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Abstract

It remains unclear to what extent tumor heterogeneity impacts on protein biomarker discovery. 

Here, we quantified proteome intra-tissue heterogeneity (ITH) based on a multi-region analysis of 

prostate tissues using pressure cycling technology and SWATH mass spectrometry. We quantified 

6,873 proteins and analyzed the ITH of 3,700 proteins. The level of ITH varied depending on 

proteins and tissue types. Benign tissues exhibited more complex ITH patterns than malignant 

tissues. Spatial variability of ten prostate biomarkers was validated by immunohistochemistry in 

an independent cohort (n=83) using tissue microarrays. PSA was preferentially variable in benign 

prostatic hyperplasia, while GDF15 substantially varied in prostate adenocarcinomas. Further, we 

found that DNA repair pathways exhibited a high degree of variability in tumorous tissues, which 

may contribute to the genetic heterogeneity of tumors. This study conceptually adds a new 

perspective to protein biomarker discovery: it suggests that recent technological progress should 
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be exploited to quantify and account for spatial proteome variation to complement biomarker 

identification and utilization.

Introduction

During the last decade numerous new cancer treatment options have been developed. Their 

optimal application, however, requires better molecular characterization of the tumors with 

the aim of developing biomarkers matching the specific tumor to the best available therapy. 

Some cancer types, such as prostate cancer, still suffer from an ‘over treatment problem’, i.e. 
radical therapy such as removal of the organ in unnecessary cases due to uncertain diagnosis. 

These problems persist despite the recent progress in genomic, transcriptomic, and 

proteomic profiling of tumors. In contrast to the standardization of histopathological 

diagnostic categories, tumor grading, and standards of reporting, molecular testing is still 

underexploited in routine diagnostics of localized prostate cancer cases. A recent review 

about biomarkers in prostate cancer (Kristiansen, 2018) has highlighted the need to consider 

intra-tissue heterogeneity (ITH) in each individual case for successful molecular testing. ITH 

is of high clinical relevance. For instance, a tumor may contain a small sub-population of 

cells with primary resistance, leading to incomplete response to treatment or early 

recurrence (Murtaza, Dawson et al., 2015). High degree of Gleason score, DNA ploidy, and 

PTEN expression have been observed in prostate tumors (Cyll, Ersvaer et al., 2017). Thus, it 

remains a challenge to optimize clinical decisions based on single biopsies (Boutros, Fraser 

et al., 2015).

Indeed, ITH is an important contributor to spatially variable molecular levels, which poses a 

substantial problem for biopsy-based tumor diagnostics, because for highly variable 

proteins, the measured quantity is position-dependent. Genomic ITH has been predicted 

based on clonal evolution and the cancer stem cell hypothesis (Dalerba, Cho et al., 2007). 

This prediction was experimentally validated by the application of high-throughput 

sequencing to small tissue samples and even single cells. Such studies have uncovered a high 

degree of genetic ITH in colon (Jones, Chen et al., 2008), pancreas (Yachida, Jones et al., 

2010), breast (Russnes, Navin et al., 2011), prostate (Haffner, Mosbruger et al., 2013), renal 

carcinomas (Gerlinger, Rowan et al., 2012), and leukemia (Cancer Genome Atlas Research, 

2013, Ding, Ley et al., 2012), with regard to both mutational and gene expression profiles of 

tumor cells. For example, Boutros et al. observed extensive ITH in prostate cancers at the 

level of gene copy number alterations and point mutations, which led to spatially divergent 

mutational patterns for thousands of genes, including several tumor-relevant genes (Boutros 

et al., 2015). It can be expected that genomic ITH will be translated, at least to some extent, 

to ITH at the protein level. For example, androgen receptor and prostate specific antigen 

(PSA/KLK3) expression can significantly vary between different regions within the same 

prostate carcinoma (Magi-Galluzzi, Xu et al., 1997, Shah, Bentley et al., 2015). Thus, there 

is a need to systematically describe and quantify protein level heterogeneity in tumor tissues.

Despite this well recognized need, technical challenges have so far prevented the 

quantification of protein level heterogeneity in tumor specimens at the proteomic scale 

(Alizadeh, Aranda et al., 2015). High-throughput antibody-based immunohistochemistry 
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staining has been applied to tissue sections (Uhlen, Fagerberg et al., 2015). However, such 

data are semi-quantitative and limited in scope by the availability of suitable antibodies. 

Single-cell proteomics using mass cytometry is another promising technology allowing 

quantification of protein levels in thousands of individual cells. However, the technique at 

present only measures 10s of proteins per sample (Giesen, Wang et al., 2014). Label-free 

shotgun proteomics has been used to compare the proteomes of three regions of colon 

tissues isolated by laser capture microdissection (Wisniewski, Ostasiewicz et al., 2012). 

During the review of this study, Buczak, et al reported quantitative proteomic comparison of 

five pairs of tumorous and non-tumorous micro-dissected FFPE tissues from patients with 

hepatocellular carcinoma (HCC) using 10-plex TMT, and identified protein abundance 

changes between tumorous and peri-tumorous tissues including NADH hydrogenease 

complex I which is also observed as changed in 11 murine HCC tumors compared to normal 

murine livers using label-free quantification (Buczak, Ori et al., 2018). In another 

experiment of three concentric sector regions, a tumor capsule region, a peritumoral tissue 

region and the bulk tumor, the authors quantified 2,698 Uniprot proteins (excluding protein 

groups) using 6-plex TMT and 2,166 proteins using DIA. This study found that the majority 

of the quantified proteins were expressed at comparable levels across the whole specimen, 

and detected abundance changes of multiple proteins across regions including collagens, 

Fibrillin and Decorin. The authors also identified consistency between proteome and 

transcriptome data in terms of gene expression changes, implying that spatial heterogeneity 

is largely driven by protein synthesis variation.

Despite this progress, it remains important to separate technical variability from true spatial 

ITH and to investigate the relationship between inter-tumor heterogeneity and intra-tumor 

heterogeneity. Answering these questions requires a rigorously designed study, a highly 

reproducible proteomics technology, the ability to analyze multiple regions of a bulk tumor, 

and statistical models to deconvolute various types of protein variation.”

We have recently developed a mass spectrometry-based proteomics method, i.e. pressure 

cycling technology and sequential windowed acquisition of all theoretical fragment ion mass 

spectra (PCT-SWATH)(Guo, Kouvonen et al., 2015a), which supports highly reproducible 

and accurate quantification of a few thousand proteins from biopsy-scale tissue samples at 

high throughput. This is accomplished by the integration into a single platform of optimized 

sample preparation, mass spectrometric and computational elements. To generate mass 

spectrometry-ready peptide samples from tissue samples we adopted PCT to lyse the tissues, 

extract proteins and digest them into peptides in a single tube under precisely controlled 

conditions (Powell, Lazarev et al., 2012). To analyze the resulting peptide samples, we used 

SWATH-MS, a massively parallel targeting mass spectrometry method (Gillet, Navarro et 

al., 2012). In SWATH-MS all MS-measurable peptides in a sample are fragmented and 

periodically recorded over a single dimension of relatively short chromatography (Gillet et 

al., 2012). The net result of this technique is a single digital file that contains fragment ions 

of all mass spectrometry-detectable peptides, from which peptides and proteins are identified 

and quantified post acquisition, via a targeted data analysis strategy (Gillet et al., 2012, Röst, 

Rosenberger et al., 2014).
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In this study, we approached proteomic ITH for prostate cancer tissues by PCT-SWATH-

based multi-region proteomic analysis of 60 biopsy-level tissue samples from three prostate 

cancer patients. We then computed the technical and spatial biological variation for each 

measured protein in different types of tissues and different patients, and established a 

proteome-scale landscape of protein ITH in benign and malignant prostate tissues. Our data 

revealed distinct ITH patterns of prostate cancer biomarkers that were further independently 

validated using immunohistochemistry (IHC) in an independent set of 83 patients.

Results

Study design for quantifying proteomic variability

We designed a study to quantify spatial proteomic variability in multiple regions of 

malignant and matching benign prostate tissues using the PCT-SWATH-MS platform (Guo, 

Kouvonen et al., 2015b). We assumed that the total proteomic variability observed in the 

sample cohort was composed of technical and biological variation, the latter including inter-

patient, inter-tissue and intra-tissue variation. To open the possibility to partition the overall 

observed variability into its possible sources, we obtained tissue samples from multiple 

regions of prostatectomy specimens as illustrated in Fig. 1A. Each sample was a tissue 

punch biopsy consisting of a cylinder of 1 mm diameter and about 3 mm length that was 

derived from fresh frozen tissue blocks using a core needle. Samples were obtained from 

prostatectomy specimens in three individuals diagnosed with adenocarcinoma (ADCA) of 

the prostate. Gleason grading was performed according to the International Society of 

Urological Pathology and the World Health Organization consensus (Epstein, Egevad et al., 

2016, Humphrey, Moch et al., 2016) (Supplementary Fig. 1). In total, 12 benign prostatic 

hyperplasia (BPH) and 18 ADAC tissue samples were obtained. One of the three individuals 

had a mixed acinar and ductal ADAC, and both subtypes were included in the study to 

measure the variation resulting from morphologically distinct subtypes. The other two 

patient samples displayed acinar ADCA by histologic means. Each tissue type (malignant 

versus benign) of each patient was sampled three to six times resulting in a total of 30 

biological samples. Each sample was processed by PCT-SWATH in duplicate to evaluate the 

technical variation of the proteomic analysis (Fig. 1, Supplementary Table 1). The samples 

were grouped into 10 batches of six samples, according to patient identity, tissue type and 

technical replicate (Fig. 1B, Supplementary Table 2). This experimental design allowed us to 

subsequently estimate intra-tissue variability from within-batch comparisons (see Methods), 

which is important to avoid overestimating variances due to batch effects.

Quantitative proteomic analysis of 30 prostate cancer tissue regions

The 10 batches of samples were processed using PCT-SWATH in duplicate over a period of 

15 working days. The acquired SWATH-MS data were subjected to in silico targeted 

analysis using the OpenSWATH software(Röst et al., 2014). In total, 36,660 proteotypic 

peptides and 6,873 proteins were quantified consistently across all 60 measurements 

(Supplementary Table 3 and 4). The measured protein intensities were highly reproducible 

(average Pearson correlation values between replicates: 0.944). To obtain high-confidence 

estimates of ITH, we subsequently narrowed our statistical variation analyses to a subset of 

3,700 proteins quantified by at least two concordant proteotypic peptides. Our peptide 
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selection procedure ensured that the selected peptides showed consistent behavior across 

samples. Thereby, we minimized the possibility that peptide intensity variation was not due 

to protein abundance changes, but due to post-translational modifications or other artifacts 

(see Methods) (Picotti, Clement-Ziza et al., 2013). We then corrected batch effects in the 

dataset by subtracting the average signal of each protein per batch. After batch correction, 

most technical replicates grouped together by unsupervised clustering based on the 

abundance of all proteins (Supplementary Fig. 2).

Quantification of spatial proteomic heterogeneity

Our estimates of proteomic ITH are based on the notion that the signal variation between 

two samples is due to a combination of biological and technical factors. Since the biological 

variation is not directly quantifiable, we estimated biological variance by subtracting the 

technical variance from the total observed punch-to-punch variance.

The technical variance was estimated by calculating the dispersion between two technical 

replicates for each sample (independent protein digests from the same punch measured 

separately), i.e. generating 30 initial technical variance estimates per protein before 

averaging them (see Methods for details). This strategy produced seven technical variance 

estimates for all pairs of patient / tissue type (three normal tissue regions, three acinar tissue 

regions, and one ductal tissue region, Fig. 1). Pairwise correlations of these seven 

independent estimates showed that technical variances were consistently positively 

correlated, with a median correlation of 0.572 (Fig. 2A). Likewise, we analyzed the same 

type of correlation for the total punch variances. Like the technical variance, independent 

estimates of the total variance were also highly correlated, albeit with a slightly lower 

median correlation of 0.302, suggesting that the technical variance was more robust and less 

dependent on the specific sample than the total variance and the biological variance (Fig. 

2B). Thus, as expected, the technical variance of a protein was mostly determined by its 

physico-chemical properties, whereas total variance varied in different tissue samples 

probably due to biological factors. Further, technical variance of log-transformed intensities 

was independent of the mean log-intensity (Supplementary Fig. 3), suggesting that the same 

estimate of technical variance could be used at high and low protein concentrations. 

Subsequently, we averaged the seven estimates of technical variance per protein to obtain a 

single, robust estimate of each protein’s technical variance.

Having established that our estimates of total variances and technical variances are robust, 

we next computed biological variances by subtracting each protein’s technical variance from 

its total variance between punches of the same patient and tissue type (see Methods). This 

yielded an estimate of intra-tissue biological variances of protein abundance which can be 

interpreted as the degree of proteomic ITH. The technical and total variances were 

independently estimated, which makes it numerically possible that the technical variance can 

be larger than the total variance of a specific set of punches. Indeed, for 183 proteins (4.9%) 

the estimated technical variance was larger than the total variance (Supplementary Fig. 4). 

These were mostly the proteins with very low total variance. We could not rigorously 

quantify the biological variances of these proteins, nevertheless, we assumed that most of 
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them would have comparably low biological variances. Proteins with technical variances 

higher than total variances were excluded from most subsequent analyses.

Next, we compared the biological variances within a tissue with the biological variance 

between tissue types (benign versus malignant; termed inter-tissue) and between patients 

(Fig. 3). Inter-tissue and inter-patient variances were obtained by first averaging protein 

intensities from punches of the same tissue or patient, respectively (see Fig. 1A and 

Methods). Our data showed that the biological variance between punches within the same 

tissue (i.e. intra-tissue variance) is of similar magnitude as the variation of average 

intensities between tissues and patients, indicating a high degree of protein ITH (Fig. 3A). 

Further, the protein variances between patients, tissue, and within tissue were significantly 

correlated (Fig. 3B-D). Thus, a protein with large intra-tissue variation is also likely to vary 

across tissues and between the three patients.

Classification of proteins based on their intra-tissue variability

To characterize ITH in different tissue types, we compared the biological variance of each 

protein in benign and malignant prostate tissues, and quantified the variability of 3,517 

proteins in BPH and ADCA tissue samples (Supplementary Table 5). Interestingly, we 

observed a strong dependence of the variability of some proteins on the tissue type. We then 

classified the thus quantified proteins into five groups based on their biological variance 

patterns in the different sample types (Fig. 4A). Group no. 1 consisted of 100 proteins that 

were always robust and generally showed little intra-tissue variation in benign and malignant 

prostate tissues. Group no. 2 consisted of 339 proteins that varied substantially more in 

benign tissues compared to malignant tissues. Group no. 3 consisted of 93 proteins that 

varied more strongly in malignant tissues compared to benign tissues. Group no. 4 contained 

365 proteins that had high intra-tissue variance in both malignant and benign tissues, while 

group no. 5 contained the remaining 2,620 proteins with intermediate variability. 

Remarkably, the top three most variable proteins in BPH are three proteins known or used in 

the diagnosis of prostate tumors, including prostate-specific antigen (PSA/KLK3), prostatic 

acid phosphatase (PAP/ACPP) and Desmin (DES). PSA is an androgen-regulated kallikrein 

family serine protease, that is produced by the secretary epithelial cells in acini and ducts of 

prostate glands (Balk, Ko et al., 2003). The secreted PSA, originated from prostate tissues, is 

the most commonly used, blood-based biomarker for prostate cancer (Hayes & Barry, 2014). 

However, PSA screening has remained controversial because of uncertainty surrounding its 

benefits and risks and the optimal screening strategy (Barry, 2009). Our data showed that 

PSA in situ was most variable in BPH but more stable in ADCA tissues. Since PSA is 

regulated by androgen, this indicates androgen-driven malignant growth of prostate tumor 

cells. PAP is a non-specific tyrosine phosphatase and a well-studied tumor suppressor for 

PCa. PAP has already been used in immunotherapy regimens against PCa (Di Lorenzo, 

Buonerba et al., 2011) and is the second most variable protein in BPH after PSA. The 

variability of PAP expression was relatively high in ADCA samples, but lower than its 

variability in BPH samples. Desmin (DES) constructs class-III intermediate filament in 

smooth muscle cells. As a marker for prostate stromal composition, DES expression has 

already been associated with PCa survival (Ayala, Tuxhorn et al., 2003). Tuxhorn et al. have 

shown that prostate cancer-reactive stroma is composed of a myofibroblast/fibroblast mix 
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with a significant decrease or complete loss of fully differentiated smooth muscle, whereas 

normal prostate stroma is predominantly smooth muscle (Tuxhorn, Ayala et al., 2002). 

Given the known heterogeneous composition of myoglandular hyperplasia (i.e. BPH) out of 

glandular and stromal (smooth muscle) elements, the higher variability of DES expression in 

BPH compared to PCa is not surprising.

To further investigate the protein variability classes, we then performed a gene ontology 

(GO) enrichment analysis (Fig. 4B). As expected, stable proteins of group no. 1 were 

enriched for basic cellular functions that were required irrespective of the tissue state, such 

as energy metabolism (Fig. 4B). Proteins highly variable in both malignant and benign 

tissues (group no. 4) were enriched for immunity-associated processes. Muscle-related 

proteins exhibited a high degree of heterogeneity in benign tissues, reflecting the fact that 

smooth muscle fibers are part of healthy prostate tissues, whereas prostate cancer glands are 

per definition closely packed with less intervening stroma (Humphrey et al., 2016). This 

agrees with the variability observed for the DES as discussed above. Proteins associated 

with cell cycle-related functions such as nucleosome and chromatin assembly displayed a 

high degree of heterogeneity in malignant tissues. Thus, our data is consistent with recent 

findings suggesting that the proliferation rates among prostate cancer cells can be highly 

variable (Zellweger, Gunther et al., 2009), and that epigenetic events are of high importance 

in prostate carcinogenesis (Beharier, Shusterman et al., 2015, Grasso, Wu et al., 2012, Plass, 

Pfister et al., 2013).

Spatial heterogeneity of biochemical pathways

Based on the determined protein level variance patterns described above we could also 

interrogate the ITH of biochemical pathways. To quantify a pathway’s variance we 

computed the average biological variance (intra-tissue variance) for all human pathways 

from ConsensusPathDB (Kamburov, Stelzl et al., 2013) with at least five quantified proteins 

(Fig. 4C). Like the individual proteins, we grouped pathways into five groups depending on 

their degrees of heterogeneity in malignant and benign tissues. Five pathways emerged as 

being particularly variable in tumor tissues (i.e., average biological variance in malignant 

samples above 0.02): ‘Fanconi Anemia Pathway’, ‘Meiosis’, ‘Meiotic synapsis’, ‘Regulation 

of cell cycle progression by plk3’, as well as ‘Role of brca1 brca2 and atr in cancer 

susceptibility’. These pathways are involved in DNA damage response and include proteins 

such as serine/threonine-protein kinase ATR and the cohesion complex. The specific role of 

these pathways in responding to chromosomal aberrations suggests that the occurrence and 

repair of double strand breaks (which are a hallmark of prostate cancer) are heterogeneous 

within tissue specimens (Haffner, Aryee et al., 2010). Pathways highly variable only in non-

tumorous tissues are markedly enriched for immune activity. The stromal component of 

BPH samples demonstrated a high degree of ITH in antigen processing and presentation, 

naïve CD8+ T cells signaling, IL12- mediated signaling, interactions between a lymphoid 

and a non-lymphoid cell, MHC class I complex expression, NK-cell mediated cytotoxicity, 

suggesting the combat between carcinogenesis and immunity. Consistent with the previous 

analysis, we observed more variable muscle contraction activity in non-tumorous tissues. 

The only pathway variable in both tumorous and non-tumorous tissues was the synthesis of 

phosphatidic acid, a critical component of mTOR signaling and a biosynthetic precursor for 
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all cellular acylglycerol lipids with critical roles in prostate tissue biology (Fang, Vilella-

Bach et al., 2001, Foster, 2009).

Investigation of spatial heterogeneity of selected proteins using immunohistochemistry 
(IHC) in an independent cohort

We further investigated the biological variation of selected proteins from the PCT-SWATH 

analysis using a complementary technology in an independent, larger cohort. We constructed 

a tissue microarray (TMA) using benign and malignant (ADCA) prostate tissues from 83 

additional patients and established IHC assays to measure the expression of ten 

representative proteins in the various ITH groups identified from the PCT-SWATH results, 

including ACTR1B, DES, PSA, GDF15 as shown in Fig. 5, as well as ACPP, ABCF1, 

NUP93, CUTA, CRAT, and FSTL1 (Supplementary Fig. 5). This set of validation proteins 

contains some well-established markers for prostate cancer in order to elucidate their 

variability within benign and tumorous tissue specimens. The stained TMAs contained 

duplicate tissue cores of 48 ADCA and 35 BPH samples. The heterogeneity of proteins was 

evaluated based on an immunoreactivity score computed from duplicate tissue spots and 

measured by the Pearson correlation coefficient between the two spots for BPH and ADCA 

respectively (Fig. 5). Thus, a high Pearson correlation score indicates a homogeneous 

distribution of the respective protein in the TMAs (i.e. low ITH). We found that the degree 

of ITH determined in the three patients by PCT-SWATH was well validated in the 

independent cohort. ACTR1B is an actin-related protein in the dynamin complex to 

construct cytoskeleton. This house-keeping protein exhibited a very high degree of 

correlation in both BPH (r = 0.96) and ADCA (r = 0.80) samples, serving as a positive 

control. In the TMA cohort, DES was more variable in BPH (r = 0.51) than in ADCA (r = 

0.67), which is consistent with proteomics data. Our TMA data demonstrated that in BPH 

samples, PSA was found only in the glandular tissue, and expressed more heterogeneous 

than in ADCA samples, with blood PSA levels being a non-specific biomarker for PCa. 

Growth/differentiation factor 15 (GDF15) is a stress-induced cytokine belonging to the 

transforming growth factor beta superfamily (Vanhara, Hampl et al., 2012). This protein is 

expressed in highly complex forms with distinct biological functions related to immunity. In 

various tumors including prostate cancer, GDF15 interacts with the extracellular matrix and 

promotes tumor progression and metastasis (Vanhara et al., 2012). We found GDF15 to be 

expressed at relatively low levels in BPH with a low degree of ITH probably due to 

inflammatory changes of glandular architecture followed by stromal tissue increase in BPH 

(Vanhara et al., 2012). In the ADCA samples, GDF15 expression was elevated with a high 

degree of variation, indicating complex interactions between tumor cells and the 

microenvironment via modulators including GDF15. The high variability of ACPP in BPH 

samples was also confirmed in this cohort. Proteins grouped as medium heterogeneity 

including ABCF1, NUP93, CUTA, CART, and FSTL1 displayed consistent heterogeneity 

patterns after manual inspection of the TMA data. Taken together, we observed significant 

correlations between the heterogeneity measured in the TMAs and the biological variance 

measures obtained with PCT-SWATH across all 10 proteins (Fig. 6A, 6B).
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Discussion

This study investigated the spatial variability of the prostate proteome, which serves as a 

basis for better understanding the biology of PCa protein biomarkers. Protein biomarkers 

including PSA and GDF15 have been well studied in PCa, however, their spatial expression 

in prostate tissues has not been systematically studied. ITH has been studied at the 

morphologic and genomic level in diverse cancers, and it poses a major challenge for cancer 

biology and diagnosis (Alizadeh et al., 2015). However, proteomic ITH remains 

underexplored in prostate cancer, despite the critical roles of proteins in tumorigenesis and 

cellular biochemistry in general and the various single cell-based methods.

This study represents a technical advance towards understanding spatial ITH at the proteome 

level for solid tumors and other tissues. Using the PCT-SWATH methodology (Guo et al., 

2015a) and an associated data analysis strategy (Röst et al., 2014), we achieved deep 

proteomic coverage (consistent quantification of 6,873 reviewed SwissProt proteins across 

the 60 prostate tissue samples), and performed quantitative analysis of spatial ITH of 3,700 

proteins, which were quantified by at least two proteotypic peptides that showed consistent 

abundance across samples. Despite the rigorous filtering, we could quantify a three times 

higher number of proteins than a recent proteomic analysis of primary prostate tissue 

samples (Iglesias-Gato, Wikstrom et al., 2016). The number of proteins quantified in our 

study exceeds by 1-2 orders of magnitude the number of proteins typically quantified by 

tissue staining, which is the current standard method for protein quantification in clinical 

tissue samples. Our workflow is also compatible with laser capture microdissected samples 

which can also be analyzed by shotgun proteomics (Buczak et al., 2018, Garcia-Berrocoso, 

Llombart et al., 2018, Grosserueschkamp, Bracht et al., 2017). Our data did not achieve 

single cell resolution like the CyTOF technology. These technologies, however, quantify 

orders of magnitude fewer proteins (Amir el, Davis et al., 2013, Giesen et al., 2014, Levine, 

Simonds et al., 2015). The data generated in this study are unique with respect to the 

structure of the sample set, the degree of proteomic coverage, and the degree of 

measurement reproducibility and accuracy. Nevertheless, new MS-based proteomics 

technologies enabling analysis of single cells from tissue samples will be desirable to 

quantify spatial ITH at higher spatial resolution in future studies. Advanced MALDI 

imaging emerges as a useful tool to dissect ITH of proteins, peptides and small molecules 

with high spatial resolution (Balluff, Frese et al., 2015, Widlak, Mrukwa et al., 2016), 

however, the proteome depth and precision remains to be further improved.

The main goal of this study was not to discover new protein biomarkers; instead we aimed to 

characterize the spatial ITH of the prostate proteome and investigate whether the ITH 

influences the utility of protein biomarkers and candidates. Our data contributed to the 

understanding of the following prostate cancer biology. First, we systematically reported the 

degree of ITH of 3,700 SwissProt proteins in prostate tissues. Although some of these 

proteins are widely used in clinic, their expression pattern in prostate tumors was unclear. 

We found PSA preferentially variable in BPH, while GDF15 tended to vary in different 

tumor regions. This finding, together with the ITH pattern of eight more clinically relevant 

protein biomarkers, were further investigated and confirmed in an independent cohort of 83 

PCa patients using TMA technology. This additional cohort analysis not only confirm that 
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the PCT-SWATH technology is a valid and practical extension of IHC and TMA for 

proteome-scale ITH analysis of clinical tissue samples, but also consolidated the spatial 

variability of these proteins in prostate tissues, providing guidance for clinical application of 

these proteins as biomarkers. We found protein ITH patterns vary between tissue types due 

to their biological functions and interplay with the microenvironment. Despite the high 

consistency with respect to ITH measured with TMA and proteomics, the two assays are of 

course not identical. For example, secreted proteins will likely be lost during IHC 

procedures, which partly explains the small discrepancy between TMA and MS data. 

Further, protein truncations and other post-translational modifications may have different 

effects depending on whether antibody binding and/or peptides quantified in the MS are 

affected.

Second, the data also shed light on the heterogeneity of multiple biochemical pathways. 

Interestingly, benign tissue displayed a high degree of variability in immunity-related 

signaling pathways, whereas tumor tissues, characterized by enhanced proliferation and 

DNA-damage, exhibited high degree of heterogeneity in several DNA damage response 

pathways, suggesting that spatially variable DNA repair pathways probably contributed to 

genomic heterogeneity during the evolution of prostate cancers. We quantified the degree of 

ITH of several key proteins involved in DNA damage response, including ATR, MRE11, 

RAD21, RAD23A, RAD23B, RAD50, RAD9A, CHEK1, XRCC5, and XRCC6. The data 

showed that ATR, a DNA damage sensor, is variable only in tumors. We identified more 

proteins in the 6,873-protein (3,700 proteins with 2 or more proteotypic peptides, and the 

other proteins with at least one proteotypic peptide), including BRCA2, ATM, RAD51C, 

RAD51AP2, XRCC1, XRCC2, XRCC4. These proteins were not included in the ITH 

analysis because either single-proteotypic-peptide identification or discordant quantity of 

multiple proteotypic peptides in a protein is failed to pass our stringent inclusion criteria. 

Further, we found that the degree of intra-tissue variability of multiple pathways was slightly 

higher in benign specimens compared to malignant tissues (Fig. 4), which may be due to the 

more complex structure of healthy tissues involving a larger number of distinct cell types, 

while in tumorous tissues most cell types are replaced by tumor cells.

The observed intra-tissue protein variability patterns have implications that extend beyond 

the present study to protein biomarker studies in general and have specific significance for 

biomarker studies in the context of personalized medicine, where sample availability is 

generally sparse. Our data suggest that the variation of some protein levels between patients 

is similar in magnitude to the variation within a single prostate. These findings underline the 

significance of low intra-tissue variability as an important property of a clinical protein 

biomarker. In fact, the observed variability patterns provide a rational explanation why some 

previously published tissue biomarker studies did not produce concordant results. Similar 

conclusions were drawn in an earlier study, in which the abundance variability of plasma 

proteins was analyzed in a twin cohort (Liu, Buil et al., 2015). The data indicated that those 

biomarker candidates that were proposed in the literature and eventually approved for 

clinical use showed low levels of variability derived from genetic differences in a 

population. In contrast, biomarker candidates proposed in the literature that showed a high 

degree of genetically caused abundance variation in a population were rarely validated. Our 

data add a new perspective to this problem: a candidate biomarker may show high variability 
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between patients when quantified using single needle biopsies per patient. However, the 

tumor-wide average concentrations may not be substantially different, and the true cause of 

the apparent inter-patient variability may be ITH, rather than rooted in the biochemical 

difference between normal and tumor tissues. Therefore, we suggest that intra-tissue 

variability of a protein or a pathway be used as an important criterion for the assessment of 

protein biomarker candidates, in addition to other parameters such as expression level and 

biochemical function. Including more biological replicates per patient to average out protein 

ITH or increasing patient numbers to account for variability may not always be possible. 

Thus, our work provides an important lead as to how ITH can be tackled even for small 

patient and sample numbers in clinically realistic scenarios.

Materials & Methods

Patients and samples for PCT-SWATH analyses

The prostates from three patients after prostatectomy were cut into tissue sections 

(thickness: about 3 mm). Fresh BPH and ADCA tissue sections were frozen and embedded 

in O.C.T.. The tissue were examined by trained pathologists and graded similarly according 

to the Gleason system as shown in Fig. 1. Tumorous tissues from each patient contained 

acinar prostate tumors, while one patient included an extra ductal prostate tumor. To obtain 

biopsy-scale tissue samples for PCT-SWTH analysis, we utilized a needle to punch out 

tissue cylinders (diameter: 1 mm, length: ~ 3 mm, about 2 mg wet weight) at the locations as 

shown in Fig. 1. About 100 μg proteins and 50 μg peptides were extracted per mg tissue. 

Multiple (three or six) punches were obtained from each area. The Ethics Committee of the 

Canton of Zurich approved all procedures involving human fresh frozen material. All three 

patients were part of the Zurich prostate cancer outcomes cohort study (ProCOC, KEK-ZH-

No. 2008-0040) (Umbehr, Kessler et al., 2008, Wettstein, Saba et al., 2017), and each patient 

signed an informed consent form.

PCT-SWATH

The tissue samples were first washed to eliminate O.C.T., followed by PCT-assisted tissue 

lysis and protein digestion, and SWATH-MS analysis, as described previously (Guo et al., 

2015a). Briefly, each tissue punch was washed with 70% ethanol / 30% water (30 s), water 

(30 s), 70% ethanol / 30% water (5 min, twice), 85% ethanol / 15% water (5 min, twice), 

and 100% ethanol (5 min, twice). Subsequently, the tissue punches were placed in PCT-

MicroTubes with PCT-MicroPestle and 30 μl lysis buffer containing 8 M urea, 0.1 M 

ammonium bicarbonate, Complete protease inhibitor cocktail (Roche) using a barocycler 

(model NEP2320-45k, PressureBioSciences, South Easton, MA) which offers cycling 

alternation of high pressure (45,000 p.s.i., 50 s per cycle) and ambient pressure (14.7 p.s.i., 

10 s per cycle) for 1 h. The extracted proteins were then reduced and alkylated prior to lys-C 

and trypsin-mediated proteolysis under pressure cycling. Lys-C (Wako; enzyme-to-substrate 

ratio, 1:40) -mediated proteolysis was performed under 45 cycles of pressure alternation 

(20,000 p.s.i. for 50 s per cycle and 14.7 p.s.i. for 10 s per cycle), followed by trypsin 

(Promega; enzyme-to-substrate ratio, 1:20)-mediated proteolysis using the same cycling 

scheme for 90 cycles. The resultant peptides were cleaned by SEP-PAC C18 (Waters Corp., 

Milford, MA) and analyzed, after spike-in 10% iRT peptides, using SWATH-MS following 
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the 32-fixed-size-window scheme as described previously with a 5600 TripleTOF mass 

spectrometer (Sciex) and a 1D+ Nano LC system (Eksigent, Dublin, CA). The LC gradient 

was formulated with buffer A (2% acetonitrile and 0.1% formic acid in HPLC water) and 

buffer B (2% water and 0.1% formic acid in acetonitrile) through an analytical column (75 

μm × 20 cm) and a fused silica PicoTip emitter (New Objective, Woburn, MA, USA) with 3-

μm 200 Å Magic C18 AQ resin (Michrom BioResources, Auburn, CA, USA). Peptide 

samples were separated with a linear gradient of 2% to 35% buffer B over 120 min at a flow 

rate of 0.3 μl min−1. Ion accumulation time for MS1 and MS2 was set at 100 ms, leading to 

a total cycle time of 3.3 s.

SWATH assays for prostate tissue proteome

We also analyzed unfractionated prostate tissue digests prepared by the PCT method using 

Data Dependent Acquisition (DDA) mode in a tripleTOF mass spectrometer over a gradient 

of 2 hours as described previously (Röst et al., 2014). We spiked iRT peptides (Escher, 

Reiter et al., 2012) into each sample to enable retention time calibration among different 

samples. We then combined this library with the DDA files from pan-human library 

(Rosenberger, Koh et al., 2014). All together we analyzed 422 DDA files using X!Tandem 

(MacLean, Eng et al., 2006) and OMSSA (Geer, Markey et al., 2004) against a target-decoy, 

non-redundant human UniProtKB/Swiss-Prot protein database (Oct 21, 2016) containing 

20,160 protein sequences and the iRT peptide sequences. Reversed protein sequences were 

used as decoy sequences. We allowed maximal two missed cleavages for fully tryptic 

peptides, and 50 p.p.m. for peptide precursor mass error, and 0.1 Da for peptide fragment 

mass error. Static modification included carbamidomethyl at cysteine, while variable 

modification included oxidation at methionine. Search results from X!Tandem and OMSSA 

were further analyzed through Trans-Proteomic Pipeline (TPP, version 4.6.0) (Deutsch, 

Mendoza et al., 2010) using PeptideProphet and iProphet, followed by SWATH assay library 

building procedures as detailed previously (Guo et al., 2015a, Schubert, Gillet et al., 2015). 

Altogether, we identified 160,442 peptides with <1% FDR.

Peptide quantification using OpenSWATH

SWATH files were analyzed using the prostate tissue proteome assay library described above 

and OpenSWATH software as described previously (Röst et al., 2014). Briefly, wiff files 

were converted into mzXML files using ProteoWizard msconvert v.3.0.3316, and then 

mzML files using OpenMS (Sturm, Bertsch et al., 2008) tool FileConverter. OpenSWATH 

was performed using the tool OpenSWATHWorkflow with input files including the mzXML 

file, the TraML library file, and TraML file for iRT peptides. The false discovery rate for 

peptide identification was below 0.1%. High confidence peptide features from different 

samples were aligned using the algorithm TRansition of Identification Confidence (TRIC) 

(version r238), which is available from https://pypi.python.org/pypi/msproteomicstools or 

https://code.google.com/p/msproteomicstools/. The following parameters for the 

feature_alignment.py are as follows: max_rt_diff = 30, method = global_best_overall, 

nr_high_conf_exp = 2, target_fdr = 0.001, use_score_filter = 1.
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Protein quantification

The concentration of each protein was quantified through the simultaneous measurement of 

several peptides. To optimize the protein quantification, we developed a new computational 

method, which combines maximally consistent peptides for each protein and excludes 

inconsistent (i.e. uncorrelated) peptides (Picotti et al., 2013). For example, variation of post-

translational modifications (PTM) would result in peptide level variation that is uncorrelated 

across samples, because mostly only one of the two peptides would be affected by the PTM.

(Picotti et al., 2013). Given a set of peptides unambiguously assigned to a single protein, 

consistent peptides were selected using the following procedure: all pairwise correlations 

between all peptides of a protein across the samples were calculated at first. Peptide pairs 

with a Pearson correlation coefficient (R) of at least 0.3 were determined, resulting in 

clusters of correlated peptides. This procedure yielded one or more peptide clusters per 

protein. We used the largest cluster of each protein and we quantified the protein’s 

concentration as the average intensity across the peptides in that cluster. The minimum 

cluster size was set to 2 and proteins without a cluster of at least two correlated peptides 

were removed from the subsequent analysis. This procedure resulted in robust relative 

quantification of 3,700 proteins with high correlation between technical replicates (R ≥ 0.95) 

and no missing values.

Determining the biological variance between punches in a specific tissue (intra-tissue 
variance)

Measurements of protein abundance differences between individual punches are affected by 

a combination of biological and technical factors. Thus, to quantify the biological variation 

between punches we need to subtract the technical variance from the total variance, i.e. the 

combined variance due to technical and biological factors. Estimating the biological 

variance of protein levels between punches therefore requires estimates of the technical 

variance and the total variance. Intuitively, one would estimate both variances using a 

standard approach such as ANOVA in a single statistical model. However, technical 

replicates are paired because they come from the same punch and thus they are not 

independent, whereas the total variance needs to be estimated across punches, i.e. involving 

partially independent measurements.

Therefore we decided to separately estimate technical and total variances. Here, technical 

variance was estimated from the dispersion of measurements between paired technical 

replicates and total variance was estimated from the dispersion of measurements between 

independent punches from the same specimen. Compared to an approach estimating both 

technical and total variance in a single statistical model, our approach has the caveat that the 

two variance estimates can be inconsistent in the sense that the estimated total variance can 

be smaller than the estimated technical variance. Obviously, this happens only for those 

proteins where the technical noise is large compared to the biological variance, in which 

case it is anyways impossible to reliably estimate the true biological variance (no matter 

which statistical approach is taken). We therefore conservatively accept that in those cases 

we cannot provide an estimate of the biological variance. However, we assume that in most 

of those cases the biological variance will be small compared to the other proteins for which 

we could estimate a biological variance.
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In detail, the variances were estimated in the following way.

First, the protein concentrations (computed from peptide intensities as described above) 

were log10-transformed. Next, protein concentrations were quantile normalized per sample. 

As the signal distributions between non-tumorous (benign) and tumorous tissue (malignant: 

acinar and ductal) differed significantly, the normalization was performed separately for 

each tissue type. For each protein, we computed the technical variation for each sample and 

averaged the inter-replicate variance across all 30 samples (Tukey, 1977). Since technical 

replicates are (obviously) paired, the technical variance was estimated as the dispersion of 

the two replicates from their sample mean averaged across all punches (n = 30). Thus, the 

technical variance VARTECH of protein i was estimated as:

V ARTECHi
= 1

n ∑
j = 1

n (xi, ja − xi, jb)2

2

with xi,ja and xi,jb being the two technical replicates (a and b) of the protein level 

measurements from punch j. In this case, no batch correction was performed, because batch 

correction would reduce the technical variance (technical replicates were always in different 

batches), which might lead to underestimation of the technical variance. The final estimate 

of technical variances was computed after removing outliers above and below the 1.5*IQR 

of 30 samples based on Tukey’s method (Tukey, 1977).

The total variances between punches (i.e. the combined variance from technical noise and 

biological variance) were initially computed for each batch separately. Thus, variation 

among punches from the same specimen (same patient p and same tissue type t) were 

averaged. Finally, total variances VARTOT between punches were averaged across batches.

V ARTOTi
(p, t) = 1

2 V AR xi, ja, j ∈ P(p, t) + V AR xi, jb, j ∈ P(p, t)

Where P(p, t) denotes all punches j from patient p and tissue t (i.e. either benign, acinar, or 

ductal). The indices a and b denote the two technical replicates, as above. Thus, total 

variances were estimated purely from deviations within batches and are (unlike technical 

variances) not affected by batch-to-batch variation. As a consequence, technical variances 

are biased towards larger values compared to total variances. This approach is conservative 

in the sense that it minimizes the number of proteins that are falsely classified as having 

variable concentrations within tissues. Thus, this approach will likely underestimate the true 

number of proteins with large biological intra-tissue variance. Given the total variance and 

technical variance, the biological variance VARBIO of protein i was computed as follows:

V ARBIOi
(p, t) = V ARTOTi

(p, t) − V ARTECHi

This scheme generated seven independent estimates of total variance per protein: four for the 

patients no. 1 and no. 2 (benign and malignant acinar tissues) and three for patient no. 3 
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(benign, acinar, and ductal). The intra-tissue variance shown in Figure 4 is the average 

biological variance of a given protein across all patients and tissue types. The tissue-specific 

variances used for Figure 5 are the average variances across the patients for the respective 

tissues (benign, acinar, ductal). The biological variance in tumor was estimated as the 

average of all acinar and the ductal (patient 3) tumor regions.

Grouping of proteins and pathways based on their variability

In cases where the estimated technical variance is greater than the estimated total variance, 

subtracting the technical from the total variance yields a negative ‘variance estimate’ 

(Supplementary Fig 4). Because these negative ‘variances’ are the result of our imperfect 

variance estimates, the distribution of these values can be used to quantify the inherent 

uncertainty in our estimates of the biological variance. Thus, we can use the distribution of 

the absolute values (the ‘mirror distribution’ into the positive range) as a background 

distribution for the Null hypothesis that the true biological variance is indistinguishable from 

zero (or: that the total observed variance is exclusively due to technical variance). Based on 

this approach, 797 proteins had p-values below 0.01 and were thus classified as biologically 

variable proteins (i.e. significantly variable within the same specimen). These797 variable 

proteins were further sub-classified as follows: if the ratio of biological variance in benign to 

biological variance in tumor was above 2 they were classified as “variable in non-tumor” 

(339 proteins); if the ratio of biological variance in tumor to biological variance in normal 
was above 2, proteins were classified as “variable in tumor” (93 proteins); 365 proteins with 

similar variances in both tissue types (i.e. not different by more than a factor of 2) were 

classified as “variable in non-tumor and tumor”. Stable proteins were defined by choosing 

the 100 proteins with the lowest biological variance. Remaining proteins, which were not 

assigned to any of the above four groups, were classified as “medium heterogeneity” 

proteins.

Note that our computation of empirical p-values for determining variable proteins is not 

critical for the conclusions. If we had simply chosen the top 200 most variable proteins (as 

the basis for groups 1-3) and compared them to the 200 most stable proteins (group 4) the 

conclusions would be virtually identical.

Gene Set Enrichment Analysis

Gene Ontology (GO) enrichment of proteins was performed using topGO, which takes the 

topology of the ontology into account. The enrichment analysis was carried out by using 

Fisher’s exact test with the background of measured proteins in this study. We excluded GO 

terms with less than 10 proteins and with more than 300 proteins from the analysis (the 

former are too small, the latter are too generic). Further, we reported only GO terms that had 

at least 4 proteins enriched (overlapping).

Intra-tissue heterogeneity of entire biochemical pathways was determined according to the 

protein level variance. Pathway variability was calculated by averaging the biological 

variances of all proteins annotated for a given ConsensusPathDB pathway. We required that 

each pathway contained at least five quantified proteins. ConsensusPathDB combines 

pathway annotations from different sources. Thus, in some cases the same pathway is 
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reported more than ones. In such case the pathway variant with the largest number of 

quantified proteins was used.

Determining the variance between tissues (inter-tissue variance) and between patients 
(inter-patient variance)

Batch effects were corrected by centering each protein’s concentration per batch. In our 

experimental design, batches were balanced in the sense that each batch had the same 

number of benign and malignant samples (3 of each) and each batch had the same number of 

samples from the same patient (2 patients per batch, 3 samples from each patient).

Inter-tissue variances were estimated using concentrations centered per patient (subtracting 

patient mean). Inter-patient variances were estimated using concentrations centered per 

tissue type (subtracting tissue mean across patients). All of those computations were based 

on batch-corrected concentrations and after averaging technical replicates. Batch-corrected 

values were also used for Figure 2.

Patient cohort and tissue microarray (TMA)

The Ethics Committee of the Kanton St. Gallen, Switzerland approved all procedures 

involving human materials used in this TMA, and each patient signed an informed consent. 

For the study, patients with BPH and matching ADCA were included, whereas advanced 

prostate cancer, infectious or inflammatory diseases, or other malignancies fulfilled 

exclusion criteria as described previously (Cima, Schiess et al., 2011). A TMA was 

constructed using formalin-fixed, paraffin-embedded tissue samples derived from 83 patients 

(BPH, n = 35; ADCA, n = 48).

Immunohistochemical staining and evaluation

The following primary antibodies were used to stain 4μm slides of the TMA using the 

Ventana Benchmark (Roche Ventana Medical Systems, Inc., Tucson, AZ, USA) automated 

staining system: ACTR1B (1:400; Abcam, 60 min pretreatment), Desmin/DES (1:20; 

DAKO A/S, 16 min pretreatment), KLK3/PSA (1: 10000; DAKO A/S) and GDF15 (1:50; 

biorbyt, 30 min pretreatment), ACPP (1:2000; DAKO A/S), ABCF1 (1:50; Novus 

Biologicals, 90 min pretreatment), NUP93 (1:50; NovusBiologicals, 60 min pretreatment), 

CUTA (1:100; LifespanBiosciences, 60 min pretreatment), CRAT (1:100; Atlas Antibodies, 

30 min pretreatment), and FSTL1 (1:100; Atlas Antibodies, 16 min pretreatment). Detection 

was performed with ChromoMap Kit (Ventana) for ABCF1, PCP4, CUTA and OptiView 

DAB Kit (Ventana) for the others (Desmin, KLK3/PSA, NUP93, CRAT, FSTL1,PAP) using 

the heat-induced epitope retrieval CC1 solution. Slides were counterstained with 

hematoxylin (Ventana), dehydrated and mounted. For GDF15 4μm slides were stained using 

the Leica Bond (Leica Biosystems, Muttenz, Switzerland) automated staining system. For 

detection the Bond Polymer Refine Detection kit and heat-induced epitope retrieval HIER2 

solution (Leica Biosystems) following Hematoxylin counterstaining was used. Staining 

intensities for each antibody were evaluated in a semi-quantitative, 4-tier manner (negative = 

0, weak = 1, moderate = 2 and strong = 3), along with the occupied area (in 1%, 3%, 5% and 

above 10% steps), by one pathologist (N.J.R.). An immunoreactivity score (IRS; staining 

intensity multiplied by percentage of spot; similar to the recommendations by Remmele & 
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Stegner (Remmele & Stegner, 1987) consisting of “staining intensity x area (%)” was 

calculated.

Data deposition

The SWATH raw data and analyzed data as well as assay library are deposited in PRIDE 

(Vizcaino et al., 2014). For the SWATH data of the three patients: Project accession: 

PXD003497; Username: reviewer45594@ebi.ac.uk; Password: Vvl6EFPj. For the SWATH 

data of the 27 patients: Project accession: PXD004589; Username: 

reviewer29994@ebi.ac.uk; Password: 1zHGceA9.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study design.
(A) H&E staining of the fresh frozen prostate tissue from three individuals who have 

contributed BPH (non-tumorous) and matching acinar or ductal adenocarcinoma. Green, 

orange, and blue lines depict regions diagnosed by a pathologist as BPH, acinar and ductal 

tumors, respectively. Black circles indicate where the punches were made. (B) Overall 

measured variation of protein expression was partitioned into biological and technical 

variation including inter-patient variation, inter-tissue variation, intra-tissue variation and 

technical variation from MS analysis and batch variation. Three or six punches were 

sampled from each tissue type, followed by PCT-SWATH analyses in technical duplicate. 

The samples were shuffled and analyzed in 10 batches of six samples.
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Figure 2. Consistency of technical and total variance.
(A) Correlation of technical variances estimated independently for different samples. 

Technical variance is estimated from technical replicates. (B) Correlation of total variances 

(between punches) estimated independently from punches from different tissue samples 

(different patients, different tissue types).
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Figure 3. Correlation of biological variance between patients and tissue types.
Each dot represents one protein. (A) Distributions of biological variance estimates. Inter-

patient variances and inter-tissue variances are based on averaging the measurements of at 

least three punches. Intra-tissue variance was first determined independently per patient and 

tissue type, and then averaged. (B) Biological variance between tissue of the same patient 

versus variance between punches of the same patient and tissue. (C) Biological variance 

between different patients but same tissue type versus variance between punches of the same 

patient and tissue. (D) Biological variance between the same tissue types in different patients 

versus variance between different tissue types of the same patient.
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Figure 4. Intra-tissue heterogeneity in tumorous and non-tumorous tissue.
(A) Biological variance among punches from the same tissue region was considered as the 

degree of intra-tissue heterogeneity for the respective tissue type. Degree of intra-tissue 

heterogeneity for each protein in benign versus malignant tissue are shown and colored 

according to classification. (B) GO enrichment analysis of four protein categories from (A). 

Length of horizontal bars indicates the significance of the enrichment. (C) Intra-tissue 

heterogeneity of biochemical pathways. Each triangle is the average biological variance 

(intra-tissue heterogeneity) of all quantified proteins from the respective pathway. Degree of 

intra-tissue heterogeneity for each pathway in benign versus malignant tissue are shown. 

Pathways were grouped according to their variability in benign and malignant tissue.
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Figure 5. Immunohistochemical validation of representative proteins.
The top proteins from four ITH groups in BPH and malignant (ADCA) prostate tissue were 

validated using a TMA with two representative tissue spots of each patient.
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Figure 6. Correlation between mass spectrometry-based (MS) variance estimates and TMA 
homogeneity.
A shows benign tissues while B depicts tumor tissues. The concentrations of CRAT and 

NUP93 were almost zero in the benign tissue samples. Thus, it is virtually impossible to 

estimate their intra-tissue variation in benign tissues. The correlation between MS-based 

variance and TMA homogeneity was however computed without excluding these two 

proteins. NUP93 was slightly off the regression curve because its signal in IHC was 

relatively weak.
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