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We introduce a verification score for probabilistic forecasts of contours – the Spa-

tial Probability Score (SPS). Defined as the spatial integral of local (Half) Brier

Scores, the SPS can be considered the spatial analogue of the Continuous Ranked

Probability Score (CRPS). Applying the SPS to idealized ensemble forecasts of the

Arctic sea-ice edge in a global coupled climate model, we demonstrate that the met-

ric responds in a meaningful way to ensemble size, spread, and bias. When applied

to individual forecasts or ensemble means (or quantiles), the SPS is reduced to the

‘volume’ of mismatch, which in the case of the ice edge corresponds to the Inte-

grated Ice Edge Error (IIEE). By comparing initialized forecasts with climatological

and persistence forecasts, we confirm earlier findings on the potential predictability

of the Arctic sea-ice edge from a probabilistic viewpoint. We conclude that the SPS

is a promising probabilistic verification metric, for contour forecasts in general and

for ice-edge forecasts in particular.
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1 INTRODUCTION

Forecast verification is an important part of the workflow in

environmental prediction. Verification is critical for moni-

toring and comparing forecast system performance, it guides

model development, and it informs forecast users about the

quality of predictions (Casati et al., 2008). Predictions for

different quantities require different types of verification met-

rics (or scores), ranging from summary metrics like the

widely used 500 hPa geopotential height anomaly correla-

tion to highly specific metrics like the Flight Time Error

which is tailored to aviation needs (Rickard et al., 2001). With

the advent of ensemble-based probabilistic forecast systems,

which have become the standard in medium-range weather

prediction (Palmer, 2000; Gneiting and Raftery, 2005), came

an increased need for probabilistic verification metrics. These

take the full probabilistic forecast information into account

instead of just evaluating the ensemble-mean or individual

ensemble members in a deterministic fashion.

Prominent examples for probabilistic metrics are the (Half)

Brier Score (Brier, 1950) for dichotomous (i.e. binary) events

and the Continuous Ranked Probability Score (CRPS; Math-

eson and Winkler, 1976) for continuous quantities. The Brier

Score is simply defined as the squared difference between

the forecast probability of an event and its observed prob-

ability, the latter being either 1 or 0 (i.e. binary, assuming

perfect observability). The CRPS is closely related as it inte-

grates the Brier Score for the probability of a continuous

variable surpassing a threshold over the range of possible

thresholds. In contrast to the Brier Score, which has no units,

the CRPS inherits the units of the continuous variable con-

sidered through the integration, allowing the interpretation of

the CRPS as a meaningful distance of the forecast probabil-

ity density function from the observed value. When applied
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to deterministic forecasts, the Brier Score yields 1 for a false

forecast and 0 for a true forecast, and the CRPS is reduced

to the absolute error. This implies that both can be used to

assess deterministic and probabilistic forecasts in the same

framework. Another appealing property is that these metrics

are strictly proper and thus resistant to hedging (e.g. Wilks,

2011).

Another element of interest when it comes to assessing

the quality of a forecast is how well certain spatial features

are forecast. For example, a rainband may have been forecast

accurately in terms of timing, intensity, and shape but there

might be a shift in location. A point-based evaluation will

indicate poor skill and will not acknowledge the correct tim-

ing, intensity, and shape of such a forecast. To overcome this

limitation, a number of spatial verification metrics that can be

classified as neighbourhood, scale-separation, feature-based,

and field-deformation approaches have been devised (Gille-

land et al., 2009). For example, the neighbourhood-type

Fractions Skill Score does not require an exact alignment

of forecast and observed patterns, but evaluates the statistics

over a certain neighbourhood (e.g. Mittermaier and Roberts,

2010). An example for a useful feature-based verification met-

ric is the partial or modified Hausdorff distance (e.g. Venu-

gopal et al., 2005; Dukhovskoy et al., 2015) which measures

essentially a mean distance between forecast and observed

features. Importantly, however, most exisiting spatial verifi-

cation metrics are not well suited to evaluate probabilistic

forecasts. Notably, one of the aims of the ongoing community

project MesoVICT (Mesoscale Verification Intercomparison

over Complex Terrain) is to test the suitability of existing spa-

tial verification methods for ensemble forecasts (Dorninger et
al., 2018).

Here we suggest a probabilistic verification score for con-

tours that combines probabilistic and spatial forecast verifica-

tion – the Spatial Probability Score (SPS). Being the spatial

integral of local Brier Scores, the SPS can be considered the

spatial analogue of the CRPS, inheriting numerous desirable

properties of these classic metrics. Building on the intro-

duction of the Integrated Ice Edge Error and the simulation

experiments used in Goessling et al. (2016 hereafter G16),

we demonstrate the behaviour of the SPS based on idealized

ensemble forecasts of the Arctic sea-ice edge – a contour that

receives increasing attention given the rapid Arctic warming

and associated opportunities for shipping and other human

activities (Emmerson and Lahn, 2012; Smith and Stephenson,

2013).

The article is structured as follows. In section 2 we intro-

duce the Spatial Probability Score (SPS). In section 3 we

apply the SPS to idealized ensemble forecasts. Firstly, we

explain the simulation set-up (section 3.1); secondly we

describe how we manipulate the perfect ensemble fore-

casts to mimic changes in ensemble size, spread, and bias

(section 3.2); and thirdly we analyse how the SPS responds to

these changes (section 3.3). In section 4 we discuss limitations

and outline possible applications and extensions of the SPS,

followed by a brief summary and conclusions in section 5.

2 THE SPATIAL PROBABILITY SCORE

Consider an observed (o) and a forecast (f) spatial probabil-

ity field P(x) of a dichotomous event. We define the Spatial

Probability Score (SPS) as

SPS = ∫V
{Pf(x) − Po(x)}2 dV , (1)

where V is the ‘volume’ of interest spanned by an arbitrary

number N of spatial dimensions, and x ∈ V . The SPS inherits

units lengthN from V through dV , which allows for an intuitive

interpretation. Obviously, SPS = 0 if and only if Pf = Po

everywhere, which implies that the SPS is strictly proper and

thus resistant to hedging (compare Wilks, 2011). Note that

Pf ,Po ∈ [0, 1]with Po being binary (a field of zeros and ones)

for perfect observations.

The squared term in Equation 1 is the local (Half) Brier

Score (Brier, 1950). The SPS is thus mathematically equiv-

alent to the Continuous Ranked Probability Score (CRPS)

(Matheson and Winkler, 1976), with the dimension of a con-

tinuous physical quantity being replaced by one or more

spatial dimensions. Accordingly, the cumulative distribution

function used for the CRPS is replaced by the probability of

being ‘enclosed’ by a contour.

In the case of probabilistic forecasts, Pf is generally a field

of numbers in the continuous range [0, 1]. Typically, Pf will

be derived from forecast ensembles, either directly from the

relative frequencies of outcomes (raw probabilities), or with

additional spatial ‘dressing’ of the raw probabilities (e.g. by

Gaussian smoothing) and/or other types of adjustments such

as bias correction.

If the dichotomous event under consideration is perfectly

observed, Po is a binary field, that is either 1 or 0. How-

ever, the definition of the SPS allows us to account for

observational uncertainties in a meaningful way by assign-

ing values between 0 and 1 to Po; for example, this could

be based on discrepancies between different observational

products or between analyses of different operational centres

(compare, e.g. Bauer et al., 2016 figure 6). Note, however,

that it is an open question how best to account for obser-

vational errors in probabilistic forecast verification, and that

other approaches exist (e.g. Saetra et al., 2004). In the present

perfect-model study, we focus on situations where the truth is

known perfectly.

While spatial dressing could also be used to generate

quasi-probabilistic forecasts from single forecasts, the SPS

is also well defined for raw single (i.e. deterministic) fore-

casts. In this case (assuming that the observations are also

non-probabilistic) the SPS is reduced simply to the total vol-

ume of mismatch, that is, of all locations where the forecast

and the observations disagree on the location being enclosed
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by the contour. This property allows a meaningful evaluation

and comparison of probabilistic and deterministic forecasts in

the same framework.

Note that in forecast applications a dichotomous event

is often defined by a continuous variable being above or

below a particular threshold. In section 3 we consider the

two-dimensional case of Arctic sea-ice concentration being

above or below 15%.

3 IDEALIZED ARCTIC ICE-EDGE
FORECASTS

In the following we demonstrate the SPS with the

two-dimensional case of ice-edge position forecasts. Using

the most common definition for the ice edge – the 15% sea-ice

concentration (sic) contour – Equation 1 becomes

SPS = ∫x∫y
{P[sic > 0.15]f(x, y)

−P[sic > 0.15]o(x, y)}2 dydx . (2)

P[sic > 0.15]f is the so-called sea-ice probability, that is,

the forecast probability of being enclosed by the ice edge.

When applied to deterministic sea-ice edge forecasts, the SPS

is reduced to the Integrated Ice Edge Error (IIEE) introduced

in G16, allowing us to assess deterministic and probabilistic

sea-ice edge forecasts in the same framework.

Before describing the simulation set-up, forecast types,

and results based on Equation 2, we exemplify the anal-

ogy between the SPS and the CRPS with a simplified

one-dimensional case: the location of the summer sea-ice

edge on a line from the northern coast of Siberia (e.g. at

120◦E) across the North Pole towards Greenland. Assum-

ing that the summer ice edge always crosses this tran-

sect exactly once, which is mostly valid, the probability of

being ‘enclosed’ by the contour increases monotonically from

zero to one along the transect, and the probability can be

interpreted as the cumulative distribution function of the

location where the contour crosses the transect. In this case

the SPS is reduced to one spatial dimension and equates to the

CRPS with the continuous quantity being the distance from

an arbitrary reference point on the transect. Limitations to this

analogy are discussed in section 4, and in the following we

return to the two-dimensional case given by Equation 2.

3.1 Simulation set-up

Our analysis is based on simulations with the Alfred Wegener

Institute Climate Model (AWI-CM; Sidorenko et al., 2015;

Rackow et al., 2016). Originally, the experiments were con-

ducted as a contribution to the Arctic Predictability and Pre-

diction On Seasonal to Interannual TimEscales (APPOSITE;

Tietsche et al., 2014; Day et al., 2016) project. Following

the APPOSITE protocol, we conducted ‘perfect model’-type

simulations. Ensembles with small initial-condition pertur-

bations (white noise with standard deviation 10−4 K added

to the sea surface temperatures) were branched off at differ-

ent points in time from a quasi-equilibrium, multi-centennial

control integration with greenhouse gas concentrations held

constant at 1990 levels. The results reported here are based on

18 nine-member ensembles initialized on 1 July from differ-

ent years of the control run, integrated for three years. Details

of the APPOSITE experimental set-up and data access are

given elsewhere (Day et al., 2016).

3.2 Forecast types

We determine the behaviour of the SPS by analysing a range

of forecast types, i.e. different probabilistic and determinis-

tic forecasts derived from the forecast ensembles and from

the control integration (Table 1). The different forecast types

allow us to investigate how the SPS responds to ensemble

size, spread, and bias, and how the ensemble forecasts relate

to common reference forecasts.

TABLE 1 Forecast types

Description ID Ensemble size Spread Bias

Full ensemble FULL 8 Reliable Unbiased

Random subsample RAND 4 Reliable Unbiased

Single forecast SINGLE 1 — Unbiased

Climatological probabilities CLIM (200) Reliable Unbiased

Climatological median CMED (200→1) — Unbiased

Persistence PER (1) — Seasonally biased

Quantile range 0–0.5 inflated HIGH 8∗ Underdispersive High-biased

Quantile range 0.5–1 inflated LOW 8∗ Underdispersive Low-biased

Quantile ranges 0–0.25 & 0.75–1 inflated OVER 8∗ Overdispersive Unbiased

Quantile range 0.25–0.75 inflated UNDER 8∗ Underdispersive Unbiased

Median of full ensemble MED 8→1 — Unbiased

The arrows indicate that a single (median) contour is derived from a larger number of contours. Similarly, the stars denote types where the ensemble size is ill-defined

because the probability fields based on the eight-member ensembles are manipulated by inflating certain quantile ranges.
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The ‘perfect model’ approach followed here is particularly

well suited to test the characteristics of a verification metric

because the approach warrants reliability and precludes biases

of the original forecast ensembles. Therefore, our premise for

a proper verification metric (e.g. Wilks, 2011) is that deterio-

rative manipulations of the original forecasts based on the full

ensembles must lead to lower skill according to the metric.

The eleven forecast types listed in Table 1 are illustrated

in Figure 1b–l for an arbitrary forecast for 14 September

(i.e. with 2.5 months lead time). One of the nine sea-ice

edges comprising the forecast ensemble (Figure 1a) has been

selected randomly as ‘truth’ (red contour in all panels). The

remaining eight ice edges (or subsets thereof) are used to

construct the ensemble-based forecast types.

3.3 Results

In the following, we discuss the different forecast types,

grouped such that they reveal insights into (i) how the full

ensemble-based forecasts perform relative to common refer-

ence forecasts based on climatology and persistence (FULL,

CLIM, CMED, PER), (ii) the influence of ensemble size

(RAND4, SINGLE), (iii) the influence of spread (OVER,

UNDER, MED), and (iv) the influence of bias (HIGH, LOW).

The results for the SPS shown in Figure 2 and discussed below

are averaged over 18 forecast cases (start dates), with each of

the nine ensemble members selected once as truth to reduce

sampling uncertainty.

3.3.1 Full ensembles versus reference forecasts
The full ensemble-based forecasts (FULL; Figure 1b) are con-

structed from all ensemble members except the one selected

as truth. Given the limited ensemble size, the sea-ice probabil-

ities in the FULL forecast vary with steps of 1∕8 . In contrast,

the climatological forecast based on the 200 states of the con-

trol run (on the corresponding day of the year; Figure 1c)

is not only much smoother, but also broader in terms of the

ice-edge location. This hints at some potential predictability

remaining at the depicted lead time and time of the year, as

confirmed quantitatively below.

As additional reference forecasts, we consider the clima-

tological median ice edge, i.e. the 50% sea-ice probability

contour based on the control run (CMED; Figure 1e), and a

simple persistence forecast where the ice edge is kept at its

initial (1 July) location (PER; Figure 1f). Both these forecast

types are deterministic in the sense that the forecast ice edge

is exactly localized, meaning that the sea-ice probability is

either 0 or 1 everywhere. In these cases the SPS is reduced to

the Integrated Ice Edge Error (G16).

The SPS of the climatological forecasts (CLIM, solid

grey curve in Figure 2) has a distinct seasonal dependence,

with values around 0.6 × 106 km2 in winter and spring, and

around 0.9 × 106 km2 in summer and autumn. This sea-

sonal cycle is tied to strong seasonal variations of the mean

ice-edge location and in particular associated with changes

of the ice-edge length (G16). The shorter ice edge in win-

ter and spring, when the Arctic ice cover is laterally bounded

to a large extent by coastlines rather than an ice edge,

implies a smaller area where forecast errors contribute to

the SPS.

A coherent seasonal cycle is imprinted on all forecast types

except the persistence forecasts (PER; dotted grey curve in

Figure 2) which follow their own seasonality because they

reflect a fixed time of the year (1 July) throughout the fore-

casts. While accurate at the very beginning, the average

error of the persistence forecasts grows rapidly and exceeds

the average SPS of CLIM after ∼14 days. The persistence

forecasts remain more skilful than forecasts based on the cli-

matological median ice edge (CMED; dashed grey curve)

out to day ∼19, which has implications for how the ice edge

should be prescribed in atmospheric forecast systems with-

out interactive sea ice. For longer lead times, persistence is,

not surprisingly, the least skilful forecast type, with errors

peaking at ∼4 × 106 km2 in September and ∼5 × 106 km2

in March (exceeding the visible range in Figure 2). Errors

drop every year to ∼1.5–2 × 106 km2 not only when the fore-

casts pass through the initial time of the year in early July,

but also around November when the ice cover undergoes

a similar spatial distribution in the course of the freezing

period.

The reference forecasts reduced to the climatological

median ice edge (CMED) score worse than the probabilis-

tic climatological forecasts (CLIM), with the SPS offset

by ∼0.2–0.4 × 106 km2. This supports the notion that the

SPS is a meaningful probabilistic verification metric in

the sense that it rewards the provision of reliable forecast

uncertainties.

The SPS of the full ensemble-based forecasts (FULL; solid

black curve in Figure 2) grows much slower than the persis-

tence forecast error, reaching values of about 0.6×106 km2 in

September. The leveling-off at that lead time does not imply

the loss of potential predictability, given that the climatologi-

cal error (CLIM) is still significantly higher with values close

to 1.0 × 106 km2. Rather, a more continuous loss of poten-

tial predictability is counteracted by the seasonal cycle of the

(climatological) error.

The full ensembles remain skilful compared to climatol-

ogy until ∼10 months into the forecasts (compare solid black

and grey curves in Figure 2). Thereafter the climatological

forecasts mostly beat the eight-member ensembles, which is

probably due to the limited ensemble size (see next section).

An exception are the months around the maximum Arctic

sea-ice extent in March, where the eight-member ensembles

remain marginally skilful throughout the 3-year forecast lead

time. This annual ‘re-emergence’ of skill probably occurs

because the Arctic sea-ice edge extends into parts of the

northern North Atlantic where pronounced decadal modes

of SST variability influence the ice-edge position (e.g. G16,

Rackow et al., 2016).
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FIGURE 1 (a) Ice-edge locations (15% sea-ice concentration contours) on 14 September in a nine-member ‘perfect-model’ ensemble initialized on 1 July of

the same arbitrary year; (b)–(l) The eleven ice-edge forecast types listed in Table 1, most of which are based on the ensemble shown in (a) except for one

member which was randomly chosen as ‘truth’ (red curve in all panels). (c) and (e) showing CLIM and CMED, respectively, are based on the 200 year control

run. The colour scale in (b)–(l) denotes the so-called sea-ice probability, i.e. the forecast probability of being enclosed by the ice edge. The land–sea geometry

and the polygonal structure correspond to the ocean mesh employed in the AWI-CM

3.3.2 Ensemble size
Comparing the full eight-member ensembles (FULL) with

randomly drawn four-member ensembles (RAND; Figure 1d)

reveals that the decreased ensemble size inflates the SPS by

a fairly constant factor of ∼1.11 (compare solid and dashed

black curves in Figure 2). Reducing the ensemble size more

extremely to single members (SINGLE; Figure 1g and dotted

black curve in Figure 2) results in ‘deterministic’ forecasts.

The corresponding SPS is increased by a much larger, again

fairly constant, factor of ∼1.78 relative to the full ensembles.

Measured in terms of the SPS, the single-member fore-

casts (SINGLE) are outperformed by climatology (CLIM)
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FIGURE 2 The Spatial Probability Score (SPS) for all ice-edge forecast types described in Table 1 as a function of forecast lead time, averaged over all 18

start dates with each ensemble member selected once as ‘truth’. The grey vertical bar denotes 14 September (2.5 months into the forecasts), corresponding to

the situation depicted in Figure 1. Both axes are plotted on a square-root scale to emphasise short lead times and associated smaller error values. Note that the

dotted blue curve (MED) coincides with the red curves (HIGH and LOW), and that the persistence forecast (PER; dotted grey curve) mostly attains values

outside the plot range after about 1 month into the forecasts

already after ∼2 months, and by the climatological median

ice edge (CMED) after ∼5 months (Figure 2). At 1, 2, and

3 years lead time, that is, around 1 July, the single-member

forecasts are exactly as skilful as the persistence forecasts.

This is consistent with the paradigm that the predictability of

Arctic sea ice arises mostly from simple first-order memory

of the system (carried by the sea ice itself and by the ocean)

rather than from higher-order dynamics which could cause

quasi-oscillatory behaviour as known, for example, from the

El Niño Southern Oscillation (ENSO).

The increase of skill with increasing ensemble size com-

plies with the necessity implied by the ‘perfect model’ set-up

that the average SPS of the forecast ensembles would eventu-

ally not exceed the SPS of the climatological forecasts at any

time (as is the case for the eight-member ensembles outside

March beyond 11 months into the forecasts), but asymptoti-

cally approach the climatological error level. Our results are

consistent with earlier findings for the effects of ensemble size

on related probabilistic scores including the CRPS (Ferro et
al., 2008).

3.3.3 Spread
To mimic probabilistic forecasts which are based on overdis-

persive or underdispersive ensembles, we manipulate the

sea-ice probabilities of the unbiased eight-member ensembles

PFULL as follows:

POVER =
⎧⎪⎨⎪⎩

2PFULL PFULL ≤ 0.25,

0.5 0.25 < PFULL < 0.75,

2PFULL− 1 PFULL ≥ 0.75,

(3)

and

PUNDER =
⎧⎪⎨⎪⎩

0 PFULL ≤ 0.25,

2PFULL− 0.5 0.25 < PFULL < 0.75,

1 PFULL ≥ 0.75 .

(4)

The resulting spatial probability fields (OVER and

UNDER; Figure 1 j,k) are slightly unrealistic, in particular in

the overdispersive case with a large area occupied by POVER =
0.5 . However, the simple manipulations appear suitable for a

first-order test of how the SPS responds to unreliable forecast

probabilities.

To supplement the forecast types OVER and UNDER, we

consider forecasts defined by the ensemble median ice edge

(MED; Figure 1l). This forecast type, like CMED, PER, and

SINGLE, can be considered a ‘deterministic’ forecast for

which the SPS is reduced to the IIEE. In terms of relia-

bility, the ensemble median ice edge can be interpreted as

the most extreme case of an underdispersive (but unbiased)

ensemble-based forecast. Note that for MED we have spa-

tially smoothed PFULL slightly using a Gaussian filter with a

length-scale of ∼40 km to render the PFULL = 0.5 contours

well-defined (which is not the case for the raw probabilities

of the evenly-sized (and small) eight-member ensembles).

The forecast types OVER and UNDER score worse than

the full ensembles, with the SPS increased by similar fairly

constant factors of ∼1.11 and ∼1.13, respectively (solid and

dashed blue curves in Figure 2). This demonstrates that the

metric penalises unreliability in a similar way in both direc-

tions. The more extremely underdispersive ensemble-median

forecasts (MED; dotted blue curve in Figure 2) yield an SPS

increased by a factor of∼1.36 compared to the full ensembles.
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Measured in terms of SPS, the median ice-edge forecasts

(MED) outperform the single forecasts (SINGLE) by a fac-

tor of ∼0.76 . Moreover, the mean SPS of MED relates to the

error of the climatological median ice-edge forecasts (CMED)

in a way that mirrors the relation between the full ensemble

forecasts (FULL) and the unreduced climatological forecasts

(CLIM). The mean error of MED surpasses the error of

CMED after ∼11 months and drops again slightly below only

around March of the subsequent years.

3.3.4 Bias
To mimic probabilistic forecasts that are based on ensembles

biased towards higher or lower sea-ice extent, we manipu-

late the sea-ice probabilities of the unbiased eight-member

ensembles PFULL as follows:

PHIGH =

{
2PFULL PFULL < 0.5,

1 PFULL ≥ 0.5,
(5)

and

PLOW =

{
0 PFULL < 0.5,

2PFULL− 1 PFULL ≥ 0.5 .
(6)

Defined this way, PHIGH (PLOW) corresponds to an inflation

of the range [0, 0.5] ([0.5, 1]) of the full ensemble probabil-

ities to the full probability range [0, 1] (Figure 1h,i). This

implies that the introduced bias develops only with the devel-

opment of spread of the full ensembles, with no bias at initial

time. Moreover, the spread of these forecasts is reduced com-

pared to the full-ensemble forecasts, which one would not

necessarily expect for actual biased forecast ensembles.

The mean SPS of the biased forecast types (HIGH and

LOW; solid and dashed red curves in Figure 2) is increased

by the same, relatively constant factor ∼1.36 . This increase

could partly be due to the simultaneously reduced spread of

the biased forecasts. An estimate for the contribution from the

reduced spread can be inferred by comparison with the under-

dispersive forecasts (UNDER) as these feature a similar, if not

slightly stronger, spread reduction (compare spread in (h) and

(i) versus (k) in Figure 1). For the underdispersive forecasts,

the SPS is increased by the factor ∼1.13, leaving at least the

factor ∼1.20 caused by the biases in HIGH and LOW. This

attests that the SPS penalises biases.

4 DISCUSSION

In the previous section we have demonstrated some appeal-

ing properties of the Spatial Probability Score (SPS) when

applied to sea-ice edge forecasts. However, we anticipate that

the SPS will be useful also when applied to a variety of

other contours. Whether or not this metric can be considered

user-relevant depends strongly on the choice of the contour.

Beside the sea-ice edge, possible user-relevant applications

of the SPS include the verification of probabilistic forecasts

of extreme events, considering for example the probability

that precipitation or wind speed exceeds a certain (extreme)

threshold of particular interest to one or more user groups.

However, the application to rare events may necessitate con-

siderably larger ensembles than used here, and/or spatial

dressing (e.g. Gaussian smoothing) of the raw forecast prob-

abilities, to generate sufficiently continuous fields. We also

hypothesize that appropriate spatial dressing applied to the

relatively small ensembles used in section 3 would reduce

the SPS compared to the raw ensemble probabilities, which

would reveal the adequacy of such a posteriori adjustments. In

a similar way, the perfect-model approach set forth here could

be used to exploit whether the SPS (or any other verification

metric) is suitable for different predictands.

When the sea-ice edge is considered, a meaningful vari-

ant of the SPS can be obtained through division by the total

length of the contour(s). The resulting normalized SPS cor-

responds to an effective mean distance between the forecast

and the observed ice edges, where effective implies that the

correspondence holds exactly only in the limit of straight ice

edges. Such a normalization has the advantage that the met-

ric becomes even more user-relevant because it provides a

directly interpretable displacement distance. However, this

advantage comes at the price of (a) the non-trivial task of

determining the length of contours and (b) an ambiguity with

respect to which contour(s) should be used for the normaliza-

tion. In case of the ice edge, which typically varies within a

zone of uncertainty separating a central region with (close to)

100% climatological sea-ice probability and an outer region

with 0% probability, it appears reasonable to normalize by

the length of the climatological median ice edge (the 50%

sea-ice probability contour) as it is smoother and thus closer

to the limit of straight ice edges; the resulting normalized SPS

could be compared with other metrics which aim to quantify

an effective mean distance of contours, such as the Modified

Hausdorff Distance (e.g. Dukhovskoy et al., 2015). How-

ever, for other contours, for example associated with extreme

events, a median contour may not exist at all because climato-

logical probabilities do not cross the 50% level anywhere; in

such cases the suggested normalization of the SPS does not

appear meaningful.

Moreover, one can think of different ways to decompose

the SPS in order to retrieve additional information on proba-

bilistic forecast quality. One possibility is to decompose the

SPS into reliability, resolution, and uncertainty components,

by analogy with the well-known decompositions of the Brier

Score (Murphy, 1973) and the CRPS (Hersbach, 2000). In

the simplest case, one would just spatially integrate the cor-

responding local components of the Brier Score. This type

of decomposition would consider large numbers of individ-

ual forecasts simultaneously and relate them to climatological

forecast probabilities. An alternative approach considers indi-

vidual forecasts only; the decomposition of the IIEE into

Mean Extent Error and Misplacement Error components for

the ice-edge location, as set forth in G16, can be adopted. For
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the SPS, determining the former two components based on

the forecast median ice edge would leave an additional sharp-

ness component that reflects the spatial uncertainty associated

with an individual forecast (compare, e.g. Gneiting et al.,
2007). These or other types of decomposition of the SPS merit

additional scrutiny.

Regarding the interpretation of the SPS as the spatial

analogue of the CRPS, in section 3 we provide a

one-dimensional example where the SPS is equal to the

CRPS of the distance of the ice edge from a certain reference

point. From a mathematical point of view, considering the

SPS as the spatial analogue of the CRPS appears generally

indisputable. However, the replacement of the cumulative

distribution function used in the CRPS with a general spa-

tial probability field is associated with certain conceptual

changes. In contrast to the above example, the spatial field

associated with the probability of being ‘enclosed’ by a con-

tour may not cover the whole interval [0%, 100%] (e.g. for

extreme-event probabilities as mentioned above) and proba-

bilities may vary along transects non-monotonically. In such

cases the probabilities along transects cannot be interpreted

as cumulative distribution functions and the analogy is less

stringent.

Furthermore, one may wonder how the SPS differs from

alternative ways to aggregate probabilistic forecast skill spa-

tially. For example, one could spatially integrate or average

the local CRPS of a continuous quantity (instead of spatially

integrating the local Brier Score of a binary version of that

quantity based on a fixed threshold, as done for the SPS).

The spatially integrated or averaged CRPS would reflect dif-

ferent aspects of a forecast; it would penalise forecast error

also in regions where the continuous quantity is consistently

away from the threshold used for the SPS. This might be

favourable in some situations, but not in others; in the case

of sea-ice concentration, for example, one may not be inter-

ested in small deviations in the central ice pack which would

receive a large weight given the large associated area, but

rather in errors along the marginal ice zone. Moreover, if the

CRPS is integrated over two spatial dimensions, the result-

ing unit is u × area, where u is the unit of the continuous

quantity. (Note that sea-ice concentration would be a spe-

cial case here as it has no unit.) Such a unit is not easy to

interpret, but this could be overcome by averaging instead

of integrating, giving simply the unit u (as for the CRPS).

However, averaging would exacerbate the problem that large

regions with low errors could dominate the metric; in case of

sea ice, the central ice pack as well as open-ocean areas off

the marginal ice zone with trivial predictability could easily

dominate. One could try to circumvent this issue by defining

meaningful subdomains over which the metric is computed,

such as the marginal ice zone, but this would add another level

of complexity and ambiguity. In conclusion, it appears that

the SPS is a more elegant way of aggregating probabilistic

forecast skill spatially, in particular if a threshold of specific

interest exists.

5 SUMMARY AND CONCLUSIONS

We have introduced a probabilistic verification score for

ensemble-based forecasts of contours. The Spatial Probability

Score (SPS) is defined as the spatial integral of local (Half)

Brier Scores. Applying the SPS to idealised ensemble fore-

casts of the Arctic sea-ice edge with a global coupled cli-

mate model, we have demonstrated that the SPS increases in

response to dedicated attempts to degrade the original fore-

casts, namely by decreasing ensemble size, by overdispersion

or underdispersion, and by bias. We conclude that the SPS is

a meaningful verification score which penalises typical kinds

of probabilistic forecast deficiencies.

Moreover, we have argued that the SPS can be applied

to other contours and discussed how its interpretation may

depend on the properties of the associated probability field.

We have delineated how the SPS can be normalized and/or

decomposed to reveal additional information on probabilistic

forecast quality, and pointed out limits to the interpretation of

the SPS as the spatial analogue of the CRPS.

Given that the SPS reflects forecast skill in a meaningful

way, we can draw some specific conclusions with respect to

Arctic sea-ice edge prediction. The eight-member ensembles

remain skilful compared to climatology until∼10 months into

the forecasts, with a ‘re-emergence’ of marginal skill in late

winter of subsequent years presumably due to slow modes of

variability in the North Atlantic. This confirms earlier find-

ings on the limits of predictability for the Arctic ice edge

(G16) from a probabilistic viewpoint. Furthermore, in our

set-up, persistence forecasts remain more skilful than fore-

casts based on the climatological median ice edge out to day

∼19, suggesting that a similar time-scale should be used to

merge persistence and climatology in atmospheric forecast

systems without interactive sea ice.

Finally, we suggest that the SPS could serve as a head-

line verification score to document progress in sea-ice

forecasting, in particular in the context of current efforts

associated with the Year of Polar Prediction (Jung et al.,
2016) and beyond. Resources like the recently implemented

Subseasonal-to-seasonal database (Vitart et al., 2017), where

several operational forecast systems with dynamical sea-ice

model components contribute hindcasts and forecasts, offer

an unprecedented opportunity to document and advance our

ability to forecast sea ice, on the basis of meaningful verifi-

cation techniques. We expect that the SPS will prove to be a

useful probabilistic verification metric, for ice-edge forecasts

as well as for contour forecasts in general.
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