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When a catastrophic event such as an earthquake (EQ) occurs, general guidelines related to 

the specific event particular location, must be dynamically adapted in near real time by ad-hoc 

team of experts in order to identify the most urgent recovery actions for the specific 

emergency. The procedure for hazard risk management, includes several pre and post disaster 

interventions to be considered in the preparedness and response phases of risk management. 

(STORM, 2018). In the case of EQs, the pre-disaster interventions, and level of preparedness 

are undoubtedly the most important phases in risk management. Therefore, possible EQ 

prediction, could help avoid disastrous effects caused by an EQ on vulnerable structures, such 

as these often located in cultural heritage sites. I this work, we propose a strategy for the 

calculation of the probability for a significant ( 5.5M  ) EQ occurrence in order to be co-

evaluated within a decision making mechanism which could assist in reaching a high level of 



preparedness. Starting from the theoretical presentation of the methodology proposed, a 

practical implementation through the integration in a decision making system supported by a 

computer cloud infrastructure for sensory data is presented. As a reference framework under 

which the proposed methodology can be applied, the STORM project Cloud infrastructure has 

been used. STORM project (Safeguarding Cultural Heritage through Technical and 

Organisational Resources Management) project is an ongoing H2020 European research 

project aiming at providing critical decision making tools to all European Cultural Heritage 

(CH) stakeholders charged to face climate change and natural hazards (STORM, 2018). The 

project improves existing processes related to three identified areas: Prevention, Intervention 

and Policies, planning and processes, and has selected several pilots in CH sites, among 

which seismic risk is the most common threat, as seen in Fig. 1. 

The proposed strategy presupposes the existence of a dense-enough network of VLF/LF 

receivers for the recording of subionospheric propagation data covering the areas of cultural 

interest. As an exemplary model of such a network, the network of 8 VLF/LF receivers 

operating during the last few years throughout Japan which receive subionospheric signals 

from different transmitters located both in the same and other countries is considered. Based 

on data collected during a three-year period of operation of the specific network for specific 

subionospheric propagation quantities we intend to investigate deep-learning (DL) methods 

for the estimation of the probability for a significant EQ to occur. 

According to the conventional nighttime fluctuation method (Hayakawa, 2011), the daily 

(1 per day) normalized values *DP , *TR , and *NF  
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are usually studied. A value exceeding the 2  threshold ( * 2TR , * 2DP , 

* 2NF ) is considered a candidate precursor. The normalized values are calculated as 

1515
* daysdays

X X X , where 
15days

X  and 15days  denote the mean value and 

standard deviation ± 15 days around the day of interest, respectively. In the abovementioned 

equations dA t  is the residue between the received signal amplitude A t  and an average 

signal amplitude A t  calculated by means of a running average over ±15 days as 

dA t A t A t , and s
N  and e

N  are the time points of the start and end of the 

nighttime depending of the period of the year. 



Based on the variation of the abovementioned subionospheric propagation quantities 

normally a prediction of an upcoming EQ determining time period, position and magnitude is 

made. Considering that a prediction is successful in the cases that (a) the EQ occurred 2  

days from the predicted period, (b) the EQ epicenter was within a radius of 50km around the 

predicted position, and (c) the magnitude was up to 0.5 different from the predicted one, the 

success rate of the conventional nighttime fluctuation method is ~ 65% based on the results 

during the last five years. 

DL is a particular branch of machine learning that is based on Artificial Neural Networks 

(ANNs). In contrast to other machine learning techniques, DL algorithms are capable of 

extracting features that are a non-linear combination of the input features and are represented 

in the hidden layer. Previous works based on shallow ANNs (Popova et al., 2013) have proven 

to be efficient in predicting seismic events based on low-frequency signal monitoring. 

However, in case of time-series data conventional ANNs cannot capture the local 

dependencies (Zeng et al., 2014). 

Recurrent Neural Networks (RNNs) are a family of neural networks for processing a 

sequence of values (Goodfellow et al., 2016), and are applied broadly to natural language 

processing and time-series analysis. In particular, a value  depends on a set of previous  

values This sequential dependency is represented by adding weighted 

connections between the hidden states  (Fig. 2A). Moreover, in order to enhance the memory 

of the network, a mechanism named LSTM (Long Short-Term Memory) (Hochreiter and 

Schmidhuber, 1997) is applied to it (Fig. 2B). 

LSTM mechanism is capable of learning long-term dependencies, since it uses cell states 

 to transfer information among the hidden units . Furthermore, LSTM, also, makes use of 

activation gates in order to forget information from the cell state (forget gate ), enter new 



information to the cell state (input gate ), and pass information (output gate ) to the next 

hidden state. It should be noted, that similarly to the RNNs the values of the hidden state  

are updated at every time step , which in our case represents a day. The equations for 

representing the update of an LSTM layer are as follows: 

  (1) 

  (2) 

  (3) 

  (4) 

  (5) 

  (6) 

where  denotes the new candidate values for the cell state, and the terms  are the weight 

matrices, with subscripts representing the connections between the gates and the input vector 

. Finally, denotes the bias term that is related to a particular gate. 

Having in mind the effectiveness of the Deep RNNs on signal processing tasks (Ordóñez 

and Roggen, 2016), using an RNN enhanced with the LSTM cell seems to be a well-suited 

candidate for predicting seismic events. As it is illustrated by Fig. 2A, the per day extracted 

features ( *DP , *TR , and *NF ) are going to feed the LSTM layer that after being trained 

it will output a value  between 0 and 1, showing how much the subionospheric 

perturbations, which occurred within the previous days, are correlated with a seismic event. 

Preliminary results of the proposed strategy are discussed. 

Coming to the practical application of the work presented in this paper, the proposed 

methodology can be applied in the context of a two level architecture for the detection and 



mitigation of risks, as the one adopted in STORM project (Fig. 3). The architecture using a 

two level cloud based infrastructure can deploy the pre-processing of data and the 

corresponding algorithms for seismic detection, at an edge cloud level, providing results in 

the form of identified risk events at a second (core-cloud) level, where they can be assessed 

and also evaluated across other sources for decision making. 
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