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Where are we ?

The Data



Data’s origin

Viewed "from the outside", neurons generate brief electrical pulses:
the action potentials

Left, the brain of an insect with the recording probe on which 16
electrodes (the bright spots) have been etched. Each probe’s branch
has a 80 um width. Right, 1 sec of data from 4 electrodes. The spikes
are the action potentials.



Spike trains

After a "rather heavy" pre-processing called spike sorting, the raster
plot representing the spike trains can be built:
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Modeling spike trains: Why and How?

» A key working hypothesis in Neurosciences states that the
spikes’ occurrence times, as opposed to their waveform are the
only information carriers between brain region (Adrian and
Zotterman, 1926).

» This hypothesis legitimates and leads to the study of spike
trains per se.

» It also encourages the development of models whose goal is to
predict the probability of occurrence of a spike at a given time,
without necessarily considering the biophysical spike
generation mechanisms.

» In the sequel we will identify spike trains with point process /
counting process realizations.



A tough case (1)

Observed counting process

500

Number of events
300

0 100

T VIR TIIT " SSRUTINT TNNRRETT VO AT UMY TTMRATHI

0 10 20 30 40 50 60

Time (s)

The expected counting process of a homogeneous Poisson
process—with the same mean frequency—is shown in dashed.red.



A tough case (2)
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A renewal process is inadequate here: the rank of successive inter
spike intervals are correlated.



Where are we ?

Conditional intensity



Model constraints

Our model should give room for:

» The elapsed time since the last spike of the neuron (enough for
homogeneous renewal processes).

» Variables related to the discharge history—like the duration of
the last inter spike interval.

» The elapsed time since the last spike of a "functionally
coupled" neuron.

» The elapsed time since the beginning of a applied stimulation.



Filtration, history and conditional intensity

» Probabilists working on processes use the filtration or history:
a family of increasing sigma algebras, (%)g<;<c0, Such that all
the information related to the process at time ¢ can be
represented by an element of ;.

» The conditional intensity of a counting process N(t) is then
defined by:

Prob{N(t+ h) - N(®) =1|%;}
I .

At F) = lim
h|0

» A constitutes an exhaustive description of process / spike train.



Two problems

As soon as we adopt a conditional intensity based formalism, we
must:

» Find an estimator A of 1.

» Find goodness of fit tests.



Where are we ?

Time transformation



What to do with A: A summary

We start by associating to A, the integrated intensity:
t
A= f AMu| F,)du,
0

it then easy—but a bit too long for such a brief talk—to show that:

» If our model is correct ()AL = A), the density of successive spikes
after time transformation:

(.t} = A1) = Ay, A(tR) = A}

is exponential with parameter 1.

» Stated differently, the point process {A1,...,A;} is a
homogeneous Poisson process with parameter 1.

The next slides illustrate this result.



Time transformation illustration (1)

Intensity process and events' sequence
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Time transformation illustration (2)
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Time transformation illustration (3)
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Ogata’s tests

» If, for a good model, the transformed sequence of spike times,
{A1,..., Ay}, is the realization of a homogeneous Poisson
process with rate 1, we should test {f\l, oA n} against such a
process.

» This is what Yosihiko Ogata proposed in 1988 (Statistical
models for earthquake occurrences and residual analysis for
point processes, Journal of the American Statistical
Association, 83: 9-27).

» But an observation suggest nevertheless that another type of
test could also be used...



A Brownian motion?
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Where are we ?

A test based on Donsker’s theorem



Donsker’s theorem and minimal area region

» The intuition of the convergence—of a properly normalized
version—of the process N(A) — A towards a Brownian motion
is correct.

» This is an easy consequence of Donsker’s theorem as Vilmos
Prokaj explained to me on the R mailing and as Olivier
Faugeras and Jonathan Touboul explained to me directly.

» It is moreover possible to find regions of minimal area having a
given probability to contain the whole trajectory of a canonical
Brownian motion (Kendall, Marin et Robert, 2007; Loader et
Deely, 1987).

» We get thereby a new goodness of fit test.



Minimal area region at 95%
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Where are we ?

Conditional intensity estimation



Back to our "tough" case (1)

Observed counting process
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Back to our "tough" case (2)

Our former exploratory analysis leads to a minimal the following
model:
ANF) = f(t—ta, ta— taa),

where 1, is the time of the last spike and z,; is the time of the
one-before-the-last spike.
This is known in the point process literature as a Wold process.



David Brillinger’s approach

» We follow D. Brillinger (1988) who starts by binning the time
axis into bins of length h, where h is small enough to observe at
most one spike per bin.

» We are therefore brought back to a binomial regression
problem.

» The binned data are then considered as an observation from a
collection of Bernoulli random variables {Y7,..., Y;} with
parameters: f(t— tg, t;— tzq) h.

» We estimate in fact:

fa—tyta—tad h
1= f(t=tg, ta—taa)

=n(t—tg, ta—taa) -



The binned data

event time neuron 1N.1 il
14604 0 58.412 1 0.012 0.016
14605 1 58.416 1 0.016 0.016
14606 0 58.420 1 0.004 0.016
14607 1 58.424 1 0.008 0.016
14608 0 58.428 1 0.004 0.008
14609 0 58.432 1 0.008 0.008
14610 1 58.436 1 0.012 0.008
14611 0 58.440 1 0.004 0.012

event is the binned spike train; time is the time at the center of the
bin; neuron is the neuron to which event "belongs"; IN.1 is t-tq; i1 is
tq-taq. Here, h was set to 4 ms.



Smoothing splines

» Since cellular biophysics does not provide much guidance on
how to build  we have chosen to use smoothing splines
(Wahba, 1990; Green and Silverman, 1994; Eubank, 1999; Gu,
2002).

» Computations are performed with gss an R package developed
by Chong Gu.

> n(t—tg,tg— tyq) is decomposed in a unique way in:

Nt—1g,ta—taa) =Ne+M1(E—15) + N2 (tg— taq) + N1 2(E—1g, ta—taq)
where the variables: ¢ —t; and t; — ;4 have been linearly
transformed such their domains are both the [0,1] interval.

» The decomposition is made unique by imposing conditions
like: f; 1;=0.



Where are we ?

Fits and goodness of fit tests



A remark on the tests

» Ogata’s tests, like the proposed "Brownian motion test",
assume that the A use to transform the time is independent of
the data.

» But our A depends strongly on the data.

» We therefore split our data sets in two parts, fit on one part and
test on the other.

» Our test level is then slightly lower than the nominal level (as
explained by Reynaud-Bouret et al, 2014) since our A is slightly
different (at best) from A.



Fit early / test late

Barnard's test Berman's test Brownian motion test
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The model is:
Nt = ta, ta— tag) = Ng + M1 (E—10) + N2 (tg — lag) + M1 2(E— ta, ta — taq)-



Fit late / test early

Barnard's test Berman's test Brownian motion test
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Conclusions

» We can now routinely estimate the conditional intensity of our
spike trains.

» We can include interactions between neurons as well as
stimulations’ response in our models.

» We systematically pass much tougher tests than our
competitors.

» The difficult question of model choice has not been touched
upon here but we have a solution—even if computationally
expensive.

» You can try all that out with the STAR package available on
CRAN (a Python version is in development).



Thank you!
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