 ∩ 𝐵) = min {𝑓 (𝐴) , 𝑓 (𝐵)} . (25)

Lemma 16. Let 𝑓 : 𝑃
⋆

(𝑊) → {0, 1} be a minimizing
function. For each 𝐴, 𝐵 ⊆ 𝑊, if 𝐴 ⊆ 𝐵, then 𝑓(𝐴) ≤ 𝑓(𝐵).

Proof. Since 𝐴 ⊆ 𝐵, 𝐴 = 𝐴 ∩ 𝐵, so by definition 𝑓(𝐴) =
min{𝑓(𝐴), 𝑓(𝐵)} which implies that 𝑓(𝐴) ≤ 𝑓(𝐵).

Lemma 17. Let 𝐺 = (𝑈,𝑊, 𝑇, 𝑆) be an 𝑆M-approximation
and let |𝑊| = 𝑛. One labels the nonempty subsets of 𝑊

as {𝐴
1
, . . . , 𝐴

2
𝑛
−1
}. Then there exist minimizing functions

{𝑓
1
, . . . , 𝑓

2
𝑛
−1
} of the form 𝑓

𝑖
: 𝑃
⋆

(𝑊) → {0, 1} such
that, for every 𝐵 ⊆ 𝑊 and 1 ≤ 𝑖 ≤ 𝑛, 𝑆(𝐴

𝑖
, 𝐵) =

𝑓
𝑖
(𝐵).

Proof. It is straightforward.

Lemma 17 leads us towards counting the number and
finding the structure of minimizing 𝑓s.

Definition 18. Let 𝑓 : 𝑃
⋆

(𝑊) → {0, 1} be a minimizing
function. A nonempty subset 𝜔 of the set𝑊 is called an atom
of 𝑓 if and only if 𝑓(𝜔) = 1 and, for each proper nonempty
subset of 𝜔 such as 𝜂, 𝑓(𝜂) = 0.

Proposition 19. Let 𝑓 : 𝑃⋆(𝑊) → {0, 1} be a minimizing
function and𝜔

1
and𝜔

2
two nonidentical atoms of𝑓.Then𝜔

1
∩

𝜔
2
= 0.

Proof. Let 𝜔 = 𝜔
1
∩ 𝜔
2
; then, since 𝜔

1
and 𝜔

2
are

nonidentical atoms,𝜔 ̸= 𝜔
1
and𝜔 ̸= 𝜔

2
. Suppose that𝜔 ̸= 0. By

Definition 15,𝑓(𝜔) = min{𝑓(𝜔
1
), 𝑓(𝜔

2
)} = 1, so𝜔 is a proper

subset of 𝜔
1
and 𝜔

2
and 𝑓(𝜔) = 1 which is a contradiction

with Definition 18.

Proposition 20. Let 𝑓 : 𝑃⋆(𝑊) → {0, 1} be a minimizing
function and Υ the set of all atoms of 𝑓. Then, for a subset𝑋 of
𝑊, 𝑓(𝑋) = 1 if and only if there exists 𝜔 ∈ Υ such that 𝜔 ⊆ 𝑋.

Proof. It is obvious that if 𝑓(𝑋) = 1, then at least one of the
subsets of 𝑋 is an atom. On the other hand, let 𝜔 ⊆ 𝑋 be an
atom of 𝑓; then, by Lemma 16, 𝑓(𝑋) = 1.

Proposition 21. Let 𝑓 : 𝑃⋆(𝑊) → {0, 1} be a minimizing
function, Υ the set of all atoms of 𝑓, and |Υ| ≥ 2. Then, for
each 𝑥 ∈ 𝑊, {𝑥} is an atom of 𝑓.

Proof. Let 𝜔
1
and 𝜔

2
be two different atoms of 𝑓. Define 𝐴 =

𝜔
1
∪ {𝑥} and 𝐵 = 𝜔

2
∪ {𝑥}; then, by Proposition 20, 𝑓(𝐴) =

𝑓(𝐵) = 1 and, by Proposition 19,𝐴∩𝐵 = {𝑥}.𝑓 is minimizing
so 𝑓({𝑥}) = 𝑓(𝐴∩𝐵) = min{𝑓(𝐴), 𝑓(𝐵)} = 1; hence {𝑥} is an
atom of 𝑓.

By previous propositions, it is clear that we have either no
atoms, exactly one atom, or an atom per element.

Proposition 22. Define𝐹 as the set of allminimizing functions
𝑓 of the form 𝑓 : 𝑃⋆(𝑊) → {0, 1}, where |𝑊| = 𝑛 ≥ 2. Then
the total number of elements in 𝐹 is equal to 2𝑛 + 1.

Proof. To count the number of elements in 𝐹, we consider
these three cases for each 𝑓 ∈ 𝐹.

(i) 𝑓 does not have any atoms: in this case, 𝑓 is deter-
mined uniquely. (𝑓(𝑋) = 0 for each nonempty 𝑋 ⊆

𝑊.)
(ii) Each unary subset of 𝑓 forms an atom: in this case,

𝑓 is determined uniquely too. (𝑓(𝑋) = 1 for each
nonempty𝑋 ⊆ 𝑊.)

(iii) There is exactly one atom: in this case, we can choose
2
𝑛

− 1 different atoms (excluding 0) giving us 2𝑛 − 1
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different 𝑓s. In case 𝑛 = 1, this case is a repetition of
the previous case.

Proposition 23. Let𝑊 be a nonempty finite set of size 𝑛 ≥ 2.
The total number of different functions 𝑆 : 𝑃⋆(𝑊)×𝑃⋆(𝑊) →
{0, 1} which belong to the 𝑆-min class is equal to (2𝑛 + 1)2

𝑛

−1.

Proof. This number can be obtained using the multiplication
principle, Lemma 17, and Proposition 22.

4. Conclusion

In this paper, we proposed a new class of algebraic approx-
imation, called 𝑆-approximation sets. Corresponding to the
problem under consideration, we can define the elements
of 𝑆-approximation set for obtaining the approximations.
Moreover, we investigated the properties of a subclass of 𝑆-
approximation sets, 𝑆M-approximation sets. We have shown
that this subclass preservesmost of the properties of inclusion
based approximations but is not necessarily inclusion based.
Finally, we have considered some basic operations on 𝑆-
approximation sets and counted the number of functions
which have the 𝑆M property.
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