
MPI Learn: distributed training

AUGUST 2018

AUTHOR:
Filipe
Magalhães

CERN EP-CMG

SUPERVISORS(S):

Maurizio Pierini
Jean-Roch Vlimant

CERN openlab Report 2018

Project Specification

MPI Learn is a framework for distributed training of Neural Networks. Machine Learning models
can take a very long time to train. This can be improved using parallelism, by distributing the train-
ing over several processes and several hardware resources. Implementing parallelism requires
expertise and is time consuming.

MPI Learn is aimed at machine learning users, who need to speedup the training of their
models. A user should input a model, training and validation data, and tune other training param-
eters. MPI Learn will internally distribute the training over the specified number of processes, and
output results, abstracting all the parallelism from the user.

MPI Learn is intended to be part of a bigger project, MPI Opt which aims to perform hyper-
parameter optimization, in a distributed fashion. This framework will search for the best hyperpa-
rameters in a user defined search space. The search will be parallelized, with several executions
of MPI Learn being run in parallel.

MPI Learn is currently implemented and being used in some practical projects. The work
developed over the course of this summer focused on optimizing the framework, and analyzing
its execution with the objective of increasing performance.

MPI Learn ii

CERN openlab Report 2018

Abstract

MPI Learn is a framework for the distributed training of neural networks. This platform is aimed
at machine learning users, who can use it to train models faster, without dealing with the com-
plexity of parallelizing the execution. This framework is implemented and in active use. During
the months of July and August, the work developed focused on profiling and analyzing the per-
formance of the execution. Features and improvements were developed based on this analysis.

The profiling was done using varied examples of models and datasets, allowing for the anal-
ysis of very different execution behaviours. A single process mode was developed for the frame-
work, to serve as a base for scalability studies. In order to reduce the performance impact
caused by the validation of a model at the end of an epoch, the validation was parallelized by
using threads. Additionally, the optimizer used was optimized, as it was deemed a bottleneck in
some executions.

The analysis of the execution flow as also led to a number of considerations regarding future
developments and the most efficient use of the framework.

MPI Learn iii

CERN openlab Report 2018

Contents

Contents iv

List of Figures v

1 Introduction 1

2 Profiling 2
2.1 Data input files . 2

3 Features and Improvements 3
3.1 Single Process Mode . 3
3.2 Validation Thread . 3

3.2.1 Distributed Validation . 3
3.3 Adam optimizer . 4

4 Conclusions 6
4.1 Acknowledgments . 6

Bibliography 7

MPI Learn iv

CERN openlab Report 2018

List of Figures

3.1 Average execution time with and without the use of the validation thread. Using 5
worker in the GRU example. 4

3.2 Average time taken by each implementation of the ”apply update” step. 5

MPI Learn v

CERN openlab Report 2018

1. Introduction

Neural Networks (NNs) have been revolutionizing many fields in technology and science for the
past years, and High Energy Physics is no exception. NNs can be faster and more accurate than
other traditional methods. However, training NNs can be a very slow process, requiring hours
days or weeks to achieve results.

It is highly desirable to speed up the training process, so that users could iterate on their
models faster, and achieve results in a timely manner. Using specialized hardware, such as
GPUs, that parallelize the training in a single machine, is fundamental to speedup the compu-
tation. However, even with high end hardware, the full process may take a long time. In order
to further reduce the waiting time, the computation can be distributed, so that several machines,
and several GPUs collaborate to make training faster. There are several approaches to parallelize
training.

At CERN, machine learning models are being widely used by physicists, with knowledge in
machine learning. As such, it is important to have a way to speedup computation that does not
require deep knowledge of parallelism or distributed computing techniques. Most of the users
are already familiar with popular packages used for machine learning, such as Keras or Pytorch,
and have models implemented with these tools. In order to reduce the time spent with boiler-
plate code, it is important to be able to use this existing knowledge and code with parallelized
approaches, avoiding as much extra work as possible. It is also important to explore as many
available machines as possible, without the requirement of a high speed network, or hardware in
the same physical machine.

In response to this need, MPI Learn[5] was developed, a framework that speeds up the train-
ing, while abstracting the distribution of computation from the user. This framework aims at being
easy to use while providing enough flexibility. Users need to provide the model to train and tune
any relevant parameters. The distributed training happens without intervention or any need for
custom code. Provided models can be exported from popular platforms such as TensorFlow,
Keras or Pytorch. The code of the framework is highly modular, and therefore can be customized
to different needs.

Internally, MPI Learn follows a Master-Slave architecture, where a main model is kept on the
master process, and each worker is responsible for training on a sub-set of the training set. Each
worker will contribute updates to the master, which will update the main model accordingly, and
give the updated model to the workers.

The framework is currently implemented, and being used for research. The current focus of
the project is in maintenance, adding new features as needed by the users, and improving the
efficiency of the framework. The work on the performance of the platform focuses on profiling
and analysis of its execution, in order to improve any inefficiencies detected.

MPI Learn 1

CERN openlab Report 2018

2. Profiling

The main focus of the work developed over the months of July and August was the optimization
of the MPI Learn implementation. This objective was achieved by profiling the execution of rep-
resentative examples in MPI Learn, and implementing features and improvements according to
that analysis.

In order to analyze the execution profile, the built-in tracing option was used, which provides
a trace file readable with Google Chrome’s ”Trace Event Profiling Tool”.

The data and models used had a big variation. The starting point was the standard MPI Learn
examples based on the MNIST and CIFAR10 datasets. Models closer to realistic high-energy
physics usecases were also tested. In particular, we used so-called jet-tagging classifiers based
on GRU and (1D and 2D) convolutional layers.

Profiling was used to motivate the addition of features and improvements. Additionally, it was
used to measure the effectiveness of the changes made. These will be discussed in further detail
in Chapter 3. The execution profiles obtained were also useful to analyze how configuration
options change the performance, such as the configuration of the input files.

2.1 Data input files

MPI Learn accepts a list of input files for training. These are distributed among the workers as
evenly as possible. Individual files are not split among processes, no matter their content or if
it is the only input file. Opening and processing a file involves some overhead. It is pertinent
to ask if there is an ideal number of files in which to split the computation, in order to maintain
performance.

Since the content of a file is not split, it is important to have a number of files divisible by the
number of workers used, so that the work distribution is made evenly. Experiments were made
using convolutional network example, using both a very large number of files, each containing a
batch (100 examples), and the minimum number of files, where all the training data were split into
5 files. The global overhead does not change significantly when changing the number of files,
favouring very slightly having as many files as worker processes.

It may be interesting to explore parallelism between file I/O and training. At the moment, in
the worst examples examined the overhead represents less than 10% of the execution time.

MPI Learn 2

CERN openlab Report 2018

3. Features and Improvements

Motivated by the results of the execution profiles of different examples, different features were
developed, which will be laid out in the following sections. As part of the maintenance of MPI
Learn, small code issues were fixed, which will not be presented for lack of practical interest.

3.1 Single Process Mode

In order to make an analysis of the scaling of MPI Learn, and understand the performance impact
of using several processes in the training, it is useful to execute the program in a single process,
where communication latency is not a factor to consider.

With this in mind, a single process execution mode was developed (Implemented and submit-
ted in [2]). When executing in a single process, the same steps that would run in a distributed
execution will be performed, save for the communication, which is substituted by updates to the
relevant variables. In particular, the optimizer that runs in the master, applying the updates of
each worker to the main model, is still used in this version.

3.2 Validation Thread

In some examples, the validation, at the end of each epoch, can take up a significant percentage
of run-time. In particular, when executing the GRU example with 5 workers, validation would take
33% of the execution time. Validation is performed in the master and, in a regular execution, it
will not do anything else at the same time, implying that all workers must wait until the validation
is done in order to submit new updates to the master and continue their training.

In order to avoid wasting computing resources, the workers must be able to keep on training
during the validation. With this objective in mind, the validation was moved to a dedicated thread
in the master, while the main thread keeps on answering the workers and applying the updates
being received. (Implemented and submitted in [4]) The main thread provides the validation
thread with the values of the weights at the time of validation, via a queue. The validation thread
then uses those weights and saves all results accordingly, staying idle the remainder of the time.

The implementation of the thread is impactful when the validation represent a significant part
of the execution time. In particular, for an execution where the validation takes up 28% of the time
(89s in a total of 313s), the use of the thread reduces the overall execution time by 23% (65s).
This represents a good speedup, and reduces almost completely the impact of the validation on
the performance of training.

3.2.1 Distributed Validation

Using a thread in the master to perform validation allows for a better use of the GPU in the master
process, and allows workers to train continuously, without waiting for the validation. However, if
the validation takes enough time, it will still become the bottleneck of the computation. If the
validation thread is always working, the computation time will depend on it.

MPI Learn 3

CERN openlab Report 2018

Figure 3.1: Average execution time with and without the use of the validation thread. Using 5
worker in the GRU example.

This can be solved by distributing the validation. Each worker can be attributed a fraction of the
validation set, and perform the validation at the request of the master. This can be incorporated
as falg sent when the worker receives weights from the master, to signal that validation should be
performed, rather than training. Each worker would simply have to run its fraction of the validation
and return the results to the master, which aggregates the results.

This problem has only been relevant in examples where the validation set is very big and
the number of workers large. Since these were not deemed realistic at the moment, distributed
validation has not been implemented.

3.3 Adam optimizer

The profiling done with the CIFAR10 example presented a poor scalability with a small number of
workers. The master process spent most of the time applying the updates sent by the workers,
while these spent most of the time waiting for a response from the master. In order to solve the
issue, it was necessary to increase the performance of applying each update at the master.

The original code implemented the adam optimizer in numpy. The computation inside numpy
itself was taking too much time to execute. The first attempt made was to use different numpy
methods to solve the problem. The objective was to reduce the number of calls to numpy, since
the function call itself and the use of intermediate variables introduces overhead. However, this
approach did not yield any particular speedup.

NumExpr [1] is a numerical evaluator for python. It is a library that receives a string repre-
senting the expression to compute, which is subsequently processed and executed. This library
can be faster than numpy, since it avoids storing intermediate results. Aside from that, it would
also use all available CPUs, automatically parallelizing the computation.

Using this library instead of numpy to implement the computation proved to be much faster,
reducing the execution time of each update from 20msec to 6msec. This improvement reduced
the computation time, but it is still a limitation to scalablity, since training in the workers is very
fast.

In order to further improve the execution time, it is interesting to explore the parallelism pro-
vided by the GPU. As such, an implementation of the Adam optimizer was developed, using ten-
sorflow. The final version wraps Tensorflow’s own implementation of the Adam optimizer, making

MPI Learn 4

CERN openlab Report 2018

it compatible and modular in relation to the rest of MPI Learn. This implementation proved to
be even faster, reducing the execution time of each update to around 3msec. This was the final
version implemented, and submitted to the main code base. [3]

Figure 3.2: Average time taken by each implementation of the ”apply update” step.

MPI Learn 5

CERN openlab Report 2018

4. Conclusions

The work developed over the course of this CERN openlab experience focused on the profiling
of MPI Learn, as well as addition of new features and efficiency improvements.

The profiling work resulted in a better understanding of the current performance challenges,
and of how model dependent the execution time is. The features implemented resulted in faster
execution times, making it viable to parallelize and speedup more use cases. In particular, using
a thread in the validation removes one of the main synchronization points from the workers. The
improvement of the incorporation of updates in the master, on the other hand, allows for the
efficient parallelization of models that take a small time to train each batch.

As MPI Learn is implemented and in active use, it will remain in continuous improvement, with
features being added as users require. It will be important to improve the experience based on
user feedback regarding supported features and user interaction with the framework. Further-
more, the optimization work should continue, in order to ensure that the computational resources
are used as much as possible.

In particular, if the use of heterogeneous machines is considered, or the use of machines
where the resources may be in concurrent use by other processes, it makes sense to implement
load balancing in the training. At the moment, each worker received an equal part of the training
data, and performs its training over it. However, should a worker be slower to process its share,
that will not be compensated by other workers, which will stay idle at the end of the computation,
until the slower worker finishes. Training data could be dynamically distributed by the master,
without significant overhead, as long as a queue of input files to use is kept in the master.

Additionally, it is important to explore GPU parallelism, aside from multi-process parallelism.
Increasing the batch size to maximum supported gives a free speedup by better exploring GPU
parallelism. Any downsides of increasing the batch size should also be visible when adding
workers. It should be part of the instructions of use of MPI learn to keep the batch size per
process as high as possible. It would be also interesting if the framework could automatically
selects a suitable batch size to better explore the available hardware.

As the computational effort is better distributed and time performance increases, it is impor-
tant to maintain the accuracy of the training performed in a distributed fashion. To this end,
algorithms that control the instability associated with distributing the training will be explored,
such as GEM[6].

4.1 Acknowledgments

This work was mainly conducted at ”iBanks”, the AI GPU cluster at Caltech. We acknowledge
NVIDIA, SuperMicro and the Kavli Foundation for their support of ”iBanks”.

This project was received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement no 772369).

MPI Learn 6

CERN openlab Report 2018

Bibliography

[1] Numexpr library. https://github.com/pydata/numexpr. Accessed: 2018-08-28. 4

[2] Single process mode pull request. https://github.com/svalleco/mpi_learn/pull/22. Ac-
cessed: 2018-08-23. 3

[3] Tensorflow adam optimizer pull request. https://github.com/svalleco/mpi_learn/pull/

27. Accessed: 2018-08-28. 5

[4] Threaded validation pull request. https://github.com/svalleco/mpi_learn/pull/23. Ac-
cessed: 2018-08-23. 3

[5] Dustin Anderson, Jean-Roch Vlimant, and Maria Spiropulu. An mpi-based python framework
for distributed training with keras. CoRR, abs/1712.05878, 2017. 1

[6] Joeri Hermans and Gilles Louppe. Gradient energy matching for distributed asynchronous
gradient descent. CoRR, abs/1805.08469, 2018. 6

MPI Learn 7

https://github.com/pydata/numexpr
https://github.com/svalleco/mpi_learn/pull/22
https://github.com/svalleco/mpi_learn/pull/27
https://github.com/svalleco/mpi_learn/pull/27
https://github.com/svalleco/mpi_learn/pull/23

	Contents
	List of Figures
	Introduction
	Profiling
	Data input files

	Features and Improvements
	Single Process Mode
	Validation Thread
	Distributed Validation

	Adam optimizer

	Conclusions
	Acknowledgments

	Bibliography

