Federico Zenith Large-scale hydrogen production from wind power in Arctic conditions The HAEOLUS project

SINTEF Mathematics & Cybernetics

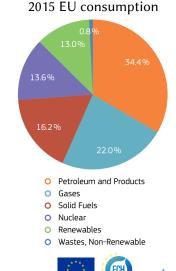
Nordic Hydrogen & Fuel Cell Conference October 9, 2018 Reykjavík, Iceland

Motivation

The Project

Motivation

The Project



Motivation

- EU 2030 target: 27 % renewable energy consumption
 - In 2015 it was 13 %
 - Production is already 26.2 % (2015)
 - No renewables in energy imports
- Most renewables produce electricity
- Several are not controllable
- Some are unpredictable

ӉAヹ�゚LUS

Constraints of Wind Power

- Hard to predict production
- Capacity factor about 33 %
- Need reserve capacity
- Often, good wind power is found where:
 - there is little hydro potential
 - few people live
 - the grid is weak

 $HA \equiv \Im LUS$

- accessibility is difficult
- · All this even more true for offshore wind!

The Connection between Hydrogen and Wind

- Beyond 20 % wind share, value plummets
 - Gonzalez et al., Ren. Ener., 29.4 (2003), 471–489
- Hydro is rarely possible
- Batteries are too expensive
- Hydrogen has lower efficiency
- IEA's HIA task 24 identified 3 main cases:
 - Energy storage
 - Mini-grid (e.g. islands)
 - Fuel production

 $HA \equiv \Im LUS$

· Grid services, reserves, target matching...

The Utsira, Norway, 50 kW / 215 kg_{H2} system (2004)

Motivation

The Project

The HAEOLUS Project http://haeolus.eu - @HaeolusProject

- A FCH2 JU Innovation Action
- Objectives:
 - Enable more wind power
 - Test multiple use cases
 - Demonstrate a 2.5 MW system
 - Demonstrate remote operation
 - Report & disseminate
- Key figures:
 - Budget: 6.9 M€ (5 M€ from EU)
 - Time frame 2018-2021
 - Capacity 1t/d

 $HA \exists \Im LUS$

- Production start: late summer 2019

Kick-off in Oslo, January 2018

The Wind Park

Raggovidda wind park, Berlevåg municipality, Varanger peninsula, Finnmark county

The Raggovidda wind park:

HAIstLUS

- 45 MW built of 200 MW concession
- Neighbour Hamnafjell: 50 MW / 120 MW
- Bottleneck to main grid is 95 MW
- Total Varanger resources about 2000 MW

The Wind Park

Raggovidda wind park, Berlevåg municipality, Varanger peninsula, Finnmark county

- The Raggovidda wind park:
 - 45 MW built of 200 MW concession
 - Neighbour Hamnafjell: 50 MW / 120 MW
 - Bottleneck to main grid is 95 MW
 - Total Varanger resources about 2000 MW
- Capacity factor 50 %

HAIstLUS

- Local consumption max. 60 MW
- Local economy based on fishing
- Partner operator of park & grid:

The Electrolyser System's Site

Raggovidda wind park, Berlevåg municipality, Varanger peninsula, Finnmark county

- Located beside Berlevåg harbour
- Compact 2.5 MW PEM electrolyser
- 100 kW fuel cell for re-electrification
- New 10 km power line from Raggovidda
- Virtually "inside the fence"
- · Accessibility by road or sea
- At least 120 t over 2.5 year

 $HA \equiv \Im LUS$

Partner electrolyser manufacturer:
 HYDROG(E)NICS
 SHIFT POWER | ENERGIZE YOUR WORLD

View of Berlevåg, site highlighted

Grid Services

 Wind energy production target match Currently: prediction outsourced 3rd party paid in % of production Easily quantifiable potential Adjust electrolyser to fulfil target
 Primary, secondary & tertiary reserves Electrolysers are easily ramped Can acquire slots in all reserves
• Project partner: tecnalia

HA 三 l U S

Hour	Price NOK/MW	Volume MW
1	180	33
2	139	34
3	139	34
4	139	34
:	•	:
18	18	34
19	18	25
20	17	48
÷	•	:

Price for primary reserves on October 3, northern Norway.

Other Activities

- Remote operation
 - Relevant for many wind parks
 - Run demonstration from Italy
- · Partner software developer:

- System prognostics
 - Reduce on-site inspections
 - Optimise maintenance
 - Avoid unscheduled stops
- Partner university:

- Dynamic modelling
 - Process model & optimisation
 - Control synthesis
- Partner university:

- University of Sannio
- Control implementation
- Integration with smart grids
- H₂ valorisation plan
- Coordinator:
 SINTEF

Motivation

The Project

Expected Impact From Short to Long Term

- · Convince Varanger Kraft to expand hydrogen production
- Export model to other sites in Europe (other EU projects?)
- Allow deployment of wind power beyond 20 %
- · Push hydrogen utilisation in the area
 - Mobility, industry, etc.
- Contribute to EU renewable targets & energy independence

Public Deliverables

Reports (18):

- Raggovidda energy analysis
- Dynamic model & control
- Impact on energy systems, RCS
- Valorisation plan
- Business case analysis

 $HA \exists \Im LUS$

- Road to MAWP 2023 targets
- Techno-economic analysis
- Environmental performance
- Demonstration protocols & data

Other (15):

- Workshop at ECC2019 Naples
- Real-time demo on website
- Plant visit
- Academic seminars
- Student internship
- Presence at industrial fair

What to Do with the Hydrogen?

Valorisation Plan: Identified Opportunities

Action	Realism	Size	Gimmick
Svalbard energy supply	\checkmark	\checkmark	\checkmark
Coastal ships	(√)	\checkmark	\checkmark
Fishing boats	\checkmark	\checkmark	
Ammonia production	\checkmark	\checkmark	
Aquaculture	(√)	\checkmark	
Fast passenger boats	(√)	\checkmark	
Cars	\checkmark		\checkmark
Regional mini-buses	\checkmark		
Waste collection trucks	\checkmark		
Backup generators	\checkmark		
Snowmobiles			\checkmark
Regional planes		\checkmark	\checkmark
ZE steel production		\checkmark	
Mining and ore processing		\checkmark	

Conclusion

- · Hydrogen can boost wind power
- HAEOLUS will test relevant cases for Europe and beyond
- Many possibilities for hydrogen use—the most promising still to develop, though

HAIstLUS

Conclusion

- · Hydrogen can boost wind power
- HAEOLUS will test relevant cases for Europe and beyond
- Many possibilities for hydrogen use—the most promising still to develop, though

Thank you for your attention!

ӉА҄҄҄҄҄З҄ℬ҄҄LUЅ

Hydrogen-Aeolic Energy with Optimised eLectrolysers Upstream of Substation

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement № 779469.

