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Introduction

This work impliments GPU optimizations for the Cholesky decomposition and its derivative in the Stan Math
library (Carpenter et al. 2015). The Stan library’s No-U-Turn sampler (NUTS) typically explores the target
distribution more efficiently than alternative samplers, though it is computationally more expensive per log
probability evaluation. This research is motivated by large Gaussian Process (GP) models, where the log
probability evaluation is very expensive and dominated by the inversion of the covariance matrix typically
done within the Cholesky decomposition. Experimental results show that GPU optimizations are not optimal
for small n×m matrices, however N = 5000 matrices can see speedups of 6x while retaining precision. This is
the first known open source GPU implementation of the Cholesky decomposition for automatic differentation.
Furthermore, the GPU kernels use OpenCL so the implimentation is not restricted to a particular GPU
vendor.

GPU Implementation

One of the most significant linear algebra bottlenecks in Gaussian Processes (and many other statistical
models) is matrix inversion. In particular, inversion of a positive semi-definite covariance matrix typically
done through Cholesky decomposition. Using a Cholesky decomposition in Stan requires the computation of
the decomposition, its derivative, and the derivative of solving the linear system Ax = B. To reduce these
bottlenecks, we implemented GPU optimizations of the following Stan Math library methods:

1. matrix transpose,

2. multiplication of matrices with a diagonal and scalar,

3. subtraction of matrices,

4. copying submatrices,

5. matrix multiplication,

6. lower triangular matrix inverse,

7. Cholesky decomposition,

8. first derivative of Cholesky decomposition.

The execution times of methods (1-4) are negligible and thus our GPU implementations of these methods
are simple and naive. For instance, in the multiplication of a m× n matrix with a scalar we create m× n
threads, where each thread is assigned a single multiplication. These implementations are necessary to
perform methods (6-8) on the GPU.

Stan’s GPU matrix multiplication routines are based on the the routines in cuBLAS (NVIDIA 2017) and
clBLAST. The matrix multiplication routines are optimized through two standard methods: assigning
additional work to threads in large matrix multiplications and the use of tiling in local memory. Specific
cases allow for specific optimization. For example, the result of A × AT is symmetric and so the routine
reduces the number of multiplications by one half.

1



The optimizations of the lower triangular matrix inverse and the Cholesky decomposition are improvements
on the work in (Češnovar and Štrumbelj 2017). Details of these implementations are available in the following
sections. The first derivative of the Cholesky decomposition is implemented using methods (1-7).

The OpenCL (Stone, Gohara, and Shi 2010) context which manages the devices, platforms, memory, and
kernels sits in opencl_context_base::getInstance() and is implemented in the Math library as a singleton.
Developers can access the context through a friend adapter class called opencl_context which provides a
simple wrapper API for accessing the base context.

Matrices on the GPU device are handled by the matrix_gpu class. When operating on GPUs, making
copies of objects is one of the most expensive operations. To reduce the number of copies, methods
for matrix_gpu operations directly manipulate the matrix inplace instead of making a copy like other
Stan matrix methods. To reduce confusion on when operations on GPU matrices cause a copy, all meth-
ods called from within the matrix_gpu class will operate on the objects memory while function calls
in the stan math library will create a copy. For example, users can transpose the lower triangular of
a matrix_gpu object Foo by calling Foo.triangular_transpose<stan::math::Lower>(). Similary, the
lower triangular can be extracted from the matrix_gpu object Foo into Doo by calling matrix_gpu Doo =
copy_triangular<stan::math::Lower>(Foo).

Inverting a lower triangular matrix

The most widely used CPU algorithms for inverting a lower triangular matrix are not suitable for many-core
architectures. Figure 1 gives a graphical illustration of the solution proposed in (Mahfoudhi, Mahjoub, and
Nasri 2012) that replaces most of the sequential code with matrix multiplications which are more suited for
many-core systems.

The input matrix is split into blocks1 as shown in Figure 1. The first step is to calculate the matrix inversion
of the smaller matrices A1 and A2. These inverses are done using the basic sequential algorithms, with small
amounts of parallelism. The final step is the calculation of C3 = −C2×A3× C1.

A1

A3
A2

C1

C3
C2

Figure 1: Blocked version of the lower triangualar matrix inverse.

1The optimal number of blocks depends on the input matrix size and the GPU used. Thread blocks and warps will be in
groupings of powers of two, so the optimal block size is recommended to be a power of two such as 32x32
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Cholesky decompostion

The GPU implementation of the Cholesky Decomposition comes from the blocked algorithm proposed in
(Louter-Nool 1992). Similar to the application of the lower triangular matrix inverse, the input matrix is split
into blocks, as shown in Figure 2. A basic algorithm is first used to calculate the Cholesky Decomposition of
A11 and then the calculation of the inverse of LT

11. Calculations for L21 and L22 proceeds as follows:

L21 = A21(LT
11)(−1)

L22 = A22 − L21(L21)T

For larger matrices (n > 1000), the algorithm is executed in 2 levels. For example, when n = 2000, the size of
the block A11 is m = 400. Because the sequential algorithm would be slow for a large A11 block, the routine
is run recursively on A11 until m reaches a reasonable size.

A11

A21
A22

L11

L21
L22

Figure 2: Blocked version of the Cholesky decomposition.

The implementation of the derivative of the Cholesky decomposition comes from the blocking method
presented in (Murray 2016). This algorithm is cache-friendly and uses GPU-suitable matrix operations.
Similar to the inversion and Cholesky Decomposition, the input matrix is split into smaller blocks on which
the algorithm performs various matrix operations: transpose, multiplication, lower triangular matrix inversion
and subtraction. For details on the algorithm, refer to (Murray 2016).

Users can access the Cholesky GPU routines by calling cholesky_decompose_gpu() and multi_normal_cholesky_gpu()
in the stan language. In the latter, only the derivative of solving Ax = b is run on the GPU. In the future,
all GPU methods will be implemented in the same way so that users can make their code access the GPU
routines by calling <func_name>_gpu().

Example: GP regression

Models that use large covariance matrices benefit from the Cholesky GPU routines. The example below uses
1D GP regression with hyperpriors from the case study (Betancourt 2017) (see the Appendix).
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This example uses a toy dataset based on a simple, functional relationship between x and y with added
Gaussian noise:

xi ∼iid U(−10, 10)

yi|xi ∼iid N

(
f(x), 1

10

)
, i = 1..n,

where f(x) = β(x+ x2 − x3 + 100 sin 2x− α). Parameters β and α were set so that E[f ] = 0 and V ar[f ] = 1.
Figure 3 shows that there is no practical difference between GPU and CPU fits (however, the solutions are
not identical).
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Figure 3: Comparison of CPU and GPU fits.

We ran the model for different input sizes n with and without GPU support. In both cases NUTS was used to
sample from the posterior and all the settings were the same. Therefore, the only difference between the CPU
and GPU experiments was that the latter peformed some Math routines on the GPU. We used a desktop
computer with an Intel Core i5-6600K CPU running at 3.5GHz and a Nvidia GTX 1080 Ti GPU.

Timing results are shown in Figure 4 and in Table 1 with measured times include sampling and warmup
iterations, but not model compilation time. Due to unnecessary data transfers, the GPU implementation is
not faster than the CPU version for smaller input sizes (n < 512). For larger n, the data transfer becomes
negligible, and we can observe a speedup of 6 for n = 5092. Speedup measurements for larger n were
infeasible due to large CPU computation times.

Conclusion

The GPU optimized methods in Stan result in practically meaningful speedups. Parallelizing the Cholesky,
its derivative and the derivative of solving Ax = B provides 6-fold speedups or more for programs which
depend on large covariance matrices. As this project continues, we plan to (a) removing unnecessary data
transfers to and from the GPU, which is currently our most significant bottleneck, (b) allow rstan (Stan
Development Team 2018) access to the GPU methods, and (c) add GPU-optimized implementations for other
computational building blocks, such as other matrix methods, density computation, and random variate
generation.
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Figure 4: Visualizations of speedup when using the GPU approach compared to the default CPU implemen-
tation.

N CPU GPU
1 64.00 0.03 3.93
2 128.00 0.12 0.66
3 256.00 0.59 1.12
4 512.00 4.20 4.05
5 1024.00 26.48 15.23
6 2048.00 175.01 63.27
7 5096.00 2454.15 411.21

Table 1: Timings by device type in minutes. Note the GPU version does not start seeing speedups until after
N > 512.
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Appendix

Reproducing the simulations

Our simulations take several days to complete, so the results in this R Markdown file are not computed each
time the manuscript is compiled. In order to achieve a reasonable compilation time of the R Markdown file,
we decided to use precomputed results.

To recompute the results, you have to use the GP.R script from the _Simulations folder. Newly calcu-
lated results will be saved into the _Simulations/_Output/GP folder. To replace precomputed results
with the new ones you have to delete all files from the _Results folder and replace them with files from
_Simulations/_Output/GP folder.

Unforuntately, using the GPU routines in Stan Math Library is not straightforward. To use these routines
you must first install the appropriate version of the library and then recompile CmdStan. See for detailed
instructions. Pay special attention to the section Integration with CmdStan. Once you succesfully compile
GpuStan with GPU support you only have to change the working and CmdStan directories at the top of the
GP.R script and you are ready to go! Currently, simulations can only be run on Windows.

Stan model for Gaussian process regression

functions {
vector gp_pred_rng(real[] x2,

vector y1, real[] x1,
real alpha, real rho, real sigma, real delta) {

int N1 = rows(y1);
int N2 = size(x2);
vector[N2] f2;
{

matrix[N1, N1] K = cov_exp_quad(x1, alpha, rho)
+ diag_matrix(rep_vector(square(sigma), N1));

matrix[N1, N1] L_K = cholesky_decompose(K);

vector[N1] L_K_div_y1 = mdivide_left_tri_low(L_K, y1);
vector[N1] K_div_y1 = mdivide_right_tri_low(L_K_div_y1', L_K)';
matrix[N1, N2] k_x1_x2 = cov_exp_quad(x1, x2, alpha, rho);
vector[N2] f2_mu = (k_x1_x2' * K_div_y1);
matrix[N1, N2] v_pred = mdivide_left_tri_low(L_K, k_x1_x2);
matrix[N2, N2] cov_f2 = cov_exp_quad(x2, alpha, rho) - v_pred' * v_pred

+ diag_matrix(rep_vector(delta, N2));
f2 = multi_normal_rng(f2_mu, cov_f2);

}
return f2;

}
}

data {
int<lower=1> N;
real x[N];
vector[N] y;

int<lower=1> N_predict;
real x_predict[N_predict];

}
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parameters {
real<lower=0> rho;
real<lower=0> alpha;
real<lower=0> sigma;

}

model {
matrix[N, N] cov = cov_exp_quad(x, alpha, rho)

+ diag_matrix(rep_vector(square(sigma), N));
matrix[N, N] L_cov = cholesky_decompose(cov); // cholesky_decompose_gpu in GPU model

// P[rho < 2.0] = 0.01
// P[rho > 10] = 0.01
rho ~ inv_gamma(8.91924, 34.5805);
alpha ~ normal(0, 2);
sigma ~ normal(0, 1);

y ~ multi_normal_cholesky(rep_vector(0, N), L_cov);
}

generated quantities {
vector[N_predict] f_predict = gp_pred_rng(x_predict, y, x, alpha, rho, sigma, 1e-10);
vector[N_predict] y_predict;
for (n in 1:N_predict)

y_predict[n] = normal_rng(f_predict[n], sigma);
}

Original Computing Environment

sessionInfo()

## R version 3.3.3 (2017-03-06)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 8.1 x64 (build 9600)
##
## locale:
## [1] LC_COLLATE=Slovenian_Slovenia.1250 LC_CTYPE=Slovenian_Slovenia.1250
## [3] LC_MONETARY=Slovenian_Slovenia.1250 LC_NUMERIC=C
## [5] LC_TIME=Slovenian_Slovenia.1250
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] xtable_1.8-2 data.table_1.10.4-3 cowplot_0.9.2
## [4] rstan_2.17.3 StanHeaders_2.17.2 plyr_1.8.4
## [7] ggplot2_2.2.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.16 knitr_1.20 magrittr_1.5 munsell_0.4.3
## [5] colorspace_1.3-2 rlang_0.2.0 highr_0.6 stringr_1.3.0
## [9] tools_3.3.3 grid_3.3.3 gtable_0.2.0 htmltools_0.3.6
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## [13] yaml_2.1.18 lazyeval_0.2.1 rprojroot_1.3-2 digest_0.6.15
## [17] tibble_1.4.2 gridExtra_2.3 inline_0.3.14 evaluate_0.10.1
## [21] rmarkdown_1.9 labeling_0.3 stringi_1.1.7 pillar_1.2.1
## [25] scales_0.5.0 backports_1.1.2 stats4_3.3.3
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