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Abstract

Deep sea is the largest and likely the most biologically diverse ecosystem of the world, but it is also the most unknown. The 

Mediterranean Sea (< 1% of the ocean surface and contains only the 0.3% of its volume) is a hot spot of marine biodiversity 

containing ca 7.5% of the world marine biodiversity, associated with a multitude of habitats spreading from the coast to 

its dark portion (e.g., coral banks, seamounts, canyons, and hydrothermal vents). Its deep-sea ecosystems are increasingly 

subjected to direct anthropogenic impacts (including overishing, chemical pollution, dumping, litter, and plastics), which 

are often over-imposed to the increasing efects of global change. Here, are illustrated the expected impacts of shifts in the 

main variables such as temperature, food supply, pH, and oxygen on the deep Mediterranean Sea ecosystems. One of the 

most consequences is related to shifts in the quality and quantity of the inputs of organic matter to the deep sealoor. The 

deep Mediterranean Sea is far more oligotrophic than other oceans at equal depths, and although deep-sea biota reacts to food 

shortage by increasing their eiciency in its use, a decrease in food availability can have dramatic efects on its food webs. 

The deep Mediterranean Sea is showing a clear rise of deep-water temperatures. In the last decades, deep-water warming 

is accelerating at unprecedented rates, causing a signiicant shift in biodiversity even for variations in the order of 0.1 °C. 

Higher temperatures increase deep-sea metabolism, thus exacerbating the efects of food limitation. Moreover, ocean acidi-

ication reduces the calciication capacity of corals and alters their metabolism. Although it can be expected that increas-

ing temperatures might increase the potential spread of oxygen minimum zone, so far, only ipoxic events were reported in 

Mediterranean Sea. The analysis of potential ecosystem vulnerability indicates that the ecosystems that are most sensitive to 

global change are deep-water coral systems and deep-sea plains. In addition, deep-sea canyons are also likely increasingly 

subjected to physical disturbance as a result of the increase in the frequency and intensity of climate-driven episodic events. 

Available information also suggests that biodiversity and ecosystem functioning of the deep Mediterranean Sea is undergo-

ing dramatic changes, which result in accelerated organic matter biogeochemical cycling, miniaturization of the organisms’ 

size, increased metabolism, dominance of the microbial components, and mortality rates of deep-sea biota. Given the high 

sensitivity of the Mediterranean Sea to global change in comparison with other oceanic regions, and the vulnerability of its 

deep-sea habitats/ecosystems, speciic policy measures are needed to protect its biodiversity, restore damaged habitats, and 

increase deep-sea ecosystems resistance and resilience to the ongoing impacts of global change.

Keywords Global change · Deep Mediterranean Sea · Deep-sea biology · Ecosystem vulnerability

1  Global Change in the global oceans 
and trends in the deep Mediterranean Sea

Anthropogenic activities are progressively increasing the 

atmospheric concentrations of  CO2, and the luxes of green-

house gases  (CH4 and  N2O), which are triggering global cli-

mate change and the consequent warming, oxygen depletion, 

and acidiication of the oceans, altered precipitation regimes 

as well as increased ice melting. Changes in the physico-

chemical conditions are also inducing shifts (generally, a 
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decrease) in global primary production and carbon export 

to the ocean interior. All these changes have been reported 

to influence the biodiversity and functioning of marine 

ecosystems (Le Treut et al. 2007; Tittensor et al. 2010). 

Marine organisms are key actors in the cycling of all key 

elements and drive ecosystem processes (Snelgrove et al. 

2017). These organisms are profoundly inluenced by ongo-

ing changes, but to a diferent extent at diferent latitudes 

and biogeographic regions, with stronger impact on marine 

ecosystems at high latitudes (Brierley and Kingsford 2009). 

Primary production is expected to decrease at tropical and 

mid-latitudes (Sheridan and Bickford 2011; Kroeker et al. 

2010), altering the quantity and quality of food supply to 

the sealoor (Danovaro et al. 2014), with downstream con-

sequences on organic matter cycling and supply of ammonia 

needed for sustaining the metabolism of all organisms.

Deep-sea ecosystem (i.e., > 200-m depth) represents the 

largest biome of our planet, covering more than 65% of the 

Earth’s surface and hosting 95% of the global biosphere; 

nevertheless, it is one of the least investigated (Gambi et al. 

2017 and references therein). Global change is progressively 

expanding into the deep sea. Many observational studies are 

showing that present-day climate change is already deter-

mining an increase of the deep-sea temperature (Purkey and 

Johnson 2010), deoxygenation (Stramma et al. 2008, 2010, 

2012; Keeling et al. 2010), lowered pH of intermediate deep 

waters (Byrne et al. 2010), and altered POC (i.e., particulate 

organic matter) lux to the sealoor (Ruhl and Smith 2004; 

Smith et al. 2013). Despite emerging evidence that climate-

driven changes in deep-sea environmental conditions may 

perturb the functioning of deep-sea ecosystems (Danovaro 

et al. 2001; Smith et al. 2008; Dunlop et al. 2016; Yasu-

hara and Danovaro 2016), our understanding of the extent 

to which projected physical and chemical changes will lead 

to deleterious ecological consequences is still very poor 

(Philippart et al. 2011). Given that, deep-sea ecosystems 

are vitally important for the Earth system (Danovaro et al. 

2014) and are at considerable risk from ongoing climate 

change (Mora et al. 2013; Jones et al. 2014; Levin and Le 

Bris 2015), an increasing number of studies indicate that 

physico-chemical conditions in the deep ocean are chang-

ing rapidly (Yasuhara and Danovaro 2016 and references 

therein). According to Sweetman et al. (2017), negative 

efects of global change in terms of all of these variables 

have been already reported in the deep oceans.

Actual predictions indicate that temperatures at abyssal 

depths (3000–6000 m) could increase by 1 °C over the next 

84 years (Sweetman et al. 2017). While, abyssal sealoor 

habitats under areas of deep-water formation may experience 

reductions in term of oxygen concentration in the water col-

umn, by as much as 0.03 mL  L−1 by 2100 (Sweetman et al. 

2017). Furthermore, bathyal depths (200–3000 m) will show 

the most signiicant reduction in pH values in all oceans by 

the year 2100 (from 0.29 to 0.37 pH units) accompanied by 

a decline of 3.7% in the North-East Paciic and Southern 

Oceans. Yet, the most noticeable predicted change regards 

the reduction of organic matter low especially in the Indian 

Ocean (with decrease value of 40–55% by the end of the 

century) (Sweetman et al. 2017).

The Mediterranean Sea, with an average depth of ca 

1450 m (vs 3750 m of the global oceans), is expected to 

react faster to global changes than it does in the real oceans 

(Bianchi 2007; Boero et al. 2008; Lejeusne et al. 2010). This 

is due also to its peculiar environmental settings. The main 

hydrological features of the deep Mediterranean Sea are: (a) 

highly constant temperatures from roughly 300–500 m to 

the bottom, and bottom temperatures of about 12.8–13.5 °C 

in the western basin and 13.5–15.5 °C in the eastern basin 

(i.e., there are no thermal boundaries, whereas in the Atlan-

tic Ocean the temperature decreases with depth) (Emig 

and Geistdoerfer 2004); (b) high salinity, from about 

38–39.5 ppm with the stratiication of the water column; (c) 

limited freshwater inputs (the freshwater deicit is equivalent 

to about 0.5–0.9 m3  year−1, compensated by the Atlantic 

inlow of surface water), which inluence also the deeper 

salinity values; (d) high oxygen concentrations; and (e) food 

limited conditions, with strong energetic gradients and low 

nutrient concentrations in the eastern basin (Danovaro et al. 

2010). Moreover, seasonally, during late spring and summer, 

the whole Western Mediterranean Sea is strongly stratiied 

with a thermocline at 20–50 m deep. In winter, the water 

column is more homogeneous, especially in the open sea.

The Mediterranean basin is characterized by the pres-

ence of small gyres (eddies) that have implications for the 

upwelling of deeper waters and the inluence on primary 

productivity. This consequently afects the lux of organic 

matter settling to the deep sealoor. The trajectories of deep 

and bottom currents are largely unknown, but strong cur-

rents of speed up to 1 m s-1 have been documented in sub-

marine canyons, in relation with climate-driven episodic 

events (Canals et al. 2006), rapid vertical transport of sur-

face waters to great depth occur as a result of dense water 

convection when surface waters become denser owing to 

evaporation and cooling. These phenomena known as cas-

cading occur periodically over short terms (weeks). Given 

the limited average depth of the Mediterranean basin, the 

deep-water turnover is relatively rapid (from 50 to 80 years; 

Lacombe and Tchernia 1972; Danovaro et al. 2010) when 

compared with the wider oceanic regions, but this is largely 

compromised by its vulnerability to climate change and 

the much higher rates of deep-water warming, which have 

shown an acceleration in the last decades (Fig. 1).

For these reasons, the Mediterranean Sea has been pro-

posed as a “miniature ocean” that can be used as a model 

to anticipate the response of the global oceans to vari-

ous kinds of human pressures. The Mediterranean Sea is 
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also one of the areas in which diferent aspects of climate 

change have been better documented. Among these, three 

processes have been described in detail: (1) the increase 

in surface temperature at basin scale, starting from 1980 

(Nykjaer 2009); (2) the increase in temperature and salin-

ity of the deep waters of the western Mediterranean Sea, 

starting from 1950 (e.g., Rixen et al. 2005); (3) increas-

ing salinity and cooling of Levantine Intermediate Waters 

(LIW) (Brankart and Pinardi 2001; Painter and Tsimplis 

2003); and (4) the increase in the frequency of episodes 

of stratiication of the summer thermocline with conse-

quent massive mortality of benthic organism since the 90s 

(Rivetti et al. 2014). It is a combination of these types of 

important processes that are leading to profound changes 

in the biodiversity of the entire basin. These changes rep-

resent a possible model for understanding the ecosystem 

processes that, driven by climate change, will act at global 

scale. In addition, the Mediterranean Sea is experiencing 

various typologies of climate-induced changes, which can 

be summarized as follows: (a) episodic, short-term events 

of surface water warming; (b) transient phenomena occur-

ring in relatively short terms but with long lasting efects; 

and (c) chronic changes in water column conditions.

2  Biodiversity and ecosystems of the deep 
Mediterranean Sea

The overall surface of the Mediterranean basin is approxi-

mately 0.82% of the world ocean surface. It has an average 

depth of 1500 m and the deepest point at 5267 m depth 

in the Ionian Sea. Its total volume is approximately 0.3% 

of the oceans’ volume. Thus, the Mediterranean Sea rep-

resents a negligible portion of the global oceans. Yet, 

despite its limited dimensions, the Mediterranean Sea 

hosts approximately 7.5% of the marine species (Coll et al. 

2010). Although it is diicult to estimate accurately the 

number of deep-sea species, a recent estimate (excluding 

prokaryotes) indicates that the deep Mediterranean Sea 

can host ca 3000 species vs ca 17000 of the entire basin 

(Danovaro et al. 2010). Most of these species (prokary-

otes excluded), on average 66% (range 50–90%) are still 

unknown to science (Danovaro et al. 2010). Among these, 

most of the unknown species are within the phylum Nem-

atoda, followed by Foraminifera, but an important frac-

tion of macrofaunal and megafaunal species also remains 

unknown. These unique biological features are related to 

Fig. 1  Changes in temperature and salinity in the Western Mediterranean deep waters in the last decades (depth expressed in meters, T-pot is 

potential temperature, colors relect the diferent sampling times; courtesy A. Russo)
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the highly complex characteristics of the Mediterranean 

basin, which is divided into western and central-eastern 

basins, separated by the Strait of Sicily. The western basin 

(Mean depth, about 1600 m) consists of two deep basins: 

the Algero Provençal basin and the Tyrrhenian Sea. The 

central-eastern Mediterranean Sea consists of three main 

deep basins: the Ionian, Aegean, and Levantine (Sardà 

et al. 2004; Danovaro et al. 2010).

The Mediterranean deep sealoor includes a number of 

diverse habitats related to speciic and complex topographic 

features, such as: (a) continental shelves and slopes; (b) sub-

marine canyons and landslides; (c) base-of-slope deposits; 

(d) seamounts; (e) cold seepage, “mud volcanism”, and 

pockmarks; (f) deep-water biogenic reefs; and (g) bathyal 

or abyssal plains with abundant deposits of mud; h) deep-

hypersaline anoxic basins, which increase considerably the 

topographic complexity of the sealoor; and (i) volcanism 

and its inluence on various typologies of topographic fea-

tures. A schematic representation of the various habitat types 

considered in the present and of the topographic complexity 

of the deep sealoor is illustrated in Fig. 2.

Deep-water corals can form locally elevated secondary 

hard substrates associated with strong bottom currents that 

enhance food supply. These corals play also an important 

role as refuge or nursery habitats for a rich-associated fauna, 

some of commercial interest. Deep-water corals are pref-

erentially distributed on topographic irregularities, such as 

escarpments, prominent steps on canyons and seamounts, 

where currents are strong (Bo et al. 2014 and references 

therein). However, they can be present also in continental 

shelves and open slope. They are mostly composed of azo-

oxanthellate scleractinians; moreover, they are often asso-

ciated with other sessile invertebrates such as hydrozoans 

(Stylasteridae), sponges and giant oysters (Neopycnodonte), 

Fig. 2  Overview of some of the main habitat-forming species and 

ecosystems considered the present study. Reported are a most wide-

spread and relevant deep-sea habitat, the soft bottoms at bathyal–

abyssal depths in the western Mediterranean, b deep-water coral 

forest, with gorgonians and cold-water corals in the Tyrrhenian Sea, 

c a cold seep of a mud volcano in the eastern Mediterranean Sea; d 

hard-bottom fauna of seamounts of the central Mediterranean Sea; 

e syboglinidae worms from a cold seepage of the eastern Mediter-

ranean Sea; f lucinid clams from a deep-sea cold seepage (modiied 

from Taviani, 2014); and an example of some of the most interest-

ing topographic features such as: g canyon of the Catalan margin 

(courtesy M. Canals); h seamount, i furrows over a continental slope 

(courtesy M. Canals)
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and octocorals (Alcyonaria, Gorgonacea, and Pennatulacea); 

furthermore, some hexacorals (Antipatharia) are present in a 

range from 40 m to > 2000 m making deep-water coral banks 

important habitats as biodiversity hotspots (Fanelli et al. 

2017). Deep-water corals may be locally very abundant and 

represent key habitat-forming species of the Mediterranean 

deep sealoor (Bo et al. 2014). These habitats depend on the 

hydrodynamic regime, which supplies the needed food and 

the availability of suitable substrates. The most important 

deep-water coral systems of the Mediterranean basin are 

located along the Calabrian margin and in the Tyrrhenian 

Sea, Ionian Sea, and Ligurian Seas, and large colonies have 

been reported along the Catalan margin (Sánchez et al. 2008, 

Bo et al. 2012; Maynou and Cartes 2012; Fanelli et al. 2017). 

These systems support a high biodiversity, associated both to 

the living corals and to coral rubbles (Bongiorni et al. 2010). 

In January 2006, the General Fisheries Commission for the 

Mediterranean Sea prohibited the use of dredges and trawl 

nets in the deep-water coral banks of Santa Maria di Leuca 

(Italy), thus creating the new legal category of ‘‘Deep-sea 

isheries restricted area”. Yet, it only includes the coral bank, 

while as explained above, it would be necessary to include 

also the coral rubble habitat (Bongiorni et al. 2010).

Seamounts Sealoor elevations rising at least 100 m from 

the surrounding deep seafloor are defined seamount or 

seamount-like structures (Würtz and Rovere 2015). In the 

Mediterranean Sea, over 242 seamounts, banks rises, highs, 

hills, spurs, and other kind of sea loor elevations have been 

identiied and described (Würtz and Rovere 2015). These 

likely represent about 1% of the seamounts present in the 

world (Kitchingman et al. 2007). In the Western Mediter-

ranean Sea, the Tyrrhenian bathyal plain is characterized by 

the highest concentration of seamounts of the entire basin. 

They have been well studied from geological point of view; 

however, scare information is available about their ecologi-

cal aspects (Galil and Zibrowius 1998; Acosta et al. 2004; 

Cocchi et al. 2017). Volcanic bodies are either associated 

with north–south oriented crustal faults (Magnaghi, Vavilov, 

and Marsili seamounts) or with crescent-shape bathymetric 

ridges (e.g., Vercelli and Cassinis). The eastern Mediter-

ranean basin, on the other hand, is characterized by a higher 

topographic heterogeneity than the western sector and a 

large number of seamounts, including the Eratosthenes 

Seamount, an impressive structure situated in the Levantine 

Sea. Available knowledge about biodiversity on seamounts 

has been mainly focused on benthic habitat and less on the 

pelagic life. Suspension feeders, particularly deep-sea cor-

als and sponges, usually dominate the hard-bottom habitats 

of seamounts. Here, the most important habitat-forming 

cnidarian taxa are alcyonaceans (as sea fans and soft cor-

als and, at least for soft bottoms, sea pens), antipatharians 

(also called black corals forming large forests up to 500 m 

depth), and scleractinians (such as Dendrophyllia cornigera, 

Desmophyllum dianthus, and the white reef-forming corals 

Madrepora oculata and Lophelia pertusa) (Robinson et al. 

2014). Besides, encrusting foraminiferans, poriferans, bryo-

zoans, annelids, abundant scyphozoans, small actiniarians, 

along with diferent species of bivalves, sipunculids, aster-

oids, and ishes are also found on these environments. The 

inluence of seamounts is also observed on the community 

assemblages in the sediments close to these systems with 

remarkable diferences from the adjacent sediments typi-

cally from the adjacent bathyal plain (Danovaro et al. 2009; 

Pusceddu et al. 2009).

Canyons Most of the Mediterranean coasts are incised 

by a large number of canyons, which rapidly reach the 

deep-water bottoms. Mediterranean canyons are indeed dif-

ferent from the canyons of other regions, as they are more 

closely spaced (14.9 km), more dendritic (12.9 limbs per 

100,000 km2), shorter (mean length of 26.5 km), and steeper 

(means slope of 6.51; Harris and Whiteway 2011). Trawling 

activity and marine litter are relevant in most Mediterra-

nean canyons as documented in detail for the Gulf of Lion, 

and the Ligurian Sea (Fabri et al. 2014; Fanelli et al. 2017). 

Mediterranean canyons are typically colonized by Madre-

pora oculata, Isidella elongata, and Funiculina quadran-

gularis. Yet, signiicant diferences are present between the 

canyons located in the west and east coast of the Gulf of 

Lyons (Fabri et al. 2014). The Levante Canyon is the most 

prominent morphological feature of the Ligurian’s Apen-

nine margin (North-west Italy; Fanelli et al. 2017) and incise 

the outer continental shelf around 6 km from the Punta 

Mesco, running in parallel with respect to the coast merg-

ing with the Bisagno Canyon south of the city of Genoa. The 

Levante canyon is mainly colonized by Madrepora oculata 

and Desmophyllum dianthus, but its muddy seabed hosts a 

rich fauna, including the tube‐dwelling anemone Cerianthus 

sp., the euphausiid Meganyctiphanes norvegica, the deca-

pods Plesionika martia and Nephrops norvegicus, the mysid 

Boreomysis sp., brittle stars, polychaetes, and ishes includ-

ing Nezumia sp. (Fanelli et al. 2017). Most Mediterranean 

canyons are still largely unknown in terms of benthic fauna, 

yet it is well known that some of them, such as the Polcevera 

canyon plays an important role in forming a suitable habitat 

for cetaceans (Tepsich et al. 2014).

Cold seeps Cold-seep habitats (i.e., hydrogen sulide, 

methane, and other hydrocarbon-rich luid seepage) are 

marine sealoor ecosystems that form around hydrocarbon 

emission pathways. Seep-related structures include also 

pockmarks and mud volcanoes. Mud volcanoes (MVs) 

“conic ediices constructed by surface extrusion of cold lu-

ids, like mud, saline water, and gases expelled from a pres-

surized deep source layer up through structurally controlled 

conduits” (Kopf 2002). A mud volcano is a sort of “seep”, 

generally occurring in hydrocarbon basins often (but not 

always) linked to natural gas or oil reservoirs. Supply of 
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hydrocarbons sustain chemosynthetic communities, which 

are fuelled by chemical energy originated from microbial 

utilization of methane and other hydrocarbons (Levin and 

Sibuet, 2012; Pop Ristova et al. 2015). Cold seeps in the 

deep Mediterranean Sea have been described from the top of 

the Napoli mud volcano in Crete, at 1900 m depth (Corselli 

and Basso 1996). Cold-seep habitats are also present along 

the Catalan margin, the Pomo/Jabuka Pit (Adriatic Sea) and 

the Gela Basin (Strait of Sicily, Central Mediterranean Sea). 

In the south-eastern Mediterranean Sea, polychaetes and 

bivalves associated with cold seeps have also being found 

in front of Egypt at depths of 500–1000 m depth (Coleman 

and Ballard 2001), characterized by the presence of large 

ields of bivalves, siboglinid tube worms, large sponges, and 

endemic fauna. They also appear to host-rich megafauna, 

including giant sponges (Rhizaxinella pyrifera) and crabs 

(Chaceon mediterraneus) as well as some endemic chemos-

ynthetic species and large size bivalves (genera Calyptogena 

or Bathymodiolus).

Hydrothermal vents Hydrothermal vents in the Mediter-

ranean Sea are generated from the collision of the African 

and European plates, and most of them are at less than 200 m 

depth (Dando et al. 1999). Although Mediterranean hydro-

thermal vents are not characterized by a speciic fauna, a 

lower diversity sediment fauna and higher diversity epi-

fauna were reported. Moreover, a large number of novel 

prokaryotes, especially hyperthermophilic crenarchaeota, 

have been isolated from Mediterranean hydrothermal vents 

(Dando et al. 1999). However, a study performed on mac-

rofaunal of shallow hydrothermal vent of Aegean Sea found 

a higher biodiversity (Morri et al. 1999). Moreover, a study 

performed by Yakimov et al. (2007) investigated a deep 

Mediterranean hydrothermal mud vent, and its results indi-

cated the presences of a metabolically active prokaryotic 

community in hydrothermal mud, which showed a great 

genetic diversity. Most of the bacteria were phylotypes aili-

ated with the epsilon-Proteobacteria subdivision recognized 

as an ecologically signiicant group of bacteria inhabiting 

deep-sea hydrothermal environments. Moreover, a signii-

cant percentage of delta-Proteobacteria was present, which 

indicate that sulfate reduction was one of the most important 

metabolic processes in warm mud luids.

2.1  Bathyal and abyssal plain

In the Western basin, close to the 3000 m isobaths have 

been used as the upper limit of the abyssal plain. This 

plain covers a large portion of the deep Western Mediter-

ranean Basin with an overall area of about 240,000 km2. 

With water temperatures at 3000/4000 m of about 13–14 °C 

(rather than 4 °C or colder as other deep oceanic basins), 

the entire benthic environment displays unique features. The 

Mediterranean Sea also difers here from other deep-sea 

ecosystems in its species composition, notably the absence 

of the deep-water grenadier ish Coryphaenoides armatus 

and the amphipod Eurythenes gryllus (replaced by Acanth-

ephyra eximia, a scavenging crustacean). Typical deep-water 

fauna groups, such as echinoderms, glass sponges, and mac-

roscopic foraminifera (Xenophyophora), are also scarce or 

absent, while other groups (i.e., ishes, decapod crustaceans, 

mysids, and gastropods) appear much less abundant in the 

deep Mediterranean Sea than in the north-eastern Atlantic 

plains. Here, bacteria, archaea, and the small eukaryotes 

play the main role in C production, nutrient cycling as well 

as energy transfer to higher trophic levels (Danovaro et al. 

2016b).

3  Change and shifts in the deep 
Mediterranean Sea and their efects 
on the biota

Since environmental conditions in most deep-sea ecosystems 

are remarkably constant over time (i.e., typically change only 

over geological time scales), the impact of these changes on 

deep-sea organisms and ecosystems could be particularly 

important (Danovaro et al. 2017b). Possibly, the best known 

features of all deep-sea ecosystems is their constant tempera-

tures over time. Temperatures sharply decline with increas-

ing water depth, and at bathyal and abyssal depths, they 

reach values from 10 to 4 °C. However, the Mediterranean 

Sea has a warm deep-sea basin and its temperature at the 

sealoor range from > 14 to 12.8 °C, and these values are ca 

10 °C higher than those of other oceans at equal depths. This 

makes deep-sea fauna diferent from that of other oceans. 

Deep-sea biota are characterized by slow growth rates and 

late maturation; thus, they are particularly vulnerable to all 

impacts and could show a limited resilience (Danovaro et al. 

2017a).

Climate-induced changes in deep seas can occur primar-

ily in two ways: (1) by deep-water warming, linked to sur-

face temperature increases and to intermediate layer warm-

ing and (2) by the formation of new deep waters, which 

occurs when surface waters, preconditioned by high salinity, 

become suiciently dense by cooling to cause them to sink. 

Both kinds of climate-induced change have been recorded 

in the Mediterranean Sea. In the deep Mediterranean Sea, 

both phenomena are observed. The formation of new deep 

waters in the Mediterranean Sea can occur primarily in two 

ways: (a) the dense shelf water cascading (DSWC) and the 

so-called “transient event”.

Dense shelf water cascading is a speciic type of buoy-

ancy-driven current, which occurs when dense water forms 

over the continental shelf by cooling and/or by an increase in 

salt content of the coastal waters due to atmospheric forcing. 

When the dense waters overlow the shelf edge, they descend 
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down the continental slope, until they reach the correspond-

ing matching density. Suspended sediment concentration in 

the dense water plume also contributes to the excess den-

sity, and afects the dynamics of the plume by enhancing 

its equilibrium depth (Fohrmann et al. 1998). Major DSWC 

possibly contributes to the ventilation of deep waters, and 

leads to large suspended particle and organic matter luxes 

(Heussner et al. 2006; Sanchez-Vidal et al. 2009).

The “transient event” refers to large changes in the 

physico-chemical characteristics of the eastern Mediterra-

nean Sea deep water ‘Transient event’. Changes in the deep 

waters in this area occurred in two phases: the irst, between 

1987 and 1992, was characterized by a massive formation 

of dense, relatively warm water in the south Aegean (the 

Cretan Deep Water), mainly as a result of increased salinity; 

the second phase, from 1992 to 1994, was characterized by 

a drop in deep-water temperature of ~ 0.4 °C, which resulted 

in even denser deep water being formed (Danovaro et al. 

2001 and citation therein). Consequently, the old eastern 

Mediterranean Sea Deep and Bottom Waters were uplifted 

by several hundred meters and formed a distinct nutrient-

rich intermediate-water layer (the Transitional Mediterra-

nean Water), which, under the inluence of cyclonic circula-

tion, reached shallower depths (100–150 m; i.e., close to the 

euphotic zone).

Life in the deep sea depends on the constant rain of set-

tling particles produced in the photic zone and/or exported 

from the continental shelf. One of the main characteristics of 

the deep Mediterranean is food limitation displaying strong 

energetic gradients and low nutrient concentrations in the 

central-eastern basin (Danovaro et al. 2009). Indeed, the 

Levantine region of the central-eastern basin is one of the 

most food limited deep-sea areas of the world (Psarra et al. 

2000; Tselepides et al. 2000). Inputs of organic carbon are 

15–80 times lower than in the western basin and there are 

extremely low concentrations of chlorophyll-a in surface of-

shore waters (about 0.05 μg  L−1) (Yacobi et al. 1995; Krom 

et al. 1991). The concentrations of food sources decline 

sharply with increasing distance from the coast and depth.

Oxygen is naturally low or absent, where biological 

oxygen consumption through respiration exceeds the rate 

of oxygen supplied by physical and biological processes. 

This is the case of the oxygen minimum zones (OMZs) of 

the open ocean, the coastal upwelling zones, deep basins 

of semi-enclosed seas, and deep jords. Low oxygen levels 

and anoxia leave a strong impact on biogeochemical and 

ecological processes (Diaz and Rosenberg 2008). Biodiver-

sity and eukaryotic biomass decrease, and microbes increase 

their relevance. Another important factor is the increased 

evidence of the progressive acidification of the oceans 

(Stramma et al. 2010; Koslow et al. 2011), but the available 

information for the deep Mediterranean Sea is almost non 

existent.

The  CO2 sequestration by the oceans leads to a pH 

decrease in seawater (ocean acidiication) and a variety of 

chemical changes known collectively as “the other  CO2 

problem” phenomenon. The impact of OA (i.e., ocean acid-

iication) on marine biogeochemical cycles and biota has 

been well documented by laboratory studies and already 

documented in some ocean areas (Orr et al. 2005). The 

Mediterranean Sea could represent one of the world’s most 

sensitive ocean regions to ocean acidiication (Bramanti 

et al. 2013). Recent investigations suggested that the Medi-

terranean Sea has shown a decrease of pH values ranging 

from − 0.005 to − 0.156 units (according to the method of 

calculation) with respect to the preindustrial levels, (Has-

soun et al. 2015; Palmiéri et al. 2015). A 3 year investigation 

conducted in the Mediterranean Sea at the Strait of Gibral-

tar documented a remarkable decreasing annual trend of 

− 0.0044 ± 0.00006 in the pH, present in both the Levantine 

Intermediate Water (LIW) and the Western Mediterranean 

Deep Water, particularly in the deep waters due to their dif-

ferent biogeochemical nature (Flecha et al. 2015).

3.1  Temperature shifts

A general warming trend has been observed in the deep 

waters of the western Mediterranean Sea, where water tem-

peratures have increased by ~ 0.12 °C in the past 30 years as 

a possible result of greenhouse gas-induced global warming 

(Bethoux et al. 1990). However, subsequent investigations 

have revealed a signiicant increase of the rate of warming 

in deep-water masses (Fig. 1). Changes in temperature are 

particularly relevant from an ecological point of view, since 

they can inluence deep-sea biodiversity and its attributes 

over wide spatial scales. The life history, longevity, and 

metabolic rates of deep-sea organisms are inluenced by tem-

perature (and body size, according to the metabolic theory 

of ecology; which explains how metabolic rate varies with 

body size and temperature see Brown et al. 2004). Deep-sea 

ecosystems see a progressive (both chemical and thermal) 

energy limitation with increasing water depth. However, 

since the Mediterranean Sea is characterized by high tem-

perature at depths, these efects are expected to be much 

less relevant in the Mediterranean Sea, rather the problem 

for deep Mediterranean species can be related to the limit 

of thermal tolerance, especially for species with ainity for 

cold waters (Naumann et al. 2014). The efects of tempera-

ture shifts on Mediterranean deep sea are poorly investigated 

and the experience made with coastal ecosystems cannot 

be easily applied to the deep. In the Mediterranean Sea, 

most planktonic and benthic species show clear temporal 

trends (Coma et al. 2000), and species with higher ainity 

to warm temperatures expand their reproductive and growth 

periods, while those with ainity for lower temperature see a 

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

A
u

th
o

r
 P

r
o

o
f



U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 12210 Article No : 725 Pages : 17 MS Code : LYNC-D-18-00035 Dispatch : 13-6-2018

 Rendiconti Lincei. Scienze Fisiche e Naturali

1 3

reduction of the periods suitable for their reproductive cycles 

(Boero et al. 2008).

Changes in deep-water temperatures and particularly 

the increase of sea-surface temperatures can alter the ver-

tical distribution of coastal species pushing them towards 

deeper depths, and possibly determining an extinction of 

vulnerable species at shallow depths (Boero et al. 2013; 

Yasuhara and Danovaro 2016). Changes in temperature 

might also lead to altered life cycles, inducing dormancy 

and production of resting stage of phyto- and zooplankton 

species, which sink and accumulate in deep-sea sediments 

(Della Tommasa et al. 2004). Although, intensive and pro-

longed warming periods can lead to the presence of epi-

sodic mass mortality events (Cerrano et al. 2000), most of 

these species respond to changes in temperature by adapt-

ing to warmer conditions and/or modifying their phenology. 

However, conversely to coastal marine areas, the deep sea is 

characterized by stable temperatures and does not tolerate 

temperature shifts. Using a decadal data set (from 1989 to 

1998), Danovaro et al. (2014) provided evidence that deep-

sea nematode diversity can be strongly and rapidly afected 

by temperature shifts. The abrupt decrease in temperature 

(of about 0.4 °C) and modiied physico-chemical conditions 

that occurred between 1992 and 1994 caused a signiicant 

decrease in nematode abundance and a signiicant increase 

in diversity. Such changes promoted a strong turnover diver-

sity with the replacement of ca 50% of the species present at 

1000 m depth. Temperature shift also resulted in decreased 

functional diversity and species evenness and in an increase 

in the similarity to colder deep-Atlantic fauna. When the 

temperature recovered (after 1994–1995), the biodiversity 

only partially returned to the previous values, also indicating 

that also climate-driven episodic events are not reversible, 

at least in the scale of decades. This study also showed that 

deep-sea biodiversity is highly vulnerable to environmen-

tal alteration and that deep-sea biodiversity is also signii-

cantly afected by very small temperature changes (even in 

the order of 0.1 °C).

3.2  Food limitation

The inputs of organic material produced by photosynthesis 

at the ocean surface decrease exponentially with increasing 

water depth, thus limiting benthic production and controlling 

the biodiversity of some large species (i.e., Ophiuroidea; 

McClain et al. 2012; Smith et al. 2009; Woolley et al. 2016). 

An increasing number of studies predict that global change, 

enhancing water column stratiication through increased 

sea-surface temperature, might reduce the input of food 

resources in the Mediterranean Sea (Coma et  al. 2009; 

Smith et al. 2008; Sweetman et al. 2017). Such progressive 

food limitation in the deep sea can have diferent efects 

on diferent benthic components. Recently, McClain et al. 

(2012) highlighted that the relative inluence of chemical 

(i.e., food) and thermal energy (bottom water temperature) 

on deep-sea organisms varies considerably across levels 

of biological organization and that chemical energy has a 

major efect on larger organisms (at higher levels of biologi-

cal organization).

Although the response of the deep-sea assemblages to the 

constant food depletion is largely unknown, it is known that 

a reduction of food availability can signiicantly afect the 

growth rates, survival, and recruitments of benthic organ-

isms, with severe consequences on the deep-sea community 

(Gambi et al. 2017; Roberts and Cairns 2014). Finally, the 

efects of global change on food supply to the deep sea might 

change signiicantly among diferent regions and habitats 

(e.g., northern vs southern Mediterranean Sea, or active can-

yons vs passive open slopes; Cartes et al. 2015; Pusceddu 

et al. 2013, 2016; Sweetman et al. 2017).

The potential of deep-sea assemblages to adapt to pro-

gressive food depletion is completely unknown. Gambi et al. 

(2017) used the Mediterranean Sea as a model for evaluating 

the possible efects of changes in food supply [i.e., organic 

carbon (OC) luxes] and bioavailability (as quantity of food 

sources) on the abundance and biomass of diferent deep-

sea benthic components. The results of this study show that 

microbes, meiofauna, macrofauna, and megafauna will dis-

play a diferent response in terms of abundance and biomass 

to increasing food limitation. The efects of food depletion 

are particularly evident for macrofauna and megafauna and 

to a lesser extent for meiofauna (Gambi et al. 2010; Rex 

et al. 2006; Rogers 2015; van der Grient and Rogers, 2015; 

Wei et al. 2010). while microscopic components (e.g., bacte-

ria, archaea and protozoa) remained invariant along bathym-

etric patterns (Danovaro et al. 2002; Deming and Carpenter 

2008; Rex et al. 2006; Wei et al. 2010). The decrease of 

benthic faunal abundance and biomass with increasing water 

depth is explained by the exponential decrease in organic 

matter supply (Smith et al. 2009; McClain et al. 2012; Jones 

et al. 2014). A reduced food availability can signiicantly 

afect the growth rates, survival, and recruitments of ben-

thic organisms, with severe consequences on the potential 

of deep-sea assemblages to sustain their abundance, growth 

rate, reproduction, and recovery of degraded habitats (Smith 

et al. 2008; Barbier et al. 2014; Van Dover et al. 2014).

3.3  Oxygen decline

Changes in the deeper ocean oxygen may have their origin 

in basin-scale multi-decadal variability, oceanic overturn-

ing slow-down and a potential increase in biological con-

sumption (Breitburg et al. 2018). Although periodic hypoxic 

events have been observed in the Adriatic Sea, in the deep 

Mediterranean Sea, there is no evidence of hypoxic condi-

tions this fact is likely due to very low inputs of organic 
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material to the deep sealoor. Although it can be expected 

that increasing temperatures might increase the potential 

spread of OMZs, the decreased primary productivity might 

balance such a risk. However, other authors sustain that 

global warming can increase the primary production (see 

Hare et al. 2007). Direct efects from depletion of  O2 levels 

and rising water temperatures may impact embryonic sur-

vival rates of vulnerable deep-sea oviparous (egg-laying) 

elasmobranchs (Henry et al. 2016), including the deep-sea 

shark Centroscymnus coelolepis, a key stone species in the 

deep Mediterranean (Catarino et al. 2015). The deep-hyper-

saline anoxic basins present in the eastern Mediterranean 

Sea are extreme ecosystems for their high salt concentrations 

and anoxic conditions, but they can represent a model of the 

potential consequences over the deep-sea biota (Danovaro 

et al. 2005, 2008a, 2016a).

3.4  Acidiication

Ocean acidiication represents an additional major threat 

for the calcifying species (e.g., cold-water corals) given its 

potential efects on growth rates, reproduction and resistance 

to environmental changes. With increasing  pCO2 (i.e., –log 

of the  CO2 concentration), reduced calciication rates have 

been observed for a variety of calcareous organisms even 

when aragonite or calcite saturation exceeds 1.0. However, 

the sensitivity of marine organisms to acidiication varies 

among diferent taxa and some species may increase calci-

ication rates with increasing  CO2 levels. A recent analysis 

of the trend in pH in the Mediterranean waters revealed a 

signiicant decreasing trend with a Δ pH of − 0.0044 units 

per year in the Mediterranean Outlow Waters, which is 

largely inluences by deep Mediterranean waters. This rate 

of pH decline is two- or threefold higher than acidiication 

rates reported in several oceanic sea-surface time series. The 

range of pH change in Mediterranean deep waters has been 

estimated recently through a modelling approach (− 0.005 

to − 0.06 pH units Palmiéri et al. 2015). Such changes can 

afect signiicantly also economically important species, 

such as the cold-water coral Corallium rubrum, which is dis-

tributed in a range between 3 and > 1000 m. The decrease of 

pH value causes a reduction of its biocalciication process. 

Since C. rubrum is a long-living species (200 years), this 

suggests that ocean acidiication predicted for this century 

will signiicantly increases its extinction risk; thus preserv-

ing its associated biodiversity is important to contrast its 

decline (Cerrano et al. 2013).

4  Vulnerability of Mediterranean deep-sea 
ecosystems to global change

Available information suggests that more diverse deep-sea 

systems are characterized by higher rates of ecosystem func-

tioning than less diverse systems, as well as by an increased 

eiciency how the diferent processes (e.g., biomass produc-

tion) are performed (Danovaro et al. 2008b). However, in 

the case of the vulnerable deep-sea habitats of the Mediter-

ranean Sea, the overall impact of global changes is expected 

to be related to a combination of factors. In the following 

sections, the vulnerability of diferent deep-sea habitats and 

ecosystems is analyzed, based on the experimental of ield 

evidence of their sensitivity to changes in the environmental 

conditions present in diferent deep-sea- habitats and eco-

systems based on the assessment of two main variables: (a) 

the sensitivity/tolerance of deep-sea Mediterranean species/

assemblages to shift in climate-sensitive variables and (b) 

the degree by which every system is expected to be exposed 

to a higher intensity of the climate change-induced shifts 

(Table 1).

4.1  Impact on deep-water corals systems

Cold-water coral habitats are expected to be severely threat-

ened by global change either in terms of tolerance to increas-

ing water temperature and acidiication. Locally, the adap-

tive capacity of communities and habitats still needs to be 

assessed and supported by reducing other stressors, arising 

Table 1  Sensitivity of various habitat types to the variables afected by global change in the deep Mediterranean Sea

Deep-sea habitat type Temperature Food limitation Acidiication Oxygen depletion Cumulative 

potential Impact

References

Deep-water forests and corals Very high High High Moderate Very high Brooke et al. (2013)

Hennige et al. (2014)

Bathyal–Abyssal Plains Very high Very high Low Moderate High/Very high Pusceddu et al. (2013)

Canyon systems High Moderate High High High Brooke et al. (2013)

Hennige et al. (2014)

Seamounts High High Moderate Low Moderate Brooke et al. (2013)

Hennige et al. (2014)

Cold seeps Low Low Very low Low Low Brazelton (2017)

Vent systems Very low Very low Very low Very low Very low Brazelton (2017)
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from direct impacts. Another main threat is certainly repre-

sented by the increase of deep-water temperatures, which 

might surpass the upper limits of tolerance of these spe-

cies that show a high ainity for cold waters. Indeed, the 

study conducted by Brooke et al. (2013) through a labora-

tory experiment, where living colonies of the deep coral L. 

pertusa were kept at 5, 8, 15, 20 and 25 °C, of which the 

latter three encompassed the known range derived from ield 

observations (~ 4–14 °C), while the irst two temperature 

were used as controls. The results showed that after 24 h, 

all of the fragments in the 5, 8, and 15 °C treatments were 

alive and healthy; however, at 20 °C, survival was reduced 

to a mean of 68.3%, while a 100% mortality was observed at 

the highest temperature. In addition, the decrease in primary 

production and changes in water circulation can cause severe 

food shortage with consequent efects on the survival of 

these organisms. Finally, their zonation in proximity of the 

margins and prevalently on the upper slope, often at close 

distance from the shore, makes these systems potentially 

susceptible to oxygen limitation.

4.2  Impact on seamounts

Seamounts in the Mediterranean Sea can reach shallow 

depths, which make these systems susceptible to water 

warming. At the same time, the increased water column 

stratiication can alter signiicantly both the production/

inputs of organic matter and the hydro-dynamism (possibly 

including Taylor column dynamics that creates circulation 

cells above the seamount summit and enhanced vertical 

mixing leading to increased primary production). Changes 

in water temperature and food supply can cause signiicant 

alterations (Carney 2005). The impact of acidiication can 

be relevant for deep-water corals colonizing the seamount, 

but possibly less impacting for other benthos and nektonic 

species as reported by Hennige et al. (2014) who treated 

living colonies of L. pertusa with high  CO2 concentrations 

(up to 750 ppm). The results showed that corals exposed 

to high  CO2 conditions reduced signiicantly respiration 

rates (11.4 ± 1.39 SE, µmol O2 g−1 tissue dry weight h−1) 

than corals in control conditions (28.6 ± 7.30 SE 

µmol O2 g−1 tissue dry weight h−1).

4.3  Impact on canyon systems

Continental margins represent approximately 20% of the 

world ocean’s surface and the relevance of the canyons in 

continental margins of the Mediterranean Sea is even higher. 

The topographic and hydrodynamic features of some subma-

rine canyons make these sites of intense exchange between 

the continental shelf and the deep margin and basin (Flexas 

et al. 2002, 2008; Palanques et al. 2006; Heussner et al. 

2006). Canyons contain a large number of endemic and 

vulnerable species and habitats and play an important role 

in the biogeochemical cycles at the global scale. Canyons 

can favor or even amplify the efects of dense shelf water 

cascading events (DSWC; Allen and Durrieu de Madron 

2009). Therefore, it has been hypothesized that DSWC could 

have a great inluence on the biodiversity and functioning of 

canyon ecosystems and the deep margins and basins (Dur-

rieu de Madron et al. 2000; Duineveld et al. 2001; Martin 

et al. 2006; Skliris and Djenidi 2006; Bianchelli et al. 2008; 

Company et al. 2008). Canyons are subjected to episodic 

temperature shifts; thus, local assemblages can be adapted 

to such variability, but are at the same time vulnerable, as 

such shifts are associated with strong currents that cause 

an intense physical disturbance over large portions of the 

canyon (Font et al. 2007). At the same time, canyons are 

typically rich in organic matter (largely derived from shelf 

export) and could sufer less from changes in primary pro-

duction (Vetter and Dayton 1998). On the contrary, their 

sensitivity to acidiication can be high due to the presence 

of habitat-forming species/bio-constructors (Sánchez et al. 

2014). Finally, their proximity to the coast makes these sys-

tems highly vulnerable to deoxygenation.

4.4  Impact on seepage systems

These systems release a cold-water low containing methane 

or other hydrocarbon sources, which cause an environmental 

gradient and represent a suitable habitat for species using 

this energy sources for their bacterial and/or archaeal sym-

bionts. Sometimes, the seepage, which is highly variable in 

time and space, is associated with moderate warming (up to 

ca 40 °C), so that the impacts of minor temperature shift are 

expected to be negligible. Active cold seeps are also sys-

tems, where chemoautotrophic primary production prevails, 

and make the assemblages and related food webs largely 

independent from the organic carbon inputs from the photic 

zone. These systems might also show an important variabil-

ity in terms of pH and oxygen concentration, so that their 

associated fauna is likely to tolerate shifts in these variables 

related to global change.

4.5  Impact on vent systems

Vents release a very hot water low, which causes an envi-

ronmental gradient that provides a suitable habitat for 

warm-ainity species. This water low contains abundant 

concentration of hydrogen sulide, gas, and other reduced 

chemical compounds that represent an energy reserve for 

bacteria and archaea (Bell et al. 2017). The most frequent 

vent-associated animals are annelids, polychaetes, mussels, 

clams, and shrimp (Brazelton 2017), which live in symbio-

sis with chemoautotrophic bacteria (De Leo et al. 2010; Bo 

et al. 2014; Davies et al. 2015). These organisms are thus 
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largely (or completely) independent from the food supply 

from the water column. Since these systems are subjected 

to high (and highly variable) temperatures, oxygen, and pH, 

the deep-water warming is expected to have very limited (if 

any) impact on these assemblages, although it could alter the 

dynamics of the surrounding assemblages (Brazelton 2017).

4.6  Impact on bathyal and abyssal plain

In the last decades, the impacts of global change on the deep 

sea have been modelled (Mora et al. 2013; Sweetman et al. 

2017), but ield data on the impact on deep-sea bathyal and 

abyssal plains remain extremely scant. The Mediterranean 

deep-sea plains have been characterized by two main pro-

cesses: the transient events in the eastern Mediterranean Sea 

and the cascading events in the Central and Western basin 

(along the Catalan margin and in the southern Adriatic-Ion-

ian sea). The two phenomena originate in surface waters, but 

the density efects spread into the deeper waters reaching the 

basins down to ca 2000 m depth. These phenomena are asso-

ciated with temperature shifts (abrupt decrease determining 

the formation on dense waters) or change in salinity (rapid 

increase of salinity causing increase water density). In the 

case of the cascading, the process is coupled with a mas-

sive transfer of sediment and organic loads. These processes 

cause, from one side, the disturbance due to bottom currents 

and sediment resuspension, but at the same time supply the 

deep sea with important food sources (Pusceddu et al. 2013). 

Pusceddu et al. (2013) investigated the efects of cascad-

ing process on the meiofaunal assemblages of a submarine 

canyon and a deep margin. During the cascading period, 

only nematodes were found in the canyon and three taxa 

(i.e., nematodes, copepods, and polychaetes). After the ces-

sation of cascading, a fast recovery of deep-sea meiofaunal 

assemblages has been observed. Six months after the event, 

meiofaunal abundance, biodiversity, and community com-

position recovered to values typically observed in all other 

sampling periods, when a total of 5–11 taxa are recorded 

within the canyon sediments and in the deep margin. The 

apparent quick recovery of the deep-sea assemblages after 

cascading can be explained by the high turnover (up to > 10 

generations  year−1) and opportunistic life strategies of mei-

ofauna. In addition, the increased food availability observed 

in the deep margin and the ecological space released by the 

meiofauna killed or brought away by cascading could have 

favored the fast recovery of meiofaunal assemblages. These 

results generally have a limited temporal efect, observed for 

the recruitment and catch of the deep-sea shrimp Aristeus 

antennatus, which were abated by the cascading and showed 

a strong recovery after the cessation of the episodic event 

(Company et al. 2008).

The transient event and the consequent uplift of nutrient-

rich deep waters in the eastern Mediterranean Sea resulted in 

increased biological production. From the early 1980s to the 

1994–1995 season (i.e., after cooling), primary productivity 

over the continental shelf and upper slope increased three-

fold, reaching values comparable with those in mesotrophic 

environments (i.e., 60–80 g C  m−2  year−1). Such changes 

in primary productivity were also coupled with changes in 

phytoplankton assemblage composition (measured as the 

diatom:dinolagellate ratio), species dominance and aver-

age phytoplankton cell size (which increased by between 

two and ive times). Increased primary production and phy-

toplankton cell size are known to enhance vertical luxes 

of phytodetritus and organic C to deep-sea sediments. This 

was observed in the eastern Mediterranean Sea, where phy-

todetritus input to the deep-sea loor increased by up to two 

orders of magnitude. This lux determined an accumulation 

of organic C and N on the sea loor and enhanced the qual-

ity of sedimentary organic matter, evident in terms of pro-

tein accumulation, increased the total protein: carbohydrate 

content ratio and decreased the C:N ratio (carbon: nitrogen) 

ratio. Such phenomena are the opposite to those described 

during El Niño events, in which a reduced export production 

from the euphotic zone has been reported. This phenomenon 

caused a signiicant decrease in nematode abundance and a 

signiicant increase in diversity. This temperature decrease 

also resulted in decreased functional diversity and spe-

cies evenness and in an increase in the similarity to colder 

deep-Atlantic fauna. When the temperature recovered, the 

biodiversity only partially returned to the previous values 

(Danovaro et al. 2004).

It is concluded that deep-sea fauna is highly vulnerable to 

environmental alterations and that deep-sea biodiversity is 

also signiicantly afected by very small temperature changes 

(even in the order of 0.1 °C) and to changes in food availabil-

ity as these systems are drastically dependent on the organic 

carbon supply from the water column. Oxygen decline could 

have major impacts on these systems, but the spreading of 

OMZ at bathyal and abyssal depths is expected to be relative 

modest. Moreover, the efects of acidiication are expected to 

be important on species inhabiting the deep-sea plains, but 

the low rate of expansion of the acidiication at such depths 

makes this risk relatively modest.

5  Global change impacts on ecosystem 
services and societal values of the deep 
Mediterranean Sea

Ecosystem good and service beneits that human population 

derive, directly or indirectly, from ecosystem functions (e.g., 

food and other natural resources or waste abatement) play a 

crucial role in sustaining people’s well-being (Costanza et al. 

1997), but global change poses serious risks for their sustain-

ability. Valuing both the beneits and the costs of ecosystem 
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degradation can represent a way to contribute to decision-

making processes (UNEP-WCMC 2011; MEA 2005). The 

high biodiversity allows maintaining the deep-sea ecosystem 

functions, providing a wide variety of ecosystem services 

some of which are unique, irreplaceable, and play a key 

role in sustaining human well-being (Armstrong et al. 2012, 

Thurber et al. 2013; Balvanera et al. 2014). Among the sup-

porting and regulating services, it is important to mention 

the role of deep-sea ecosystems in the C storage (Liquete 

et al. 2013). Deep sea has already absorbed a quarter of 

the carbon released from human activities (Sweetman et al. 

2017). The storage of  CO2 inluences also climate and many 

other deep-sea functions and services. Climate mitigation by 

the deep ocean may ultimately compromise many of the eco-

system services we value. At the same time, sequestration of 

methane, another powerful greenhouse gas into carbonates, 

is largely driven by sealoor microbial communities interact-

ing with specialized fauna. The deep sea also represents an 

area, where waste products are stored and detoxiied through 

biotic and abiotic processes. For example, persistent organic 

pollutants, macro- and micro-plastics, sewage, and oil can be 

removed through bioremediation, facilitated by bioturbation 

(a process that regulates the decomposition and/or sequestra-

tion of waste by biogenic mixing of sediments performed by 

organisms; Snelgrove et al. 2017). Non-market supporting 

services are provided by deep-sea ecosystems in the form 

of habitat provision, nursery grounds, trophic support, ref-

uges, and biodiversity functions provided by assemblages on 

seamounts, coral and sponge reefs, banks, canyons, slopes, 

and other settings (Armstrong et al. 2012; Mengerink et al. 

2014; Thurber et al. 2013; Levin and Le Bris 2015). The 

extensive species, genetic, enzymatic, and biogeochemical 

diversity hosted by the deep ocean also holds the potential 

for new pharmaceutical and industrial applications, as well 

as keys to adaptation to environmental change. Among the 

provisioning services, ish stocks are one of the most tan-

gible ecosystem services provided by the deep sea (Norse 

et al. 2012). However, the mean depth of ishing is increas-

ing at a rate of ca 62.5 m per decade, from below 200 to 

1000 m. Currently, ishing beneath 1000 m depth is banned 

in the Mediterranean Sea, but there are clear evidences that 

the ban is often not respected (De Juan and Lleonart 2010). 

Other crucial provisioning services for human activities are 

represented by oil and gas reserves stored in the deep seabed. 

During recent years, we are witnessing the development of 

new technologies for ofshore drilling and large reserves of 

hydrocarbons have been found. Consequently, the oil and 

gas industry has moved from the land to the deep waters; 

however, there is a risk that increasing deep-water tempera-

tures can cause the release of the gas hydrates from the deep 

sealoor. Behind oil and gas, deep-sea beds are characterized 

also by reserves of metals, which are also rare earth ele-

ments. Mining is not limited to resources such as metals, but 

also supplies “ornamental” services, as the exploitation of 

some species for jewelry (e.g., red coral and other precious 

corals). Finally, deep-sea ecosystems ofer also a variety of 

social (i.e., aesthetic and inspirational) services, including 

literature, entertainment (many movies have focused on the 

Abyss and its creatures), ethical considerations, tourism, and 

spiritual wealth and well-being. Some of the main cultural 

services provided by the deep sea are important for educa-

tion and science. Deep-sea ecosystems thus play an impor-

tant role, since they provide a number of services required to 

support the current way of life for humans and human well-

being. At the same time, the importance of intangible values 

of deep-sea ecosystems makes it diicult to fully assess their 

global value (Van den Hove and Moreau 2007). Valuation 

results are often diicult and complex environmental goods 

depend on the level of the previous knowledge of the par-

ticipant stakeholders and the information provided to them. 

A recent study conducted by Zanoli et al. (2015) applied 

the Q methodology to explore subjective perspectives on 

Mediterranean deep sea. In this experiment, Ph.D. students, 

half of which with a Marine Life Sciences degree and half 

with a degree in a diferent topic, were asked to perform a 

Q-sorting experiment, and rank a sample of 36 deep-sea 

pictures of the bathyal–abyssal wildlife, landscapes/habitats, 

and ecosystems in the Mediterranean deep sea. All pictures 

were sorted by topic according to a subjective priority rela-

tive to (a) a personal overall view; (b) their perception of 

the potential interest for ishermen; and (c) as if they were 

ishermen. The results of this test demonstrated that the edu-

cation is a key step in the appreciation and consciousness of 

the importance of deep sea in our societies.

The societal impacts of global climate change in the 

deep sea will be undoubtedly widespread and complex. It 

is already evident in the migration and change in the dis-

tribution of deep-sea populations of commercially interest. 

This impact will result from warming-induced changes in 

metabolism (Deutsch et al. 2015) and body size (Cheung 

et al. 2013) linked to latitudinal or depth shifts in species dis-

tributions, in addition to vertical habitat compression from 

OMZ expansions (Prince and Goodyear 2006; Stramma 

et al. 2010, 2012; Yasuhara and Danovaro 2016). Less clear 

are the impacts of acidiication stress on precious species, 

such as the red coral (Bramanti et al. 2013; Cerrano et al. 

2013). Other efects could be the altered isheries produc-

tion, which in the Mediterranean Sea is expected to be very 

strong due to reduced food availability.

6  Conclusions

In conclusion, although the actual knowledge is still scant, 

it is clear that global change poses serious threats on the 

biodiversity and functioning deep-sea ecosystems in the 
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Mediterranean Sea, which on the bases of the higher food 

limitation and higher deep-sea temperatures appears far 

more vulnerable to climate change efects than other oceanic 

regions. A conceptual representation of the possible difer-

ences in terms of vulnerability of the deep Mediterranean 

Sea ecosystems and their counterpart in oceanic waters is 

illustrated in Fig. 3.

Furthermore, the impacts of global change are expected 

to be stronger if we considered synergistic efects (Mora 

et al. 2011) with other human impacts such as marine litter 

widespread, overishing, chemical pollution, and eutrophica-

tion. As a result, the global ability of providing ecosystem 

goods and services (e.g., food resources  CO2 sequestration) 

can be seriously compromised (Barkmann et al. 2008). The 

knowledge on the impact of global change on deep-sea 

biota of the Mediterranean Sea is still extremely scarce and 

requires immediate actions. Therefore, it is clear the need 

to increase the research on the deep sea. In this perspec-

tive, the EU’ Marine Strategy Framework Directive (MSFD) 

can play a crucial role. The MSFD require that the member 

states achieve the good environmental status not only in 

coastal areas, but also in the ofshore area up to 200 nautical 

miles from the coast line. In this perspective, planning and 

implementing ecological investigation and monitoring of 

deep-sea ecosystems is of vital importance (Danovaro et al. 

2017a). Some deep-sea ecosystems are severely impacted or 

damaged and require restoration actions (Barbier et al. 2014) 

and scarce methodological information exist to date, and 

future research projects should take this topic into account. 

Finally, improving environmental conditions and increasing 

environmental cultural awareness (especially on the deep 

sea) is of particular importance to empower stakeholders 

involved in marine resource exploitation (Van Dover et al. 

2014). The deep Mediterranean Sea provides an important 

part of the ecological and ecosystem services needed for our 

society, which are likely to expand and be more appreciated 

in the coming decades. At the same time, a number of co-

occurring anthropogenic stressors coupled with global cli-

mate change are likely impacting these systems. As society 

makes critical decisions about the use of the Mediterranean 

Sea and its conservation, it is important that we recognize 

the vulnerability of life and habitats of these systems and 

take actions in this perspective (Davies et al. 2007; Ramirez-

Llodra et al. 2011).
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