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Abstract 
Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via 

roots, occurs in different ecosystems and plant species. By extension of the principle that HR 

is driven by gradients in soil water potential, HR has been proposed to occur for plants in 

saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the 

lack of direct evidence of HR in response to osmotic gradients prompted us to ask the 

question: are there physical or physiological constraints to HR for plants in saline 

environments? We propose that build-up of ions in the root xylem sap and in the leaf 

apoplast, with the latter resulting in a large predawn disequilibrium of water potential in 

shoots compared with roots and soil, would both impede HR. We present a conceptual model 

that illustrates how processes in root systems in heterogeneous salinity with water potential 

gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of 

water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, 

we provide an outlook for understanding the relevance of HR for plants in saline 

environments by addressing key research questions on plant salinity tolerance. 

 

Brief Summary 
Despite significant water potential gradients in saline soils owing to large differences in soil 

water osmotic potentials within the root-zone of individual plants, no conclusive evidence 

exists for hydraulic redistribution (HR) in such conditions. This paper advances the 

hypothesis that build-up of ions in root xylem sap and in the leaf apoplast acts to diminish 

HR-driving water potential gradients. As a result, plants in spatially heterogeneous saline 

soils with osmotic-dominated gradients in water potential appear to have little HR. 
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Introduction 
When different parts of the root system of a single plant are subject to contrasting soil water 

contents, there can be a transfer of water from moist to dry soil via the roots (Richards & 

Caldwell 1987). This redistribution of water through roots (hereafter referred to as hydraulic 

redistribution, HR; after Burgess et al. 1998) has been documented in a range of plant species 

in different ecosystems (Caldwell et al. 1998; Warren et al. 2011; Neumann & Cardon 2012). 

In a review of representative empirical and modeling studies on HR in 16 different 

ecosystems, it was found that upward HR from wet to dry soil varies between 0.04 mm and 

1.3 mm H2O d-1 (for details see Neumann & Cardon 2012). In drought-prone environments, 

HR can improve plant performance by: (i) daily movement of a pool of water from roots in 

moist soil layers to roots in dry soil layers (Caldwell & Richards 1989; Caldwell et al. 1998); 

(ii) extending the activity and lifespan of fine roots and maintaining root–soil contact in dry 

soil layers (Brooks et al. 2006; Domec et al. 2004; Bauerle et al. 2008; Scholz et al. 2008); 

and in the case of downward HR (iii) moving precipitation into deeper soil layers where it 

does not evaporate (Smith et al. 1999; Burgess et al. 2001; Ryel et al. 2003; Hultine et al. 

2004; Scott et al. 2008).  

 

Over the last decade it has become widely recognized that HR, due to the combined effects on 

soil water content and fine root hydration, influences and ultimately improves the patterns of 

plant soil water utilization and carbon balance from the single plant level up to the ecosystem 

level (Domec et al. 2010; Prieto et al. 2012a; Neumann & Cardon 2012). For example, in a 

loblolly pine (Pinus taeda) forest in North Carolina, HR was found to maintain soil water 

potential above −0.95 MPa in the upper layers, thus limiting the danger of full hydraulic 

failure by xylem cavitation and allowing the trees to maintain transpiration and 

photosynthesis through seasonal droughts (Domec et al. 2010). In addition, the water 

hydraulically redistributed via roots of the pine trees provided the understory species with a 

supply of water during the early summer when the surface soil started to dry and HR steadily 

increased (Domec et al. 2010). Furthermore, HR has also been shown to increase plant 

productivity by enhancing plant nutrient capture not only by increasing soil moisture and 

hydrating fine roots (e.g., Cardon et al. 2013), but also by increasing root foraging in nutrient 

rich patches. Soils are generally highly heterogeneous and nutrient(s)-rich patches in soils can 

correspond to water-depleted patches (Jackson and Caldwell 1993). In a glasshouse 

experiment using enriched N and P, it was demonstrated that HR could enhance root 
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placement in nutrient-rich patches; as a result, plants with HR had a 25% greater root growth 

into nutrient-rich patches and a 3 fold increase in 15N uptake compared with plants with 

impaired HR (imposed by maintaining continuous illumination at night, Prieto et al. 2012b).  

 

Hydraulic redistribution can only occur if a soil water potential gradient exists within the root 

system of a single plant, and if transpiration is negligible or has ceased (Neumann & Cardon 

2012; Prieto et al. 2012a). During the day, transpiration results in the movement of water 

from the soil to the dry atmosphere via the leaves down a water potential gradient in the soil-

plant-atmosphere continuum (Fig. 1). Subsequently at night, once transpiration ceases to be a 

sink for water movement, then HR can occur. Initially, water potential gradients within roots 

will drive the internal redistribution of water within the plant, until the root water potential in 

the dry patches exceeds the water potential of the dry soil (Phase 1 in Fig. 1). As soon as the 

water potential of the roots in the dry soil exceeds that of the soil, water will flow from these 

roots to the soil (Phase 2 in Fig. 1; Neumann & Cardon 2012; Prieto et al. 2012a). In theory, 

root-mediated water flow from wet to dry soil zones will continue as long as water potentials 

of roots in dry soil remain between the water potential of roots in the distal wet soil and the 

water potential of the adjacent dry soil. Although the occurrence and role of HR for plants in 

saline soils has yet to be investigated, based on the known ecological impact of HR in 

drought-prone environments, in saline ecosystems Phase 1 alone could extend the activity 

and lifespan of fine roots in more saline patches like for those in dry soil areas (Brooks et al. 

2006; Domec et al. 2004; Bauerle et al. 2008; Scholz et al. 2008). Similarly, based on the 

known ecological impact of HR for plants in drought-prone environments, in saline 

environments if Phase 2 occurred this could hypothetically: (a) increase long-term 

transpiration by plants; (b) enhance nutrient uptake; (c) promote the diffusion of salt ions 

from the rhizosphere to the bulk soil; and (d) if downward HR occurred, increase soil water 

recharge and storage.   

 

Saline soils have a high degree of spatial heterogeneity, with horizontal and vertical variations 

in soil salinity across different orders of magnitude within the rooting zone of single plants, 

due to the interplay of soil leaching and the evapo-concentration of solutes (see Bazihizina et 

al. 2012 and references therein). For instance in field plots with the halophyte Atriplex 

amnicola the salinities of the soil solution (Electrical Conductivity of the soil water; ECsw) 

within the rooting zone ranged from 40 dS m–1 to 120 dS m–1 (equivalent to -2 to -6 MPa, 

Davidson et al. 1996). On the other hand, in a saline cropping field, barley (Hordeum vulgare) 
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was found in areas where the ECsw in the rooting zone spanned from 0 to 40 dS m-1 (0 to -2 

MPa) although in bare areas the ECsw range was substantially higher (44 to 140 dS m-1 or -2 

to -7 MPa, Richards 1983). This inherent heterogeneity of saline soils is further exacerbated 

by the fact that plants are affected by the concentration of salts (ions) in the soil solution, 

which increases hyperbolically as the soil dries, with declines in soil water osmotic potential 

(i.e. more negative) as well as matric potential, and thus substantial declines in total soil water 

potential (McFarlane et al. 2017). Therefore, in a similar manner to the ecological importance 

of HR in drought-prone environments where the heterogeneity in soil water content (matric 

potential) and thus gradients in soil water potential drive HR, it has been hypothesized that 

HR could occur and benefit plants in saline environments with heterogeneous soil salinity 

(osmotic potential gradients) (Hao et al. 2009). To date, however, there has been no clear 

evidence that HR does occur in response to soil water osmotic gradients both in wet (e.g., 

wetland) and drier saline environments (Fig. 2), and the potential impact of HR on plant 

performance in saline environments (when an osmotic gradient dominates) has yet to be 

evaluated. Indeed, to the best of our knowledge, all studies on HR conducted in saline 

environments (e.g. Armas et al. 2010; Brooksbank et al. 2011; and several of the studies 

conducted in the Mono Basin ecosystem in California e.g. Snyder et al. 2008; Aanderud & 

Richards 2009) suggest that the redistribution of water occurred from moist saline locations to 

dry but less saline patches (Table 1). For example, using the data from the only study where 

soil salinity and soil water content were simultaneously measured (see Table 1, Armas et al. 

2010), we quantified the relative importance of soil matric potential versus soil osmotic 

potential in driving HR. To estimate the expected range of each potential, we determined 

matric potentials (ψm) from the measured soil water content (see Table 1) using the water 

retention curve for sandy soils described by Slatyer & McIlroy (1961), and calculated osmotic 

potentials (ψs) from measured soil EC using the equation: 

(i) ψs = ((ECe*2)*-0.055* SWCfc)/SWC 

where ECe (dS m-1) is the EC of the saturated paste extract of soil, which multiplied by 2 

approximates the EC of the soil solution at field capacity (Richards 1954); the factor -0.055 is 

used to convert dS m-1 to MPa (Tavvakoli et al. 2010); SWCfc is the soil water content at field 

capacity; SWC is the actual soil water content. Total soil water potential (ψtotal) was 

calculated as the sum of the matric and osmotic components: 

(ii) ψtotal = ψm + ψs 
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Notably, it emerged that while the gradient in matric potential matched HR direction which 

moved water from the subsoil to the surface (see Table 1 for results), the osmotic gradient 

alone would potentially have caused water to move in the opposite direction, from the surface 

soil to the subsoil (see Table 1). That is, the main driver for HR remained the soil matric 

potential gradient and not the osmotic (i.e. salinity) gradient. The only other study that 

estimated HR in an environment where salinity gradients dominated, used sap flow 

measurements on the halophyte Rhizophora mangle (Hao et al. 2009). In this study reverse 

xylem sap flows (ranging from 0.5 to 2 cm h-1) were measured on most days from 8 pm to 8 

am and during low temperature spells in shallow prop roots exposed to an osmotic gradient of 

1.0 to 1.5 MPa (Hao et al. 2009); the quantification of reverse sap flow was, however, 

potentially inaccurate as this study did not verify the zero flow rates in severed roots. Most 

importantly, definitive evidence of HR is lacking in the above-mentioned study, as no attempt 

was made to demonstrate water efflux from the roots to the more saline soil area (i.e. Phase 2 

in Fig. 1) and reverse sap flow alone could indicate internal redistribution of water involved 

in rehydration of tissues with lower water status (i.e. Phase 1 in Fig. 1) rather than water loss 

from roots to the more saline soil (Hultine et al. 2003; Neumann & Cardon 2012).  

 

Given the inherent spatial patchiness of salinity in soils, water potential (i.e. osmotic) 

gradients in saline soils would seem conducive to HR, yet no conclusive reports exist for HR 

in these situations (Fig. 2). This prompted us to ask the questions: (i) compared with plants in 

non-saline soils with gradients in soil water content in which HR occurs, in saline soils are 

there internal constraints in plants to the transport of water through roots that could limit HR; 

and (ii) are the gradients in osmotic potential in the plant-soil continuum in saline 

environments of sufficient magnitude to drive HR? 

 

Constraints to hydraulic redistribution  
The main factors affecting HR in drought prone environments have been reviewed elsewhere 

(Neumann & Cardon 2012; Prieto et al. 2012a) and will only be briefly described here. The 

essential external condition for HR is that different parts of a plant’s root system experience 

different soil water potentials and that transpiration is very low (i.e. during the night). Rates 

of water flow from soil to roots and from roots to soil are, however, also influenced by soil 

hydraulic conductances. Soil texture and water content are the principal factors influencing 

soil hydraulic conductance, and also soil-root contact, and these factors therefore influence 
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the rates of HR (Neumann & Cardon 2012; Prieto et al. 2012a). In general, coarse textured 

(i.e. sandier) soils have been found less conducive to HR than finer-textured soils (e.g. clays) 

(Yoder & Nowak 1999; Wang et al. 2009), which suggests that root-soil contact is more 

important than soil hydraulic conductance for HR, as sandy soils have higher conductance but 

less root-soil contact. 

 

Amongst the plant features that affect HR, night-time transpiration, and root architecture and 

function are key characteristics. Nocturnal transpiration has been found to disrupt HR as the 

foliage water loss dominates over the roots in the dry soil as the predominant sink for water 

from roots in the wet soil (Caldwell & Richards 1989; Bauerle et al. 2008; Howard et al. 

2009). For example, in a glasshouse study, the artificial suppression of nocturnal transpiration 

by bagging the shoots of Artemisia tridentata and Helianthus anomalus increased HR by 73 

and 33%, respectively (Howard et al. 2009). Root hydraulic architecture can also strongly 

influence HR. As HR requires hydraulic integration between the different parts of the root 

system (i.e. connectivity through xylem connections at the base of roots or the base of the 

stem), both axial and radial hydraulic conductance will influence rates of flow for a given 

water potential gradient. Seasonal variations in root hydraulic conductivity have been found 

to contribute significantly to the variability in HR in a Pacific Northwest coniferous forest; 

despite the presence of considerable soil water potential gradients that could drive HR, HR 

declined in the dry season as root hydraulic conductance was reduced due to accumulating 

embolisms in roots of drought-stressed trees (Warren et al. 2007). Similarly, in the Brazilian 

savanna, reverse sap flow decreased linearly with reduced root hydraulic conductance and 

when the water potential gradient between the soil and the roots increased above 0.8 MPa, 

HR remained nearly constant despite the increase in the driving force due to declining 

hydraulic conductivities of the roots in the dry season (Scholz et al. 2008). 

 

Internal plant constraints to water transport through roots from low-saline 
to high-saline patches in soils  
 

The environmental and plant hydraulic conditions required for, and influencing, HR in saline 

soils could be similar to those in non-saline dry soils. For instance it is likely that salt-induced 

declines in root axial and radial hydraulic conductivity, observed both in halophytes and non-

halophytes under high external salinity (Kapland & Gale 1972; Henzler et al. 1999; Clarkson 
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et al. 2000; Martinez-Ballesta et al. 2003; Boursiac et al. 2005; Sade et al. 2010; Horie et al. 

2011; Muries et al. 2011; Sutka et al. 2011), will diminish water outflow from roots to soil 

and thus reduce HR magnitude. In particular, salinity can result in reduced activity of water 

channels (aquaporins), which reduces the conductivity of cell membranes and thus also the 

radial hydraulic conductivity of roots (Tyerman et al. 1999; Maurel et al. 2008; Reef & 

Lovelock 2014). Nevertheless, as the physiological effects of salinity on plants are not 

identical to the effects of drought, this raises the question whether there are other additional 

constraints that could limit or even abolish HR by root systems in saline soils. Unlike 

situations where virtually only a soil water content (i.e. matric potential) gradient exists in the 

soil, in saline soils the high concentration of dissolved salts in the soil solution (i.e. osmotic 

potential) is an overriding component of the soil water potential, so this Opinion Paper 

therefore focuses on the following aspects in plants in saline soils that may influence HR: (i) 

ion accumulation in the xylem sap; and (ii) large plant predawn disequilibrium of water 

potential due to solute accumulation in the shoot.  
 
Xylem osmotic potentials 
Uptake of Na+ and Cl- by roots in saline solutions results in declines in root xylem osmotic 

potential; examples for this are available for halophytes (e.g. Suaeda maritima, Clipson & 

Flowers 1987; Atriplex amnicola, Galloway & Davidson 1993; Avicennia germinans and 

Laguncularia racemosa, López-Portillo et al. 2014) and for non-halophytes (e.g. Hordeum 

vulgare, Greenway 1965, Munns 1985; Triticum aestivum, Watson et al. 2001; Lotus spp. 

Teakle et al. 2007). Of particular importance here, xylem osmotic potentials decline more 

strongly when xylem sap flow rates are low at times of low transpiration, which coincides 

with the night time when HR is expected to occur. For example, when the halophyte Suaeda 

maritima was exposed to 20, 200 and 400 mM NaCl, Na+ concentrations in the xylem sap at 

night increased to values 2 to 4 times those found during the day, which was associated with 

the lower rate of xylem sap flow at night compared with the day (Clipson & Flowers 1987, 

Fig. 3a). Increases in xylem sap Na+ concentrations or decreases in osmotic potential (i.e. 

more negative) were found also with declining xylem sap flow rates in the non-halophytes 

Zea mays, Hordeum vulgare and Lycopersicon esculentum (e.g. Greenway 1965; Munns 

1985; Jackson et al. 1996; Lopez et al. 2003; Fig. 2). These declines in xylem osmotic 

potentials during periods of low transpiration are caused by greater decreases in transpiration 

than in rates of ion uptake; that is xylem flow (and thus the diluting volume) is reduced more 
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than is the rate of ‘loading’ of ions (Clipson & Flowers 1987; summarised in Fig. 3). 

Furthermore, at times of low transpirational demand, the asymmetric distribution of influx 

and efflux carriers within the root and the Casparian strip at the endodermis is thought to 

prevent backflow of ions from the stele to the apoplast of the cortex (Steudle & Peterson 

1998; Robbins et al. 2014). While it is known that loading and retrieval of Na+ and Cl- from 

the xylem comprise both passive and active transport mechanisms that operate at low and/or 

high external salt concentrations (for more details see Maathuis 2014; Munns & Tester 2008; 

Li et al. 2017 and references therein), more work is needed to clarify whether the transporters 

involved have a circadian-regulated expression and whether transpirational demands from the 

shoot could potentially amplify or alter any diurnal changes and thus xylem loading and the 

resulting solute concentrations.  

 

Hydraulic redistribution magnitude and duration depends on an outflow of water from roots to 

soil patches with the lowest water potential. However, in saline soils, if solute accumulation 

in the xylem leads to substantial decreases in xylem osmotic potentials (e.g. night, Fig. 3), 

water potential gradients across the soil-root-soil continuum will decrease or even reverse, 

and without this driving force the outflow of water will cease thus hindering Phase 2 of the 

HR process (Fig. 1). Furthermore, the strong dependence on the symplastic pathway for water 

flow across roots of halophytes (e.g. Krishnamurthy et al. 2014) could increase solutes in the 

xylem at the water exit point as ions are ‘filtered’ (i.e. expected to be ‘excluded’ by 

membranes of cells along the pathway; Passioura 1988) during water backflow to the saline 

soil. As the distance is too large for substantial diffusion, the solute concentrations in the 

xylem sap could increase, progressively reducing the water backflow from the roots to the 

saline soil and thus the driving force for the water transfer between the non-saline and the 

saline soil patches. Ultimately the xylem osmotic potential would decline to a threshold value 

at which water exit flow to the saline soil completely stops. This interesting hypothesis was 

brought forward in the review on water transport by Passioura (1988) to explain the lack of 

HR in some species in drought-prone environments. Given the demonstrated increases in 

xylem sap solute concentrations in plants in saline substrates (see previous paragraph), this 

hypothesis deserves testing, as this mechanism could play a pivotal role in preventing/limiting 

water loss from roots to a saline soil and thus diminishing HR by roots in saline soils.  
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Plant predawn disequilibrium of shoot and soil water potentials 
Hydraulic redistribution occurs, mainly at night-time, when reduced transpiration increases 

shoot water potential enabling the soil water potential in dry soil patches to become a sink for 

water in the plant-soil continuum. In general, predawn shoot water potential is thought to 

equilibrate closely with water potential of the soil surrounding active roots (Hinckley et al. 

1978; Kramer & Boyer 1995; Améglio et al. 1999). However, there can be a significant 

predawn disequilibrium (PDD) between shoot and soil water potential, which results in the 

shoot water potential being substantially more negative than the water potential of the soil 

accessed by the roots (Donovan et al. 1999; Sperry & Hacke 2002; Bucci et al. 2005; James 

et al. 2006). As HR depends on the water potential gradients established in the plant–soil 

continuum, PDD will likely affect the internal water redistribution (Phase 1 of the HR 

process) so that any increases in the water potentials in the roots in the saline soil patches 

would be dampened (Fig. 1). Although evidence is currently lacking, it is logical to expect 

that PDD, as reported for night-time transpiration (discussed earlier in this Opinion Paper), 

could result in the shoot, rather than the roots in the dry soil, becoming the predominant sink 

for the water from the roots in the wet less saline soil; this would therefore slow the 

rehydration of the roots in the more saline soil and delay or inhibit the start of Phase 2 of the 

HR process (Fig. 1).  

 

Although PDD has been found to be nonexistent for small or herbaceous plants, it can be 

substantial in many woody species and in plants growing in saline environments (Donovan et 

al. 1999), especially halophytes where PDD can be as large as 2.7 MPa (Donovan et al. 1999, 

2001, 2003; James et al. 2006; Lazarus et al. 2011). While PDD is often attributed to night-

time transpiration and/or increased resistance in the soil-root-leaf hydraulic pathway, in 

halophytes it has been associated with high solute accumulation in the leaf apoplast 

(Donovan et al. 2001; James et al. 2006; Lazarus et al. 2011). Dynamic changes in apoplastic 

ion concentrations, which have been attributed to solute buildup from daytime transpiration 

or ion transport between the symplast and the apoplast (James et al. 2006), could enable 

tissues to regulate cellular water potentials in species that accumulate high concentrations of 

osmotica (e.g. halophytes) or are subject to fluctuating soil salinity (James et al. 2006; 

Flowers et al. 2015).  
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Water potential gradients in the plant-soil continuum: comparison between 
soil salinity (i.e. osmotic) and soil water (i.e. matric) gradients 
Soil water dynamics in an ecosystem will influence the magnitude of HR depending on the 

combination of soil parameters (e.g. soil texture) with plant morphological and physiological 

traits (e.g. root architecture, density and mortality, root hydraulic conductivity; Prieto et al. 

2010b). The relationship between HR and soil water potential gradients appears to be a bell-

shaped curve, with minimal values at the extremes of the range and higher values mid-range 

(Fig. 4a). Numerous field studies suggest that HR only starts after drying soils reach a certain 

water potential threshold (generally −0.4 to −0.8 MPa, Neumann & Cardon 2012). 

Subsequently, HR increases with increasing gradients until the water potential in the dry soil 

reaches a critical point where HR declines with further decreases in soil water potentials due 

to declines in root and/or soil hydraulic conductivity (Fig. 4a; Brooks et al. 2002; Domec et 

al. 2004, 2006; Meinzer et al. 2004; Warren et al. 2007; Prieto et al. 2010a; Neumann et al. 

2014).  

 

As observed for soil water (matric potential) gradients, it could be predicted that a similar 

bell-shaped relationship occurs for HR by root systems experiencing soil salinity (osmotic 

potential) gradients (Fig. 4b,c). The magnitude of these osmotic gradients, however, can be 

expected to be smaller than those of matric potentials in drying soils due to ion accumulation 

in the xylem and plant apoplast, which would reduce water efflux from roots in the more 

saline soil, minimizing HR or even preventing it (see preceding sections of this Opinion 

Paper). Indeed the concurrent declines in xylem osmotic potentials and the accumulation of 

ions in tissues at the site of water exit in the xylem will reduce the water potential gradient 

between the roots and the soil in the saline patches, which in turn could limit if not 

completely stop water backflow from the roots to the saline soil, reducing HR magnitude and 

narrowing the water potential ranges at which HR can occur (Fig. 4b,c). On the other hand, 

large PDD due to the accumulation of solutes in the leaf apoplast would also substantially 

narrow the range at which HR can occur; indeed, HR would begin only if the water potential 

in the roots in the saline soil patches declined below the predawn water potential in the 

leaves, which for leaves of some halophytes has been found to be as low as -3.65 MPa (James 

et al. 2006). Until then, the greater water potential gradient in the soil-plant continuum 

between the leaves and the soil would result in water moving predominantly towards the 

leaves, slowing the rehydration of the roots in the saline soil (Fig. 4b,c). HR magnitude is 
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expected to decline not only in moist saline environments where gradients are osmotic owing 

to differences in salinity between soil layers or patches (Fig. 4b) but also in drought-prone 

saline environments where soil water (i.e. matric) gradients also occur and can even dominate 

over osmotic gradients. Indeed, in these drier environments, for example with a saline water 

table accessed by roots at depth, HR would only occur if the water potential of the dry part of 

the soil declined below the water potential in the moist but saline parts (Fig. 4c). In addition, 

the high ion concentrations in the moist soil part and ion entry to the xylem, as for HR in 

response to salinity gradients alone, would substantially decrease xylem osmotic potentials 

and also likely result in large PDD, which would further reduce HR magnitude in plants in 

saline soils even with a soil water content (i.e. matric potential) gradient. 

 

Conclusions and outlook for future research 
Hydraulic redistribution can play an important role for individual plants up to the ecosystem 

level in drought-prone environments (Domec et al. 2010; Burgess 2011; Prieto et al. 2012a). 

By contrast with these situations in which water potential gradients are dominated by 

differences in soil matric potential, we propose that HR is very limited in plants in saline 

environments where differences in soil salinity result in external osmotic gradients. 

Specifically, in this Opinion Paper, we addressed two key questions: (i) are there additional 

plant internal constraints to HR in saline soils; and (ii) are the osmotic gradients in the plant-

soil continuum in saline environments of sufficient magnitude to drive HR? Although our 

ability to definitively answer these questions is limited by gaps in knowledge as identified in 

this Opinion Paper, we advance the hypothesis that HR is unlikely to provide an immediate 

benefit to plant productivity in spatially heterogeneous saline soils, where osmotic gradients 

are an important component of the soil water potential gradient within the root zone. The 

accumulation of ions in plants, which decreases the osmotic potential of the xylem sap of 

roots and can result in large PDD between shoots and roots, is likely to reduce the driving 

force for water backflow from the roots to the saline soil and thus HR. It is however important 

to determine the relative importance of the different phases of HR in saline environments. 

Currently in the literature dealing with HR in saline soils there is no conclusive evidence of 

water backflow into the soil; future work should clarify HR events with ‘root-mediated 

redistribution of soil water’ (i.e. water flows into soil) as well as situations with transient 

‘reverse flow’ which rehydrates distal tissues but without water backflow to the soil. Indeed, 

while the impact of HR in saline environments is likely to be minimal, it is important to note 
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that the internal redistribution of water likely does occur in at least some plants in saline 

systems (e.g. Hao et al. 2009; Shelef et al. 2016). This internal redistribution of water is likely 

to aid root survival in saline soils (as observed under drought conditions, Bauerle et al. 2008) 

and so would be physiologically and ecologically significant, and could potentially have 

important management implications (such as crop selection and irrigation management) in 

these saline landscapes that are inherently highly heterogeneous in time and space for levels 

of soil salinity. 

 

Salt loading into the xylem has long been considered one of the key determinants of salinity 

tolerance in plants (non-halophytes and halophytes; Tester & Davenport 2003; Munns & 

Tester 2008; Flowers & Colmer 2008; Shabala et al. 2013; Zhu et al. 2016; Li et al. 2017). 

Although some transport mechanisms for Na+ and Cl− loading and retrieval at the soil-root 

and stelar cell–root xylem vessel interfaces are known or have been proposed (Munns & 

Tester 2008; Li et al. 2017), no knowledge of the regulation of these transporters is currently 

available for plants with roots exposed to heterogeneous salinities. In particular, additional 

work is needed to improve our understanding of diel changes of ion concentrations in the 

xylem sap in each root section exposed to the various levels of salinity and at the whole plant 

level, and how the ion transport processes are affected/regulated by transpiration and/or by 

light/diurnal rhythms (e.g. as seen for NO3
− or NH4

+ transporters, Lejay et al. 1999 and the 

diurnal changes in aquaporin expression, Lopez et al. 2003; Vandeleur et al. 2009). 

Glasshouse and field studies are required to unravel how heterogeneous salinities affect levels 

of apoplastic solutes in roots and the shoots, and whether the strong dependence on the cell-

to-cell pathway of radial water movement across roots could cause an increase in xylem 

solutes if water flows from the xylem to the external medium (cf. Passioura 1988). The 

knowledge of solute dynamics in xylem and the apoplast will be crucial to improve our 

mechanistic understanding of how soil salinity affects HR in plants in saline soils in various 

environments, including wetland, mesic and drought-prone areas. In particular, comparisons 

should be made between (and within) non-halophytic and halophytic species with different 

abilities to regulate their xylem ion compositions and tissue water relations. 
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onversion from
 soil w

ater content to m
atric potential and vice versa w

as m
ade according the w

ater 
retention curve for sandy soils described by Slatyer &

 M
cIlroy (1961). eFor groundw

ater data and saturated soils conversions to osm
otic potentials (M

Pa) or vice versa has 
been m

ade assum
ing that 100 m

M
 N

aC
l ≅ 10 dS m

-1 ≅ -0.55 M
Pa (Tavvakoli et al. 2010).  fC

onversion m
ade assum

ing that field capacity of the soils w
as 0.16 m

3 m
-3 and 

w
ilting point w

as 0.05 m
3 m

-3 (B
rooksbank et al. 2011). gEC

e w
as calculated based on m

easured C
l - concentrations and assum

ing that all salts w
ere N

aC
l. hTotal soil w

ater 
potential (the sum

 of the m
atric and osm

otic com
ponents) w

as m
easured using therm

ocouple psychrom
eters. *Soil osm

otic potential w
as not estim

ated as soil salinity and 
w

ater content w
ere not sim

ultaneously m
easured and have been taken from

 different studies (see Table for m
ore details). Ψ

s , O
sm

otic potential; Ψ
m , M

atric potential; Ψ
total , 

Total soil w
ater potential; nd, not determ

ined. 
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Figure 1. Schematic diagram of day and night water movement within the plant, assuming 
typical soil and plant water potentials with hypothetical values for soil, root and shoot water 
potentials. Hydraulic redistribution within a plant will occur if there is a soil water potential 
gradient within the root system and can be divided into two phases. The initial condition 
results from plant transpiration that will create a water potential gradient in the soil-plant-
atmosphere continuum. In Phase 1, once transpiration ceases to be the main sink for water 
movement, water potential gradients within roots will drive the internal redistribution of water 
within the plant, until the root water potential in the dry location exceeds that of the dry soil. 
Arrows show the dominant water flow direction. In Phase 2 the higher water potential in the 
roots compared to those in the dry soil will result in water backflow from the roots to the soil. 
Arrows show the dominant water flow direction. Ψ= Water potential; PDD= Plant predawn 
disequilibrium. 
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Figure 2. Range of water content and salinity gradients in soils where HR could theoretically 
occur and where evidence of HR has been found. Environment 1 – contrasts in water content 
in different soil layers are the main driver of the water potential gradients; Environment 2 – 
both water content and salinity differences are drivers of the water potential gradients; 
Environment 3 – soil salinity contrasts are the main driver of the water potential gradients.  
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Figure 3. Examples of xylem ion concentrations (i.e. influencing xylem osmotic potential) in 
relation to plant transpiration and root-zone salinity (NaCl). (a) Effect of transpiration and 
root-zone salinity on Na+ concentration in shoot xylem of a salt-tolerant non-halophyte 
(Hordeum vulgare, drawn from data in Munns (1985), with permission from Wiley 
Publishing) and a halophyte (Suaeda maritima, reproduced from Clipson & Flowers (1987), 
with permission from Wiley Publishing); (b) Effect of transpiration on Cl- concentration in 
root xylem of Hordeum vulgare grown with 50 mM NaCl in the root-zone (reproduced from 
Greenway (1965), with permission from CSIRO Publishing). 
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Figure 4. Predicted magnitude of hydraulic redistribution (HR) in saline environments as a 
function of soil water potentials based on comparison with hydraulic redistribution in Retama 
sphaerocarpa shrubs in a drought-prone environment (Prieto et al. 2010a). (a) Reproduces 
data from Prieto et al. (2010a) with permission from Springer Publishing to provide the 
relationship between HR and soil water potentials in the top 50 cm (i.e. drier soil layer in the 
soil column) of soil under the shrubs; (b) the hypothesised relationship between HR and 
gradient in soil water osmotic potential in wet saline environments (i.e. wet saline to wet 
less/low saline or non-saline); (c) the hypothesised relationship between HR and gradient in 
soil water potential in drought-prone saline environments (i.e. wet saline to dry less/low saline 
or non-saline). Ψs = Osmotic potential; PDD = Plant predawn disequilibrium; Ψtotal = Total 
water potential (the sum of the matric and osmotic potentials). The dashed line in (b) and (c) 
represent the relationship between HR and soil water potentials shown in (a). The lines in (b) 
and (c) represent, respectively, the hypothesised relationship between HR and soil water 
potential in the saline and drier soil layer of the soil based on comparison with relationship in 
(a). 


