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Where are we ?

The Data

Conditional intensity

Time transformation

A test based on Donsker’s theorem

Conditional intensity estimation

Fits and goodness of fit tests



Data’s origin

Viewed "from the outside", neurons generate brief electrical pulses:
the action potentials

Left, the brain of an insect with the recording probe on which 16
electrodes (the bright spots) have been etched. Each probe’s branch
has a 80 µm width. Right, 1 sec of data from 4 electrodes. The spikes
are the action potentials.



Spike trains
After a "rather heavy" pre-processing called spike sorting, the raster
plot representing the spike trains can be built:



Modeling spike trains: Why and How?

Ï A key working hypothesis in Neurosciences states that the
spikes’ occurrence times, as opposed to their waveform are the
only information carriers between brain region (Adrian and
Zotterman, 1926).

Ï This hypothesis legitimates and leads to the study of spike
trains per se.

Ï It also encourages the development of models whose goal is to
predict the probability of occurrence of a spike at a given time,
without necessarily considering the biophysical spike
generation mechanisms.

Ï In the sequel we will identify spike trains with point process /
counting process realizations.



A tough case (1)

The expected counting process of a homogeneous Poisson
process—with the same mean frequency—is shown in dashed red.



A tough case (2)

A renewal process is inadequate here: the rank of successive inter
spike intervals are correlated.
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Model constraints

Our model should give room for:

Ï The elapsed time since the last spike of the neuron (enough for
homogeneous renewal processes).

Ï Variables related to the discharge history—like the duration of
the last inter spike interval.

Ï The elapsed time since the last spike of a "functionally
coupled" neuron.

Ï The elapsed time since the beginning of a applied stimulation.



Filtration, history and conditional intensity

Ï Probabilists working on processes use the filtration or history:
a family of increasing sigma algebras, (Ft)0≤t≤∞, such that all
the information related to the process at time t can be
represented by an element of Ft .

Ï The conditional intensity of a counting process N(t) is then
defined by:

λ(t |Ft) ≡ lim
h↓0

Prob{N(t +h)−N(t) = 1 |Ft}

h
.

Ï λ constitutes an exhaustive description of process / spike train.



Two problems

As soon as we adopt a conditional intensity based formalism, we
must:

Ï Find an estimator λ̂ of λ.

Ï Find goodness of fit tests.
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What to do with λ: A summary

We start by associating to λ, the integrated intensity:

Λ=
∫ t

0
λ(u |Fu)du ,

it then easy—but a bit too long for such a brief talk—to show that:

Ï If our model is correct (λ̂≈λ), the density of successive spikes
after time transformation:

{t1, . . . , tn} → {Λ(t1) =Λ1, . . . ,Λ(tn) =Λn}

is exponential with parameter 1.

Ï Stated differently, the point process {Λ1, . . . ,Λn} is a
homogeneous Poisson process with parameter 1.

The next slides illustrate this result.



Time transformation illustration (1)



Time transformation illustration (2)



Time transformation illustration (3)



Ogata’s tests

Ï If, for a good model, the transformed sequence of spike times,
{Λ̂1, . . . ,Λ̂n}, is the realization of a homogeneous Poisson
process with rate 1, we should test {Λ̂1, . . . ,Λ̂n} against such a
process.

Ï This is what Yosihiko Ogata proposed in 1988 (Statistical
models for earthquake occurrences and residual analysis for
point processes, Journal of the American Statistical
Association, 83: 9-27).

Ï But an observation suggest nevertheless that another type of
test could also be used. . .



A Brownian motion?
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Donsker’s theorem and minimal area region

Ï The intuition of the convergence—of a properly normalized
version—of the process N(Λ)−Λ towards a Brownian motion
is correct.

Ï This is an easy consequence of Donsker’s theorem as Vilmos
Prokaj explained to me on the R mailing and as Olivier
Faugeras and Jonathan Touboul explained to me directly.

Ï It is moreover possible to find regions of minimal area having a
given probability to contain the whole trajectory of a canonical
Brownian motion (Kendall, Marin et Robert, 2007; Loader et
Deely, 1987).

Ï We get thereby a new goodness of fit test.



Minimal area region at 95%
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Back to our "tough" case (1)



Back to our "tough" case (2)

Our former exploratory analysis leads to a minimal the following
model:

λ(t|Ft) = f (t − td, td − tad) ,

where td is the time of the last spike and tad is the time of the
one-before-the-last spike.
This is known in the point process literature as a Wold process.



David Brillinger’s approach

Ï We follow D. Brillinger (1988) who starts by binning the time
axis into bins of length h, where h is small enough to observe at
most one spike per bin.

Ï We are therefore brought back to a binomial regression
problem.

Ï The binned data are then considered as an observation from a
collection of Bernoulli random variables {Y1, . . . ,Yk} with
parameters: f (t − td, td − tad)h.

Ï We estimate in fact:

log

(
f (t − td, td − tad)h

1− f (t − td, td − tad)h

)
= η(t − td, td − tad) .



The binned data

event time neuron lN.1 i1
14604 0 58.412 1 0.012 0.016
14605 1 58.416 1 0.016 0.016
14606 0 58.420 1 0.004 0.016
14607 1 58.424 1 0.008 0.016
14608 0 58.428 1 0.004 0.008
14609 0 58.432 1 0.008 0.008
14610 1 58.436 1 0.012 0.008
14611 0 58.440 1 0.004 0.012

event is the binned spike train; time is the time at the center of the
bin; neuron is the neuron to which event "belongs"; lN.1 is t-td; i1 is
td-tad. Here, h was set to 4 ms.



Smoothing splines

Ï Since cellular biophysics does not provide much guidance on
how to build η we have chosen to use smoothing splines
(Wahba, 1990; Green and Silverman, 1994; Eubank, 1999; Gu,
2002).

Ï Computations are performed with gss an R package developed
by Chong Gu.

Ï η(t − td, td − tad) is decomposed in a unique way in:

η(t−td, td−tad) = η;+η1(t−td)+η2(td−tad)+η1,2(t−td, td−tad) ,

where the variables: t − td and td − tad have been linearly
transformed such their domains are both the [0,1] interval.

Ï The decomposition is made unique by imposing conditions
like:

∫ 1
0 ηi = 0.
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A remark on the tests

Ï Ogata’s tests, like the proposed "Brownian motion test",
assume that theΛ use to transform the time is independent of
the data.

Ï But our Λ̂ depends strongly on the data.

Ï We therefore split our data sets in two parts, fit on one part and
test on the other.

Ï Our test level is then slightly lower than the nominal level (as
explained by Reynaud-Bouret et al, 2014) since our Λ̂ is slightly
different (at best) fromΛ.



Fit early / test late

The model is:
η(t − td, td − tad) = η;+η1(t − td)+η2(td − tad)+η1,2(t − td, td − tad).



Fit late / test early



Data and λ̂



Conclusions

Ï We can now routinely estimate the conditional intensity of our
spike trains.

Ï We can include interactions between neurons as well as
stimulations’ response in our models.

Ï We systematically pass much tougher tests than our
competitors.

Ï The difficult question of model choice has not been touched
upon here but we have a solution—even if computationally
expensive.

Ï You can try all that out with the STAR package available on
CRAN (a Python version is in development).
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