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Abstract

In this article we introduce the statistical theory foundation of probabilistic real-time computing: the
Extreme Value Theory. This tutorial aims at introducing the basis of the theory and provide some
insights on how to apply it to the real-time computing problems. In fact, a method called Probabilistic
Real-Time Computing has been recently proposed to overcome the issues in estimating the worst-case
execution time with traditional approaches on modern processing architectures. Provided that certain
hypotheses are satisfied, the Extreme Value Theory is able to produce a probabilistic estimation of the
worst-case timing behaviour of a real-time task, i.e. the statistical distribution of its execution times.

This tutorial is regularly updated and improved. The current version is October 2018 (v.1).
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1 Introduction

1.1 Why Probabilistic approaches

In recent years, it is possible to notice an extreme rising of the processors architecture complexity due
to, on one hand, the increasing computational power demand, and on the other hand, the single-core
power and performance barriers. Unfortunately, adding complexity makes harder to create reliable
models of the processors. In particular, (hard) real-time computing requires a detailed knowledge of the
timing profile of the operations on a specific processor, in order to be able to compute the Worst-Case
Execution Time (WCET) of tasks to deploy. In modern architectures, mechanisms such as complex
pipelines, hardware threading, multi-level and/or shared levels of caches, jump speculation, etc. make
the computation of the WCET very hard or even impossible. The unpredictability problem is even
amplified when we consider multi-/many-core platforms, with simultaneously running tasks that produce
hard-to-analyze interferences.

For the previous reasons, traditional methodologies of static WCET analyses fail to obtain safe and
tight WCET estimation for modern platforms, in a sustainable amount of computation time. Obviously,
considering substantial limitations – e.g. one level of non-shared cache or dual-core processor without
cache, etc. – is still possible to compute the WCET, but the performance obtained by such embedded
system are still very far from the high-end general-purpose processor. One of the proposed approach
to overcome these issues is rely on probabilistic real-time computing.

1.2 Probabilistic classes

In the last years the researchers have distinguished between two possible classes of probabilistic anal-
yses: Static Probabilistic Timing Analysis (SPTA) and Measurement-Based Probabilistic Timing
Analysis (MBPTA). The first one, SPTA, is similar to the traditional analyses with the addition of prob-
abilistic terms to the well known methods. This approach is still immature and not much considered in
current ongoing research. The second method, MBPTA, is based on the direct observation of the execu-
tion time of a task. We will describe MBPTA in Section 3, after providing the statistical basis necessary
to understand the measurement-based mechanism. In particular, this method is based on the Extreme
Value Theory described in the next section. For completeness, it is worth to cite the existence of mixed
approaches called Hybrid Probabilistic Timing Analysis, that we will not discuss in this tutorial.

2 Extreme Value Theory

The Extreme Value Theory (EVT) is a statistical theory developed in the 20th century to deal with the
extreme events, i.e. events that have a probability to occur so low that have been never observed. An
extreme is defined as the maximum or the minimal value that a random variable can assume. The result
of this theory is opposed to the well known central theorem limit, that instead deals with the average
values of the distribution.

The EVT has been traditionally used to predict natural disasters. For example, while measuring the
water level in a river, it is possible to estimate the probability of an unseen water level that may possibly
cause a flood. The EVT has been also applied to other fields, such as financial risk studies, drug
industry, anthropological studies, etc.

2.1 Statistical findings

Let X1, X2, ..., Xn a sequence of n iid1 random variables representing the multiple observations of a
phenomena. The Extreme Value Theory, in case we are interested in the maxima, looks for the following
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cumulative distribution function (cdf):

F ∗(x) = 1− P (x ≥ max(X1, X2, ..., Xn))
= 1− P (x ≥ X1, x ≥ X2, ..., x ≥ Xn)

= 1−
n∏
i=1

P (x ≥ Xi)
(1)

The last expansion is guaranteed by the fact the the random variables are iid. In this tutorial we always
refer to the maxima and not to the minima, however, the results can be easily changed to obtain the
minima estimation.

From the Equation 1 it is possible to say that the cdf F ∗(x) is governed by the product of a sequence
of cdf: Fn(x). The most important result of the EVT is that there exists a sequence an ∈ R and a
sequence bn such that:

lim
n→∞

Fn(bn + anx) = G(x) (2)

where G(x) is the cdf of a statistical distribution called extreme value distribution. The interesting thing
of this formula is the Fisher-Tippett-Gnedenko theorem: if the previous limit is non-degenerating, G(x)
is a cdf of well known distributions, independently on the form of F (x).

2.2 Extreme distributions

The original Fisher-Tippett-Gnedenko theorem provides three possible form for G(x): Weibull, Fréchet
and Gumbell distributions. However, it has been later proved that these distributions can be generalized
in the Generalized Extreme Value Distribution (GEVD) that has the following form:

G(x) =
{
e−e

x−µ
σ ξ = 0

e−[1+ξ( x−µ
σ )]−1/ξ

ξ 6= 0
(3)

The distribution has three parameters: the location µ, the scale σ and the shape ξ. The sign of ξ
depends on the used convention; we used the following one: if ξ > 0 the GEVD converges to the
Fréchet distribution, if ξ < 0 it converges to the Weibull distribution, otherwise ξ → 0 and it converges to
the Gumbel distribution. This distribution is consequently written as GEVD(µ, σ, ξ).
Another, but asymptotically equivalent, formulation for G(x) is the Generalized Pareto Distribution
(GPD) that has the following form:

G(x) =
{

1− e
x−µ
σ ξ = 0

1− [1 + ξ(x−µσ )]−1/ξ ξ 6= 0
(4)

The parameters are the same of GEVD, but in some books the GPD is expressed with its two parameters
form, considering µ = 0. If ξ = 0 the GPD converges to the exponential distribution, if ξ > 0 and µ = σ

ξ

GPD converges to the Pareto distribution. The GPD distribution is asymptotically equivalent to the
GEVD distribution when n→∞. This distribution is consequently written as GPD(µ, σ, ξ). We refer with
GPD(σ, ξ) when the two parameters version is considered. Sometimes to distinguish these variants, the
acronyms become GP2 and GP3.

These distributions estimate the tail (maxima or minima) of the original unknown distribution.

2.3 Estimation approaches

There exist two possible estimation classes in order to obtain valid data to fit GEVD or GPD. The first
one is called Block-Maxima: to the sequence X1, X2, ..., Xn the following filter is applied:

Yi = max(XB·(i−1), XB·(i−1)+1, ..., XB·i) (5)

where B is a parameter called block size. In other words, the set of observations is divided in blocks
of fixed size B and for each block the maximum value is taken. The sequence Y1, Y2, ..., YB represents
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the maxima of the blocks. With the realization of these random variables it is possible to estimate the
GEVD using any traditional algorithm, e.g. the Maximum Likelihood Estimator.

The second approach is called Peak-over-Threshold and it is a simple threshold filter:

Y = {Xi > u} (6)

where u is a predefined threshold. The sequence Y1, Y2, ..., Ym represents the value of measurements
that are greater than the threshold u. With the realization of these random variables it is possible to
estimate the GPD using any traditional algorithm, e.g. the Maximum Likelihood Estimator.

3 Measurement-Based approaches
In the scenario of probabilistic real-time computing, the random variables represent the execution times
of a given task running multiple times on a target system. Obtaining these execution times in a way
that verifies the iid hypothesis is challenging and it is still an open research topic. The resulting time
trace can be used as input of BM or PoT algorithm, as previously described, and then it is possible to
estimate the GEV or GPD distribution. This distribution represents the so-called probabilistic-WCET
(pWCET), i.e. the statistical distribution of the extreme execution times of a given task. It is convenient
to write the pWCET distribution with its cumulative distribution function:

p = P
(
X > WCET

)
(7)

where X represents the random variable of the execution time samples, WCET is a constant, and p is
the violation probability. Given this cdf, it is possible to:

• Fix a value for WCET and compute the probability p of observing an execution time longer than
this value

• Fix a value for the probability p and compute the value WCET for which the probability p represents
the probability of observing a longer execution time.

However, in order to define some reliability comparisons, it is necessary to define the order of two
distribution. We say that pWCETa is higher than pWCETb (pWCETa >pWCETb) if:

• ∀WCET it is true that pa > pb;

• ∀ p it is true that WCETa > WCETb.

with this order relationship it is possible to write reliability consideration, since it is possible to say that
a pWCET "upper-bounds" or not the real distribution. In fact, similar to the traditional WCET analyses,
the pWCET estimation is safe iff its distribution upper-bounds the real distribution.
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