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Abstract— The integration of renewable generation and electric 
vehicles (EVs) into smart grids poses an additional challenge to 
the stochastic energy resource management problem due to the 
uncertainty related to weather forecast and EVs user-behavior. 
Moreover, when electricity markets are considered, market 
price variations cannot be disregarded. In this paper, a two-
stage stochastic programming approach to schedule the day-
ahead operation of energy resources in smart grids under 
uncertainty is presented. A realistic case study is performed 
using a large-scale scenario with nearly 4 million variables with 
the goal to minimize expected operation cost of energy 
aggregators. Three scenarios are analyzed to understand the 
effect of market transactions and external suppliers on the 
aggregator model. The results suggest that the market 
transactions can reduce expected cost, while the external 
supplier offers risk-free price. In addition, the performance 
metric shows the superiority of the stochastic approach over an 
equivalent deterministic model. 

Index Terms—Energy scheduling, smart grid, uncertainty, 
electric vehicles, two-stage stochastic programming. 

I. INTRODUCTION

There is a growing need in power grids for the integration 
of renewables, such as wind- and solar-based generation. 
Because these resources can mitigate the carbon footprint of 
electricity generation, and they highly contribute to the dream 
of a fossil fuel free electricity generation. The significant 
drawback is that renewables are characterized by a high level 
of uncertainty related to weather aspects. Another important 
consideration is the possible flexibility from the customer-
side, provided by some loads, i.e., non-critical loads that can 
be adjusted by utilities or consumers manually or in an 
automated way. The Electric Vehicle (EV) is an example of a 
load that can provide flexibility. In contrast to other types of 
loads, EVs can be connected to different locations, thus 
increasing the level of uncertainty [1], [2]. An advanced 
energy scheduling model for the future smart grid taking into 
account these uncertainty factors is a current research priority. 
In fact, one of the top R&D needs identified by DOE is the 
need to develop robust control and predictive models to deal 

with stochastic and uncertainty [3]. Establishing a stochastic 
model is therefore crucial for addressing the variability of 
renewable energy resources, which can account for a large 
part of the total generation capacity. In this context, the energy 
aggregators dealing with the energy resources management 
(ERM) require adequate tools to improve their 
competitiveness.

In the literature, many works have been proposed focusing 
on deterministic operation for energy scheduling in smart 
grids [4]–[9]. However, due to the significant amount of 
computational resources required to provide an optimal 
solution, deterministic approaches typically neglect the effect 
of uncertainty by assuming perfect, or highly accurate, 
forecast of renewable generation or EVs behavior. Some other 
works make use of computational intelligence techniques to 
reduce computational burden and make the problem tractable 
[10]–[14]. However, when considering a high penetration of 
Distribution Energy Resources (DER) (i.e., large-scale 
problems), Computational Intelligence (CI) approaches cannot 
guarantee an optimal solution. Stochastic models for 
transmission networks have been suggested to provide good 
results in modeling the uncertainty related to renewables 
worst-case scenarios [15], [16]. The stochastic optimization 
has proved to be a promising method to deal with the 
uncertainties in the optimization problems. Several studies 
have been reported in the recent literature at the distribution 
and microgrid (MG) level. In [17] a two-stage stochastic 
formulation is presented to address the energy scheduling in 
MG, considering Distributed Generation (DG), EVs and 
Energy Storage Systems (ESS). The proposed model solves 
the day-ahead energy scheduling using a linear formulation 
without network constraints and not considering Vehicle-To-
Grid (V2G). The proposed problem formulation minimizes the 
expected operational cost and power losses. Only wind and 
solar power uncertainty are considered, represented by a set of 
scenarios. The work in [1] presents an optimal bidding 
strategy for EVs aggregator. The problem is formulated under 
uncertainty in day-ahead context to minimize charging costs 
while satisfying EVs demand. It is essential to refer that the 
V2G possibility of EV aggregators is not modeled in the 
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paper. In [16], a stochastic method is presented to solve the 
hourly scheduling of optimal reserves considering the hourly 
forecast errors of wind energy and system load. The method 
utilizes a two-stage stochastic programming for the day-ahead 
scheduling of wind energy and conventional units. The 
authors in [18] develop a stochastic energy scheduling model 
for a local smart grid system with a single energy source and 
several consumers. The objective is to schedule the energy 
consumptions to maximize the expected system utility under 
the given energy consumption and energy generation 
constraints. The work in [19] presents an optimal day-ahead 
multi-objective problem that aims to maximize the expected 
benefit of the MG in the deregulated electricity market and to 
minimize the operation cost. The problem is formulated as a 
two-stage stochastic formulation to cope with the intermittent 
nature of the renewable energy and the thermal characteristics 
of the buildings. In [20], a two-stage stochastic optimization 
model is presented for the unit commitment problem. The 
model has the objective to minimize the expected operational 
cost considering the wind power uncertainty. The work in [21] 
presents a stochastic programming framework for a multiple 
timescale economic dispatch problem into power systems. The 
model considers the uncertainties of renewable generation. 

The literature review suggests that more work can be done 
to propose new models and motivate further research that 
mitigates the identified gaps. Uncertainty on wind and solar 
generation has been considered in some works, while the 
variability of market prices and load demand is more 
neglected. It is often common that the problem is formulated 
without considering the V2G capabilities in this context. 
Therefore, this paper presents a two-stage stochastic 
programming approach for energy scheduling in smart grids 
(SGs) considering V2G and market bidding. Similarly to 
previous works from the authors [22] [23], the model used in 
this work formulates the uncertainty in regular load demand, 
wind and photovoltaic (PV) power, EVs demand and location, 
and market price. The primary target of the aggregator 
consists in minimizing the expected operation cost while 
considering several Distributed Energy Resources (DERs), 
including DGs (e.g. Wind, PV, biomass), EVs with V2G 
possibility, ESS, electricity supplier contracts and market 
transactions. Different from [22], in this work, the stochastic 
model is extended by considering both market offers and buy 
bids, providing a major degree of flexibility for the aggregator. 
Moreover, unlike the model presented in [23], in this work we 
focused on the aggregator decisions by decoupling the 
distribution system operator (DSO) functions from the model1.
By doing this, we keep the model more tractable compared to 
[23] and the model is more in line with the current trends in 
liberalized electricity markets where the aggregator and DSO 
are two independent entities.  

The major contributions of this paper are as follows:  

1) Considering market bidding in a two-stage stochastic 
model, i.e. both buy and offer bids; 

                                                             
1 In [23], the stochastic model considers network constraints to assist DSO 
functions. As a result, decomposition techniques such as Benders’ 
decomposition, are required to reduce computational burden and make the 
problem tractable. 

2) Efficiently solving the problem with a realistic large-
scale test system with nearly 4 million variables; 

3) Evaluating the proposed stochastic model under three 
possible scenarios, namely case A (with market and supplier), 
case B (without market bidding) and case C (no energy 
supplier). 

This paper is organized as follows: after this introduction, 
section II describes the two-stage stochastic formulation, 
section III describes the case study, while results and 
discussion are presented in Section IV. Finally, section V 
presents the conclusions. 

II. TWO-STAGE STOCHASTIC MODEL

In this section, the ERM problem under uncertainty is 
formulated as a two-stage stochastic model. The stochastic 
model aims at finding an optimal decision for the first stage 
variables (i.e., market bids, energy from external suppliers and 
dispatchable DGs) while taking into account the uncertainty 
from real-time operations (i.e., renewable generation and EVs) 
in the second stage2. The objective is to minimize the expected 
operation costs for the aggregator and at the same time reduce 
the risk of energy transactions. The model provides the 
amount of energy to be transacted in the market (bids and 
offers), the electricity bought from external suppliers, and the 
dispatchable energy of the DG units over a period of 24 hours. 
The uncertainty from wind and solar generation, EVs, market 
price and load is modeled using a scenario based approach as 
in [22] [23]. This means that some scenarios (162 in this 
work), different from each other, for the second stage 
variables are generated using Monte Carlo Simulation (MCS) 
in an initial phase. When applying the stochastic model, the 
first-stage decisions do not change across the scenarios in the 
second stage. Fig. 1 illustrates an overview of the proposed 
work done. 

Figure 1. Overview of the methodology 

A. Scenarios generation 
The first part of a stochastic programming approach is to 

identify the uncertain variables (inputs) and how to model 
their uncertainty using a probabilistic distribution. In this 
sense, the considered ERM problem involves several 

                                                             
2 Theoretical background on two-stage stochastic programming models can 
be found in [26], [30]. 



uncertainties in the problem data, namely in the load demand, 
wind and solar generation forecasts, EVs demand and market 
price. The energy demand of EVs depends on certain driving 
patterns, which are not easy to predict. The aggregator 
requires knowing the driving patterns, including the timing of 
trips and expected energy consumption [1]. 

In this paper, MCS [17] is used to generate the scenarios 
for wind solar, load and market prices, namely by considering 
normal distribution functions and adopting commonly 
standard deviation errors. For the EVs, EVeSSi [24] is used to 
generate different samples of driving patterns using departure 
times and locations as stochastic variables. After sampling and 
selecting representative scenarios using similarity features, a 
scenario tree is used to obtain a total set of possible scenarios. 

B. Model assumptions 
The proposed model requires certain infrastructure to 

operate in a smart grid context. The following assumptions are 
considered in this work: the energy aggregator is an 
independent entity that is able to manage its assets (i.e., local 
DERs and energy supply); smart metering equipment is in 
place for communication into the grid (i.e., enabling the 
announcement of energy market prices); the aggregator is 
equipped with an energy management system, in which the 
proposed model can be implemented; the system has 
forecasting and scenario generation tools required to run the 
two-stage stochastic optimization every 24 hours before the 
market bidding . 

C. Mathematical model 
The objective function E(OC) minimizes the expected 
operation costs over the scheduling horizon T, i.e. next 24 
hours similarly to [22]. In addition, we have included the 
possibility of market bidding in this paper, namely both selling 
and buy as described by: 
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The first stage variables correspond to the dispatchable 
DG units, suppliers and market bidding (bids and offers). The 
sets are described by: d

DG  is a set of dispatchable DG units; 

nd
DG  is a set of non-dispatchable DG units. The indices are 

represented by: E is an index of ESSs; I is an index of DG 
units; L is an index of loads; S is an index of external 
suppliers; t is an index of time periods; V is an index of time 
EVs; z is an index of scenario z.

The parameters are described by: (z) is the probability of 
scenario z (%); CCGP(I,t) is the curtailment cost of DG unit I in 
period t (m.u.); CDG(I,t) is the generation cost of DG unit I in 
period t (m.u.); CDischarge(E,t) is the  discharging cost of ESS E
in period t (m.u.); CDischarge(V,t) is the discharging cost of EV V
in period t (m.u.); CNSD(L,t) is the non-supplied demand (NSD) 
cost of load L in period t (m.u.); SpotMarket(t,z) is the expected 
spot price in period t scenario z (m.u.); NDG is the number of 
DG units; NE is the number of ESSs; NL is the number of 
loads; NM is the number of markets; NS is the number of 
external electricity suppliers; NV is the number of EVs; T is
the number of periods; Z is the number of scenarios. The 
variables are described by: ( )1D

TotalE OC +  is the expected total 

operation cost for day-ahead (m.u.); PBuy(t)/PSell(t) is the offered 
amount of energy (buy/sell) to spot market in period t (kW);
PCGP(I,t,z) is the generation curtailment power of DG unit I in 
period t in scenario z (kW); PDG(I,t,z) is the active power 
generation of DG unit I in period t in scenario z (kW); 
PDischarge(E,t,z) is the active power discharge of ESS E in period 
t in scenario z (kW); PDischarge(V,t,z) is the active power 
discharge of EV V in period t in scenario z (kW); PNSD(L,t,z) is 
the active power of NSD  of load L in period t in scenario z
(kW);

Moreover, Eq. (1) is also subject to constraints concerning 
DER technical limits such as EV/ESS charging and 
discharging rates, capacity, balance, and location in each 
period, as well as dispatchable DG capacity and external 
supplier’s limits. It is worth noting that some constraints are 
involved in all the considered scenarios. More details about 
the constraints of the model can be found in [22][23]. 

The market constraints (to sell/buy energy) are developed 
below. The constraints regarding market sales are represented 
by (2) and (3), namely maximum and minimum energy to sell 
(PMarketSellMax and PMarketSellMin). PSell(t) is a variable representing 
the quantity of energy to sell in period t. XMarketSell(t) is a binary 
variable indicating if the sale offer is selected in period t.

( ) ( ) ( )Sell t MarketSellMax t MarketSell t tP P x (2)

( ) ( ) ( )Sell t MarketSellMin t MarketSell t tP P x (3)
Similarly, the market purchases constraints are 

represented by (4) and (5), namely by maximum and 
minimum amount allowed to buy by the aggregator: 

( ) ( ) ( )Buy t MarketBuyMax t MarketBuyt t tP P x (4)

( ) ( ) ( )Buy t MarketBuyMin t MarketBuy t tp P x (5)
Eq. (6) represents the decision of bids and asks, which 

are not concurrent: 

( ) ( )  1      MarketBuy t MarketSell t tx x+ (6)



D. E aluation metrics in t o stage stochastic programming 
The mathematical model was formulated as a Mixed 

Integer Linear programming (MILP) problem (i.e., the 
problem includes continuous and integer variables and linear 
constraints) and can be solved used specialized software such 
as TOMLAB [25]. 

Two metrics are used to measure the benefits of the 
stochastic programming solution proposed in this work. 

1) The expected value of perfect information (EVPI) 
indicates how much the perfect forecast (if it was possible) 
would cost to the aggregator and is defined by: 

S* P*
minEVPI z z=

ZP wait-and-see solution (m.u.) 
ZS cost of stochastic solution (m.u.)

(7)

A high value of EVPI will stress the importance of 
considering uncertainty since it indicates that there exists a 
higher risk of variability in the expected objective values when 
perfect information is not available. 

2) The value of the stochastic solution (VSS) represents the 
advantage of adopting the proposed stochastic approach over 
a deterministic one, and it is defined as: 

D* S*
minVSS z z=

(8)

VSS also can be seen as a measure of the benefit obtained 
from modeling random variables with stochastic scenarios 
and avoiding to replace them with average values [26].

III. CASE STUDY

A case study consisting in a part of a real distribution 
network with 201 buses in Zaragoza, Spain (taken from [22]) 
is used to test the two-stage stochastic model proposed in this 
work. Energy production and consumption follow expected 
values for the year 2030. For instance, it is considered a high 
penetration of DG units (around 70% of the installed 
capacity) according to predictions for the year 2030 [27]. 
Besides, CO2 emissions are expected to reduce up to 68% by 
2030 compared to 1990 levels [28]. 

The case study also considers that the energy aggregator, 
by using the proposed stochastic model, can manage all its 
resources consisting of 118 DG units, 1 external supplier, 6 
ESS units, 1300 EVs, and 89 aggregated consumers with DR 
capability. Regarding uncertainty in renewables, EVs, 
demand, and market prices, 162 scenarios have been 
generated using MCS as in [17], [22]. Table I summarize the 
available resources and information for the aggregator. The 
information of prices in monetary units per kWh (m.u./kWh), 
and the availability in MW, were set up as in [29]. The 
capacity limit of the external supplier is 7.3 MW in each 
period and the price, known in advance, varies between 0.09 

m.u /kWh and 0.20 m.u./kWh. The spot market has a forecast 
price between 0.08 and 0.13 m.u./kWh according to the 
scenarios generation. We assumed that the aggregator can bid 
any amount to this market. 

TABLE I. ENERGY RESOURCE DATA

Energy resources 
Availability

(MW) 
Prices

(m.u./kWh) Units
min – max min – max 

Biomass (dispatchable) 0 – 0.52 0.15-0.15 1 
CHP (dispatchable) 0 – 4.00 0.10-0.12 4 

Small Hydro (dispatch.) 0.12 – 0.35 0.13-0.13 1 
Photovoltaic (forecast) 0 – 1.70 0.20-0.20 82 

Wind (forecast) 0.07– 0.94 0.12-0.12 30 
External Supplier 0 – 7.30 0.09-0.20 1

Storage
(ESS)

Charge 0 –1.50 0.12-0.12 6Discharge 0 – 1.50 0.18-0.18 
Electric
Vehicle

Charge 0 – 6.94 0.13-0.13 1300
(100)Discharge 0 – 6.16 0.19-0.19 

Load (forecast) 4.77 – 13.88 0.09-0.15 168 
Market Unknown 0.08 – 0.13 - 

Fig. 2 depicts the price of external electricity supplier and 
the spot price in the market in an hourly period. The spot 
price is shown in orange (and light orange area) indicating the 
range of price variation as obtained in scenario generation. 

Figure 2. External supplier and spot price (forecast) during the 24 periods. 

We have considered three different cases to compare the 
performance of the two-stage stochastic programming. 

Case A – Considers the possibility of bidding to the spot 
market (both buy and offer) and buy energy from an external 
supplier and other DGs with a fixed price term previously 
agreed.

Case B – The spot market is not considered as in case A. 
Case C – The external supplier is not available as in A. 

IV. RESULTS AND DISCUSSION

The two-stage stochastic model is tested in the three cases 
as already described in section III. The dimension of the 
optimization problem is around 3.8 million variables. 

Fig. 3 presents the obtained results regarding market bids 
and offers for case A and C. Case B is not present in this 
picture because the market is not considered. The positive 
values are market offers and the negative identify the buy 
bids. It can be seen that only case A present market offers in 



periods 1-4 and 6-8, i.e., a total amount of 20 MWh. The total 
amount of market bids (buy) in case A is 161 MWh while in 
case C it is 191 MWh. In fact, the resulting bids (buy) in case 
A and C are the same in the corresponding periods. In case B 
it is 0 MWh. 

Figure 3. Market results for case A and C 

Fig. 4 presents the obtained results regarding the external 
supplier for case A and B, where this resource is considered.

Figure 4. External supplier result for case A and case B 

In case A, only periods 1-4,6-8 are scheduled. It coincides 
with the periods of the market offers (see Fig. 1) while the 
remaining periods the energy supply is assured by the market. 
The total amount scheduled in case A is 51 MWh and in case 
B, 140 MWh. In case C, it is 0 MWh. 

Table II illustrates the results obtained with the developed 
tool. The performance of the stochastic model is compared 
with the deterministic model via the indices illustrated in 
Section II. The case that presents the lowest expected 
operation cost is case A. The results suggest that worst 
situation (case B) occurs when it is not possible to buy energy 
from the electricity market. In this case, the expected 
operation cost is expected to rise 22% in comparison with 
case A. The VSS demonstrates that the stochastic model 
performs better than the deterministic model, i.e. 17-18%. In 
fact, case A presents the highest value regarding percentage 
(18%), suggesting that the stochastic approach is even more 
important when considering the market bidding. The average 

execution time measured from the proposed model is around 
4 minutes. 

TABLE II. ADVANTAGE OF STOCHASTIC PROGAMMING: METRICS

Metric 
Case A 

(market and 
supplier)

Case B 
(no

market)

Case C 
(no supplier) 

Expected cost (m.u.) 24,230 30,970 24,920 
VSS (m.u.) 5185 (18%) 6203 (17%) 5154 (17%)
EVPI (m.u.) 1115 1527 1078 

V. CONCLUSIONS

The present paper introduced a stochastic model that 
considers several sources of uncertainty, namely wind and 
solar generation, EVs and load demand as well the market 
prices. The model included the possibility of energy 
transactions in the market (offer and buy). 

The proposed case study enabled to evaluate the 
effectiveness of the stochastic model using a set of three 
different cases. The results suggest that considering market 
transactions can significantly reduce the expected operation 
cost, but evidently exposing the energy aggregator to higher 
risk. The benefit of the two-stage stochastic programming 
over the deterministic counterpart is demonstrated by VSS, 
which is around 17-18%, better depending on the case. The 
results also suggest that market transactions further justify the 
use of a stochastic model, due to an increased level of 
uncertainty, i.e., in the market price. 

Future work is highly recommended on this subject. For 
instance, considering a higher number of scenarios (>500) 
which may represent higher fidelity of the uncertainty 
sources. We believe that VSS may be even more significant 
than the results presented in this work. 
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