KU LEUVEN

Dominic Bowman

C. Aerts, C. Johnston, M. G. Pedersen, T. M. Rogers, P. V. F. Edelmann, S. Simón-Díaz, T. Van Reeth, B. Buysschaert, A. Tkachenko, and S. A. Triana

Interior rotation in intermediate-mass stars

The vast majority of BAF stars are approximately rigid rotators.

Main sequence: gamma Dor (F) SPB (B)

Evolved stars: RGB Red Clump Secondary Red Clump

Angular momentum transport mechanism ...Internal Gravity Waves

D. M. Bowman, KU Leuven

6th Sept 2018

2D simulations of IGWs

Convectively-driven IGWs are effective at transporting angular momentum and chemical elements.

Case study: IGWs in a 3 M_☉ ZAMS star from Rogers et al. (2013).

The IGW spectrum morphology can be characterised as a low-frequency power excess: red noise.

Scaling to other masses:
$$\uparrow M = \uparrow A$$

(Zahn et al. 1997; Talon & Charbonnel 2005-2008; Cantiello et al. 2009; Shiode et al. 2013; Fuller et al. 2014; Lecoanet & Quataert 2013; Rogers 2015; Rogers & McElwaine 2017)

3D simulations of IGWs

IGW excitation through plume penetration, producing low-frequency power excess in temperature and velocity spectra.

(Edelmann et al. 2018)

3D simulations of IGWs

IGW excitation through plume penetration, producing low-frequency power excess in temperature and velocity spectra.

(Edelmann et al. 2018)

Can we detect IGWs in photometric observations of massive stars?

IGW amplitudes:

$$\uparrow M = \uparrow A$$

Massive star variability

Widespread and diverse variability in the upper main sequence:

Image credit: P. I. Pápics

(Paxton et al. 2015)

D. M. Bowman, KU Leuven

Massive star variability

Widespread and diverse variability in the upper main sequence:

Image credit: P. I. Pápics

D. M. Bowman, KU Leuven

6th Sept 2018

PHOST, Banyuls-sur-Mer

Massive star variability

Physical relationship between macroturbulence and pulsations:

A&A 602, A32 (2017)

D. M. Bowman, KU Leuven

6th Sept 2018

PHOST, Banyuls-sur-Mer

Searching for IGWs in CoRoT photometry

- Compile a sample of OBAF stars between 1.5 to 40 M_☉ with spectroscopic parameters and CoRoT photometry.
- Remove high-S/N coherent pulsation modes by pre-whitening.
- Fit the background morphology using: $\alpha = \frac{\alpha_0}{1 + (2\pi\tau\nu)^{\gamma}} + C$

Searching for IGWs in CoRoT photometry

Low-frequency power excess is not (systematically) correlated with stellar parameters:

D. M. Bowman, KU Leuven

Frequency (µHz)

6th Sept 2018

K2 photometry of OB supergiants

Variability from **coherent** and/or **damped** pulsation modes in many stars!

Conclusions

Can we detect IGWs in photometric observations of massive stars? ... YES

Constraints on IGW surface amplitudes:

- Of order a few µmag for AF stars and 0.5 mmag for late-O stars
- Common morphology in photometry that cannot systematically be explained by granulation
- Link between photometry and macroturbulence... damped modes

Variability in massive stars:

- A significant fraction of K2 OB supergiants are pulsating in coherent and damped pulsation modes...
- TESS observations of many OB stars are underway...

...to be continued!

KU LEUVEN

Dominic Bowman

Thank you for your attention!

