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Project Specification

Highly granular calorimeters (HGCAL) will be one of the biggest novelties of the CMS Phase II
upgrade and, in general, of the next generation of collider experiments. This kind of detectors
offer more opportunities but much more complexity. It has a drawback on the execution time of
generic tasks, such particle reconstruction and identification as well as, notably, event simulation.
In order to stay within the technical budgets (e.g. computing time) and satisfy the demand for
large simulation samples, experiments will have to work on faster and more accurate simulation
process. Deep Learning, and in particular generative models, offer an interesting possibility to
speed up the simulation technique. Moreover, deep learning solutions are particularly suitable for
HGCAL, given the pixelated nature of its active material. This project aims to adapt to HGCAL
existing work on GAN for fast simulation.
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Abstract

This project uses Wasserstain Generative Adversatial Networks (WGANs) to supply the demand
for large simulation samples in the event of the CMS Phase II Upgrade. The distributions of real
and generated hits on different detector layers are trained, revealing good quality especially in
the production of longitudinal showers. This result provides a baseline for further studies. The
performance of the trained models is evaluated using three different metrics, all giving consistent
conclusions. The Wasserstein distance was chosen to decide upon the best model.
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1. Introduction

1.1 Motivation

The highly granular calorimeter (HGCAL) will be the greatest novelty of the Compact Muon
Solenoid (CMS) Phase II upgrade [3] and of the next generation of collider experiments. Af-
ter the upgrade, there will be four times more particle interactions in the experiment, introducing
a new demand for large and accurate simulation samples, while detector simulations present
higher time complexity in the new calorimeter architecture.

Deep Learning, and in particular generative models, offer an interesting possibility to speed
up the simulation technique. Generative Adversarial Networks (GANs) [5] have been applied
to calorimeter simulation problems in High Energy Physics (HEP): the CaloGAN [9] architecture
considered a simplified version of the electromagnetic calorimeter from the ATLAS experiment,
reproducing particle shower properties while achieving significant computational speedup. GANs
have been explored in three-dimensional calorimeters [2] [8] by treating detector response sim-
ulation as an image generation problem, employing three-dimensional convolutions in the model
architecture. More recently, Wasserstein GANs (WGANs) have been applied to calorimeter data
from CERN’s Super Proton Synchrotron test beam [4].

Deep learning solutions are particularly suitable for the CMS High-Granularity Calorimeter
(HGCAL), given the pixelated nature of the problem. This project adapts existing work about
GANs for fast simulation. Particular attention is devoted to the specific aspects of HGCAL, such
as its hexagon-shaped cell geometry.

The repository for this work is available at https://github.com/vitoriapacela/hgcal_wgan.

1.2 Data

The dataset consists of Monte Carlo simulations of particle showers generated with Geant4 soft-
ware. For each generated particle shower, the following information is recorded about the in-
coming particle: pseudorapidity (η), azimuthal angle (φ), and true energy. Reconstructed hits are
described by the energy, time, η, φ, and layer–the longitudinal direction in which the shower is
developed.

The active material of the HGCAL consists of hexagonal silicon sensors that detect particle
showers. In this sense, (η, φ, layer) coordinates correspond to the center of the hexagons. In
order to approach this data as in an image-generation problem, it needs to be converted to a
pixelated image format. For such, the energy deposits are mapped from (η, φ, layer) coordinates
to a 3-D array. A square tiling is fit into the array, so that each pixel of the grid contains a set of
energy deposits, whose size depends on the size of the squares. The tiling size is chosen such
that there are at most 6 six sensors per pixel, and then the energy deposits in each pixel are
summed up. The data shape after preprocessing is (16, 16, 55). The depth of the calorimeter is
55 layers, while the selected window size for the events is 16x16.

As a first attempt to solve the problem, simulated events of electrons without pileup were
selected. Moreover, the considered calorimeter ”window” contains deposits coming from only
one particle. The events are stored in compressed HDF5 files. The training set contains 155 145
events with energies ranging from 0 to 500 GeV. A higher number of events could improve the
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Figure 1.1: The sum over all the pixels of the calorimeter relates to the true energy of the incoming
particles.

performance of the model, therefore experiments using larger samples should be performed in
the future.

The data describes a small energy loss in the calorimeter – compared to other types of
calorimeters, in which the majority of the energy is lost in the absorber –, as illustrated in Fig.
1.1, in which the total energy deposited in the calorimeter has approximately a one-to-one re-
lation to the true energy of the incoming particle. However, in some events the total energy
deposited in the calorimeter is higher than the true energy of the particle. This possible problem
in the dataset did not have any significant negative impact in training.

The 3D data can be analysed according to its projections in each plane, as illustrated in Fig.
1.2. For each plane projection, the original data is summed into one of the axes for each event,
and the image is obtained by taking the average of all the events. There is a slight discrepancy
between η bin and φ bin axes, clarified in Fig. 1.3. This is explained by the bending of electrons
due to the electromagnetic field. It is also noticeable that the electrons decay in the first half of
the calorimeter, and that there is a dispersion in the 27th layer of the calorimeter.

HGCAL Fast Simulation with Deep Learning 2
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Figure 1.2: Projection of the training data in η x φ, η x depth, and φ x depth planes.

Figure 1.3: Total energy deposited in η and φ bins, according to the position. Most of the energy
depositions occur in the center of the calorimeter, while the energy depositions over the φ bin
surpass the depositions over the η bin.
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1.3 GANs and WGANs

GANs are generative models that use supervised learning to estimate the cost function. They
use adversarial training by defining a generative model (G) that captures the data distribution,
and a discriminative model (D) that estimates the probability of whether a sample came from the
training data, or from the generative model. The generator is a differentiable function that yields
a sample from the generative model given a noise variable z. While D trains, it estimates the
ratio between the training data distribution and the model-generated distribution. D can identify
the samples that came from the generator because the data lies in a low-dimensional manifold.
During training, these two models compete against each other: G should produce samples as
close to the training data as possible, in order to maximize the probability of D making a mistake.
This is possible through a MiniMax game, in which the loss function (eq. 1.1) should be optimized.

min
G

max
D

L(D,G) = Ex∼pr(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1.1)

Even though GANs have been successful in image generation problems, practical training
is unstable for various reasons. The largest problem is non-convergence: while each model
updates its cost separately, the gradient update in each model may not converge, thus being
hard to achieve the Nash equilibrium.

To mitigate such problem, the Wasserstein GAN (WGAN) [1] uses the Wasserstein distance
to measure the distance between two probability distributions: from “generated” (generated by
the generator model) to “real” (training) data. This measure is also known as the Earth Mover’s
distance, and it can be interpreted as moving amounts of volume from one distribution to the
other at a minimum cost–in terms of quantity of moves and distance–until one distribution turns
into the other one. WGANs use the Wasserstein distance as the loss function, according to eq.
1.2.

W (pr, pg) =
1

K
sup

‖f‖L≤K
Ex ∼ pr[f(x)]− Ex∼pg

[f(x)] (1.2)

In WGANs the discriminator must lie within the space of 1-Lipschitz functions, which is re-
inforced with weight clipping: after every gradient update in the discriminator, the weights are
limited to a fixed range [−c, c].

Furthermore, the discriminator does not play the role of a critic, but it helps to approximate the
Wasserstein metric by trying to maximize the distance between its outputs for real and generated
samples. Whereas in the vanilla GAN the discriminator had a sigmoid output, representing the
probability that samples are real or generated, in the WGAN the discriminator’s output is linear.
In addition, it is convenient to label generated samples as -1 and real samples as 1, instead of 0
and 1, so that label multiplication aids the calculation of the loss function.

HGCAL Fast Simulation with Deep Learning 4
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2. HGCAL WGAN

2.1 Model architecture and training

The model architecture is a variation of the DCGAN (Deep Convolutional GAN) [10]. It uses batch
normalization [7] layers with momentum 0.8 both in the discriminator and in the generator, except
for the last layer of the generator and first layer of the discriminator, since the model can then
learn the mean and scale of the data distribution.

RMSprop [6] is used as the optimizer with learning rate 0.5 · 10−4, as recommended in the
WGAN paper [1], since momentum-based optimizers like Adam cause instability in model train-
ing. The models were training using a mini-batch size of 128. The weights were initialized from a
uniform distribution with Glorot uniform initializer. The clipping value is 0.05, and the discriminator
network is trained five times for every generator training iteration.

Multiple models were tested, with varying types of convoltional layers. This work presents
the most successful model in terms of quality of samples generated and training time. The critic
network, illustrated in 2.2, processes generated and real images by using two-dimensional con-
volutional layers, treating the calorimeter layers as image channels of dimension 55, whereas the
16× 16 cross section is treated as image rows and columns, respectively. The generator network
receives random noise as input as starts from a 100-dimensional latent space. Fractionally-
strided convolutions are applied in the same way to generate samples of the same dimensions
as the real images: 16x16x55, as shown in Fig. 2.1.

Figure 2.1: Architecture of the generator network. The generator starts from a 100-dimensional
uniform distribution projected to a convolutional representation. Three deconvolutions are used
until the generated image of the correct shape is reached.
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Figure 2.2: Architecture of the critic network. Four Convolution2D layers are applied in conjunc-
tion with ZeroPadding2D, Batch Normalization, and Dropout layers. The output from the Dense
layer does not contain the sigmoid activation function that is usual of discriminator architectures.

2.2 Results

The generated samples are similar to the real ones, but present higher values of energy. The
energy deposition in each axis of the calorimeter, shown in Fig. 2.3, reveals that the showers are
well-reproduced with respect to the depth of the calorimeter. On the other hand, the generated
showers are problematic with respect to the x –η bin– axis in its borders. The distribution of
energy deposition along the y –φ bin– axis for generated samples still requires improvement to
be better approximated to the distribution of real samples.

Different metrics have been applied for model evaluation: Wasserstein distance, Kullback-
Leibler (KL) divergence, and Jensen-Shannon (JS) divergence. They measure the difference
between the energy distributions of real and fake samples for each axis (the same distributions
shown in Fig. 2.3). The average of the score of each axis is calculated for each metric, and the
results are displayed in Fig. 2.4. It is clear that all metrics converge on showing the performance
of the model during training; they all indicate that the best model is achieved approximately in
step 4000, after which the divergence only increases. It is relevant to point out that the minimum
achieved around step 2000, it does not represent a reliable metric due to its uncertainity. Fig. 2.5
shows the Wasserstain distance plotted for each axis. While the distribution along z is learned
fast, the distributions along x and y only agree with each other after step 4000.

The training time of the model presented for 2000 steps is of approximately 10 minutes in a
V100 Nvidia GPU, as shown in Table 2.1. Furthermore, 1000 samples can be generated in less
than a second using 10 CPU cores Skylake.

Time X Machine Nvidia V100 GPU Nvidia GeForce GTX 1080 CPUs
Training (2000 steps) (s) 486 928 3373

Generation (1000 samples) (s) – 0.1 0.69

Table 2.1: Comparison between training and generation time in different machines.

HGCAL Fast Simulation with Deep Learning 6



CERN openlab Report 2018

Figure 2.3: Energy deposition per axis. The generated samples demonstrate a similar distribution
to the real samples regarding the z axis – depth of the calorimeter. Distributions along x – η bin
– and y – φ bin – axes require improvement.

Figure 2.4: Average of the measure of the Wasserstain distance, KL divergence, and JS diver-
gence, calculated on the distributions of energy deposition per axis. The best model is found by
step 4000.
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Figure 2.5: Wasserstain distance metric calculated on the distributions of energy deposition per
axis. The distribution along the z – depth of the calorimeter– axis is learned fast, while the
distribution on x –η bin– and y–φ bin– axes stabilize after step 4000.
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3. Conclusions

This work proposes the use of WGANs as an alternative to supply the high demand for fast
shower simulation for the HGCAL after the CMS Phase II Upgrade, and demonstrates a good
baseline that can be further explored. The generated samples have shown to be similar to the real
sample distribution, especially in reproducing energy deposits along the depth of the calorime-
ter. Nevertheless, improvement is still necessary in generating samples in better correspondence
to the real distribution over η and φ bins. A bigger dataset could auxiliate in this task. Different
metrics were employed to evaluate the generated samples, and they all converge both in compar-
ing models and in deciding when to stop training. Comparisons between different models using
the Wasserstein difference metric will be presented in the future. In addition to the successful
model performance, the proposed framework promises significant simulation speedup: training
is performed under 10 minutes in a V100 GPU, whereas the inference time to generate 1000
samples is less than a second in the same machine. Benchmarking in more machines would be
interesting. Yet these numbers cannot be directly compared to GEANT yet because the events
generated have lower complexity.

For future work, an additional task of energy regression task will be given to the generator,
as an attempt to preserve the correlation between the total energy generated per event and
how such energy is distributed over the calorimeter, as has been shown in other studies [8].
Constraints on the total energy, η, and φ will be imposed to sample generation. Furthermore,
other datasets must be explored for different particle types – such as photons and pions – and
for events containing pileup.

Zero suppression problems may arise from the simplification of the problem when the data is
preprocessed. In a real experiment, sensors will contain inifinitely small energy deposits, which
will be different from the generated samples, and can be an identifier to aid the criticial network in
discriminating generated from real samples. This issue can be mitigated by inserting a distribution
of infinitely small values to the input that is given to the critic. Alternatively, it can be added to the
end of the generator network.

After the development of this work it was noticed that the dimension of the depth of the HGCAL
is 52 instead of 55. This difference does not affect the results, but should be considered for
reimplementing the model architectures to decrease computational time during training.
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